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The compounds (CH3-NH3),Mn,Cd;_,Cl, are among the better physical realizations of a diluted Heisenberg
antiferromagnet on the square lattice. The magnetization of three powder samples, with x=0.063, 0.067, and
0.157, was measured at temperatures 7=20 mK in magnetic fields B up to 17 T. Magnetization-step (MST)
spectra were obtained with a much higher resolution than in the earlier MST study at 7=0.6 K. The earlier
study uncovered only two spectral lines, near 6.6 and 13 T. These lines were attributed to nearest-neighbor
(NN) pairs. The higher-resolution richer spectrum observed at 7=20 mK is interpreted using a theory which
includes two exchange constants: the largest exchange constant, /), and the second-largest, /?. A summary
of the relevant results of this theory is given. The main result of the present work is the determination of J@
by two independent methods. The first method used a series of MSTs that was observed at 7=20 mK in
magnetic fields below 2 T. These MSTs, interpreted as the MSTs from J@® pairs, gave J®/kg
=-0.227+0.010 K. The second method used the fine-structure (FS) splitting of the spectral line near 6.6 T. It
gave J@/kp=—0.208+0.006 K. The FS splitting of the spectral line near 13 T is smaller, as expected, and is
consistent with the same value of J?). Attempts to identify the neighbor (in the cation lattice) that is associated
with J@ were unsuccessful. This failure is attributed to previously observed deviations from a random Mn
distribution. The field separation between the strongest spectral line in the FS near 13 T and the strongest line
near 6.6 T gave J!/ky=-4.39+0.05 K, in excellent agreement with the earlier MST study. Much earlier
measurements of the spin-wave dispersion curves in (CH;-NH;),MnCl, identified J") as the NN exchange
constant J;. Comments about the theoretical interpretation of the present data are relegated to two appendixes.
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I. INTRODUCTION

Small clusters of spins occur in strongly diluted magnetic
materials and in magnetic molecules. When the intracluster
exchange interaction is antiferromagnetic (AF), such clusters
give rise to magnetization steps (MSTs) as a function of
magnetic field. A wealth of information about magnetic in-
teractions and spin relaxation was gained from studies of
these MSTs. The experimental works and the theoretical de-
velopments that accompanied them were reviewed recently,
e.g., Refs. 1 and 2.

Although two-dimensional (2D) antiferromagnets have
been investigated for a long time>* very few studies of
MSTs in diluted 2D antiferromagnets have been carried out
until recently.” The compound (CH;-NH;),MnCl, is one of
the better physical realizations of a 2D Heisenberg antiferro-
magnet on the square lattice.>*%7 The reasons for the 2D
magnetic behavior are related to the crystal structure, a sche-
matic of which is reproduced in Ref. 8. The Mn?* ions are
arranged in parallel layers, with interlayer separation of
9.7 A. Between these layers are Cl anions and (CH;-NH;)
groups. The in-layer nearest-neighbor (NN) Mn>* ions are
separated by 5.1 A. The superexchange bond between these
NN’s involves a single intervening Cl anion. The exchange
interaction between different layers involves exchange paths
through both Cl anions and (CH;-NH;) groups, and it may
be reduced further by symmetry.°

The Mn?** ion is an S-state ion with spin S=5/2.
Its single-ion anisotropy is very low, as expected for an
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S-state ion. The in-layer NN exchange constant in
(CH3-NH;),MnCl, is J;/kg=-5K, where kg is the
Boltzmann constant. All other exchange constants are
much smaller. The related series of compounds
(CH;3-NHj3),Mn,Cd,_,Cl,, in which a large fraction of the
Mn?* cations are replaced by Cd** cations, are expected to
be good physical realizations of a strongly diluted Heisen-
berg antiferromagnet on the square lattice.

The first experimental study® of MSTs from
(CH;3NH;3),Mn,Cd,_,Cl, was carried out at temperature T
=0.6 K, in magnetic fields B up to 17 T. For the range of x
that was studied, 0.025<x=<10.265, these compounds do not
exhibit long-range magnetic order. The thermal energy kT
at 0.6 K was small compared to J;, but large compared to all
other exchange constants. The observed MST spectra were
therefore reasonably well explained by a theoretical model’
which included only J;. The MST data at 0.6 K gave J,/kg
=-4.39+0.10 K.

The present study at 7=20 mK was performed on some
of the materials that had been studied at 0.6 K. The much
lower temperature in the present work increased the resolu-
tion of the MST spectra considerably. It was then possible to
test some recent predictions for models with two exchange
constants.!*!!

The small size of the second-largest exchange constant
prevented its detection at 0.6 K. In the present work at
20 mK this exchange constant was measured by two meth-
ods. One method used the low-field MSTs from pairs with
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this exchange constant. The second used line splitting in the
high-field fine structure (FS). The results of the two methods
are in reasonable (10%) agreement. The previous determina-
tion of the largest exchange constant from MSTs at 0.6 K
was confirmed by the new data at 20 mK. A neutron-
diffraction study of spin waves,” which predated the MST
studies, identified this largest exchange constant as the NN
exchange constant J;.

II. RECENT THEORETICAL MODELS WITH TWO
EXCHANGE CONSTANTS

The first theoretical work on MSTs from a diluted antifer-
romagnet with a square lattice” used the NN cluster model,
which only includes the NN exchange constant J,. Theoret-
ical works which include both the largest and second-largest
exchange constants are much more recent. The detailed ac-
counts of these recent works are very lengthy.'%!! To facili-
tate the reading of the present paper, the most relevant defi-
nitions and concepts are summarized here.

A. Classifications of exchange constants

The exchange constants (the J’s) are classified in two dif-
ferent ways. The traditional classification associates each J
with a particular neighbor in the cation lattice. The relevant
neighbor is specified by a subscript, i.e., J, J,, and J; are the
nearest-neighbor, second-neighbor, and third-neighbor ex-
change constants, respectively. For the planar (2D) magnetic
materials under consideration, only in-plane neighbors are
included.

The classification of J’s by neighbors is standard, but it
has a practical drawback. Measurements of MSTs often give
the magnitude of J without immediately revealing the asso-
ciated neighbor. It is then convenient to classify the J’s by
their relative size. Using superscripts, J() is the largest ex-
change constant, J? is the second-largest, etc.

In the present work, both JD and J@ were measured di-
rectly. An early neutron-diffraction study,” identified J) as
the NN exchange constant J,. In the two recent theoretical
works that are summarized here!®!! this identification is as-
sumed. In addition, it is assumed that J@ is either J, or J5.

B. Cluster models and cluster types
1. Cluster models

Any cluster model includes only a subset of all possible
J’s, classified by neighbors. Reference 9 was devoted to the
J, model, with the additional assumption that J; is J("). Both
Ref. 10 and Ref. 11 were devoted to specific models with
two exchange constants: the J;-J, and J;-J;3 models. These
are the only models consistent with JV=J/,, and /@ =J, or
J3. The basic difference between Ref. 10 and Ref. 11 is that
in the former the ratio J®/J® can have any value smaller
than 1, whereas in the latter J@/JD <1,

Among the cation sites, only a fraction x is occupied by
magnetic ions. The fraction x is called the magnetic-ion
“concentration.” In theories of MSTs it is assumed that x is
well below the site percolation concentration x,. for the rel-
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evant cluster model. The values of x,. are 0.407 for the J;-J,
model, and 0.337 for the J;-J; model.'>!3 For the J, model,
x.=0.593.

2. Clusters and their classifications by size and by type

Consider a diluted antiferromagnet, and assume that a
specific cluster model, with a specified set of J’s, has already
been selected. Each magnetic ion (spin) is then a member of
a particular cluster. All the spins in this cluster are coupled to
each other by the J’s of the model, but spins in different
clusters are not coupled. The cluster size, n,, is the number of
spins in the cluster.

The classification of clusters by size is useful in a variety
of problems,'* but is inadequate for treating MSTs theoreti-
cally. The reason is that MSTs are caused by energy-level
crossings that change the ground states of clusters (see, e.g.,
Sec. II of Ref. 1). In an increasing magnetic field B, the new
ground state of a cluster always has a larger magnetic mo-
ment. Changes of ground states of clusters are therefore ac-
companied by abrupt jumps of the magnetization M, if the
temperature 7" is very low. Crossings of energy levels are
governed by the cluster Hamiltonian, not by the cluster size.
Therefore, in the theory of MSTs, clusters are classified by
their Hamiltonians. The classification by Hamiltonians is the
classification by “types.”

In the Heisenberg model considered here, the cluster
Hamiltonian includes only an isotropic-exchange interaction
and an isotropic Zeeman interaction. The Zeeman interaction
involves a g-factor, whose value is assumed to be given. The
exchange interaction is specified by the complete set of non-
zero J’s between the spins of the cluster. This set of J’s can
be specified, in turn, by a “bond list.” Bond lists, in which
the J’s are classified by the associated neighbors, were dis-
cussed in detail in Ref. 9.

A bond list, together with value of g, specify the cluster
Hamiltonian. The classification of clusters by bond lists is
the classification by types. In addition to specifying the clus-
ter type the bond list also gives, indirectly, the cluster size n,.
Although it is redundant, it is usual to state the cluster size n,
in addition to giving the bond list.

3. Multiple cluster types for the same cluster size

For either the J;-J, model or the J;-J;3 model on the
square lattice, there is more than one cluster type for any
cluster size n.. The only exception is the smallest size, n,
=1, which corresponds to an isolated spin (called a “single”).
For n.=2, there are already two cluster types: a J; pair and a
J, pair in the J;-J, model, or a J; pair and a J; pair in the
Ji-J; model. For both models, all cluster types and their
bond lists were given for each cluster size up to n.=5 (Ref.
10). These results were later extended by Bindilatti to cluster
sizes up to n,=8 (Ref. 15).

The number of cluster types for a given size n,. increases
rapidly with n_. In the J;-J, model on the square lattice there
are 4, 15, 45, 186, 759, and 3486 cluster types for n.=3, 4, 5,
6, 7, and 8, respectively. For the J;-J;3 model the correspond-
ing numbers are 4, 17, 58, 284, 1409, and 7883 cluster types.
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4. Statistics of cluster types

The statistics of each of these numerous cluster types was
discussed in Refs. 10 and 15. The probabilities that a ran-
domly chosen spin is in a cluster of each of these types were
obtained. They were expressed analytically as a function of
the magnetic-ion concentration x. The central assumption
was a random distribution of the magnetic ions over the cat-
ion sites. Cluster probabilities do not depend on the spin S of
the magnetic ions.

C. MST spectrum

Except for the “single” (isolated spin), each cluster type
gives rise to abrupt jumps (MSTs) in the low-temperature
magnetization curve, M versus B. In the derivative curve,
dM/dB versus B, each MST appears as a sharp peak. The
pattern of peaks in the derivative curve is called the MST
spectrum. A single peak is a “spectral line.” The full spec-
trum is the superposition of the spectra from all the cluster
types. Plots of MST spectra are very effective for visual pre-
sentations of experimental and theoretical results on MSTs.

D. Truncation at a maximum cluster size

All cluster types contribute to the magnetization M(T,B).
The full theoretical expression for M is an infinite sum of
contributions from all cluster types. Each contribution de-
pends on the energy levels and on the probability for the
cluster type.

The energy levels and probabilities are calculated only for
a finite number of cluster types. The infinite sum that gives
M exactly is therefore truncated. The “truncated sum” in-
cludes the exact contributions from only a finite number of
cluster types. The “remainder” contains the contributions
from all other cluster types.

Typically, the truncated sum includes all cluster types
with sizes no larger than a maximum size, called n,,,,. The
remainder contains the contributions from clusters with n,
> . The magnetization M and MST spectrum are calcu-
lated only from the truncated sum. The spectrum from the
remainder cannot be recovered after the truncation. In some
cases, however, it is still possible to approximate the contri-
bution of the remainder to M, and then add it to the magne-
tization from the truncated sum.

In the present work the theoretical interpretation of the
experimental results is based on the choice 7n,,,,=5. The mo-
tivation for this choice, the values of x for which it can be
justified, and the limitations for the other values of x, are
discussed in Appendix A. The “corrective quintets method,”
described in Ref. 11, is a method of approximating the mag-
netization from the remainder when n,,, =5.

E. Working model

The working model is the actual model that is used for
calculating the spectrum. It involves the following choices.
First and foremost are the choices of the cluster model (J,-J,
or J,-J3) and of the cutoff cluster size n,.. These choices
determine the cluster types that are included in the working
model. Then there are some specific parameters: the
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magnetic-ion concentration x, the spin S, the g-factor, and
the numerical values of the two exchange constants.

F. Lopsided models
1. Definition and criterion for a lopsided working model

When the two AF exchange constants in the working
model are comparable in size, the calculated MST spectrum
is quite complicated. The spectrum is much simpler if one of
the J’s is much smaller than the other. The term “lopsided
model” is used when there is a “sufficiently large” disparity
between the magnitudes of the two J’s in the working model.
The defining feature of a lopsided working model is the ex-
istence of a gap in the calculated spectrum. The gap is a
magnetic field range in which there are no spectral lines. The
calculated spectrum then has two separate parts: a low-field
part (below the gap), and a high-field part (above the gap).

Lopsided models were discussed in Ref. 11. The criterion
that a working model is lopsided was stated as the maximum
ratio between the smaller and the larger J’s for which a gap
still exists. This maximum ratio depends on two parameters
of the working model: the spin S, and the maximum cluster
Size Ny, The maximum ratio of the J’s was obtained for S
=5/2 when n,,,=2, 3, 4, or 5. For all these values the cri-
terion for being lopsided is the same for working models
based on the J;-J, and on the J;-J; cluster models. That is,
the maximum ratios (J5/J)max and (J3/J;)max for which a
gap still exists are the same.

2. Relating the MST spectrum of a lopsided model to the
exchange-bond structure

The interpretation of the calculated MST spectrum is sim-
plified considerably if it is known that the working model is
lopsided. Only a finite number of cluster types are included
in the working model. When the model is lopsided, the spec-
trum from each of these cluster types can be related directly
to the exchange-bond structure specified by the bond list for
this cluster type.

A lopsided working model has two widely different en-
ergy scales, determined by the strong and the weak exchange
constants. All spectral lines below the gap originate from
abrupt changes in the exchange energy associated with weak
exchange bonds, i.e., J, or J; bonds. Abrupt changes in the
energy associated with strong exchange bonds (J; bonds)
occur only at spectral lines above the gap.

The integrated intensities of spectral lines are proportional
to the sizes of the associated jumps in M. Below the gap the
most intense spectral lines arise from pairs, each consisting
of two spins coupled by the weak exchange bond. Depending
on the cluster model these are J, pairs or J; pairs. The
magnetic-field separations between these most intense lines
in the low-field part of the spectrum can be used to determine
the magnitude of the weak exchange constant. It is more
difficult to identify this J as J, or J;.

Any spectral line above the gap involves an abrupt change
in the energy associated with strong exchange bonds. There
may also be a simultaneous abrupt change in the energy as-
sociated with the weak exchange bonds. The magnetic field
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FIG. 1. Skeletons and decorations in 18 of the cluster types of
the J;-J; cluster model. Solid and empty circles correspond to skel-
eton spins and decoration spins, respectively. Solid and dashed lines
correspond to J; bonds and J, bonds, respectively. The upper part of
the figure is for 11 of these cluster types in which the skeleton is
simple. The lower part is for the seven cluster types with a com-
pound skeleton.

of any line above the gap is determined primarily by the
strong bonds. The weak exchange bonds can shift the field of
a high-field line only slightly.

G. Skeletons and decorations

The high-field lines from a particular cluster type are re-
lated directly to its exchange-bond structure, which must in-
clude at least one strong exchange bond. The concepts of
“skeletons” and “decorations” are central for exposing these
relations. The discussion below is for a lopsided working
model based on the J;-J, cluster model. A completely analo-
gous discussion applies when the working model is based on
the J,-J3 model.

1. Definitions

Any cluster type that produces spectral lines above the
gap has at least one J; bond (strong bond). Each individual
cluster of this type has a skeleton. The skeleton consists of
all the J; bonds of the cluster together with all the spins that
are attached to these bonds. No weak exchange bond (J/,
bond) is ever included in the skeleton, even if this J, bond is
attached to a skeleton spin.

The “decoration” of the cluster consists of all the spins
and all the exchange bonds in the cluster that are not in-
cluded in the skeleton. Any exchange bond in a decoration
must be a weak bond (J, bond). If all the spins of a cluster
are already in the skeleton, the decoration consists only of J,
bonds between skeleton spins. If there are no J, bonds, a
decoration does not exist or, alternatively, the cluster has a
“null decoration.”

Figure 1 shows the skeletons and decorations in 18 of the
cluster types of the J;-J, model. The skeletons are empha-
sized by representing skeleton spins as solid circles, and J;
bonds as solid lines. Decoration spins are shown as empty
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circles, and J, bonds as dashed lines. Cluster type 2-1 has a
null decoration.

2. Simple skeletons and their types

A skeleton with the property that any two of its spins are
connected by at least one continuous path of J; bonds is
called a “simple” skeleton. Examples are the 11 skeletons in
the upper part of Fig. 1, each of which consists of two spins
connected by a J; bond. Any of these 11 simple skeletons is
identical to a J; pair, which is cluster type 2 in the J; model
(see Fig. 3 of Ref. 9). These 11 skeletons are classified as
type (2)g, where the subscript “S” indicates that it is a skel-
eton type and not a cluster type.

Other simple skeletons (not shown) are identical to other
cluster types of the J; model. For example, one type of a
simple skeleton is identical to cluster type 3 of the J; model,
which is a J; triplet. This simple skeleton is therefore clas-
sified as type (3)s.

3. Compound skeletons and their classification

Examples of “compound skeletons” are shown in the
lower part of Fig. 1. Each of these seven compound skeleton
consists of two “fragments.” All spins in each fragment are
connected by at least one continuous path of J; bonds. The
two fragments are connected by a J, bond, except for cluster
type 5-41 in which the fragments are bridged by two con-
secutive J, bonds and a decoration spin.

Fragments are classified by types, in analogy to the clas-
sification of simple skeletons by types. All fragments in the
lower part of Fig. 1 are either of type (2)g or of type (3)s,
i.e., a J; pair or a J; triplet. A compound skeleton as a whole
is classified by giving all its fragment types. In Fig. 1 the
compound skeletons in cluster types 4-12, 5-39, 5-40, and
5-41 are of type (2)s-(2)s. Those in cluster types 5-36, 5-37,
and 5-38 are of type (2)s-(3)s, which is the same as type
(3)s-(2)s.

The concept of a compound skeleton can be generalized
to include skeletons with more than two fragments.!! For
Nmax =29, No compound skeleton can have more than two frag-
ments, and no fragment can contain more than three spins.
Thus, for example, a fragment of type (4A)g cannot exist
when n.,. =5, although there are simple skeletons of type
(44)s.

H. Monoskeleton fine structure

The classification of skeletons reveals the main cause of
the fine structure in the high-field part of the spectrum. Any
FS consists of a group of spectral lines that are very close to
each other. The 11 simple skeletons in Fig. 1 are of type (2),
and the seven compound skeletons in the same figure contain
a fragment of type (2)g. The high-field spectral lines pro-
duced by these 18 cluster types are shown in Fig. 2. These
results are for S=5/2. Each of the 18 cluster types produces
spectral lines very close to b;=2,4,6,8,10, where

by = gugpB/|J;| (1)

is the “primary reduced magnetic field.”
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FIG. 2. (Color online) The spectra of all cluster types of the
Ji-J, model that contribute to the (2)s monoskeleton FS when
Nmax=2J- Spectral lines in the (2)g monoskeleton FS are darker (dark
blue). The lower part of the figure shows the spectra from cluster
types with a simple skeleton of type (2)g. The upper part of the
figure shows the spectra from cluster types with a compound skel-
eton containing a fragment of type (2)g. The labels for the cluster
types follow Fig. 1. The abscissa is the primary reduced magnetic
field b,=gugB/|J;|. All line intensities are chosen to be equal.
These results are for S=5/2, J,/J;=0.028, and T=0.

The superposition of the spectra from these 18 cluster
types would lead to groups of very close spectral lines near
each of these five values of b;. These groups of very close
lines constitute the (2)g monoskeleton FS. The FS arises
from different decorations that are attached to a (2)g skeleton
or fragment.

For any group of close lines in a monoskeleton FS, the
magnetic-field separations are of order b, ~ 1, where

by = gugBI|J,| (2

is the “secondary reduced magnetic field.”

In addition to the lines near b;=2,4,...,10, Fig. 2 also
shows some lines near b;=7, 9, and 11. These additional
lines are part of the (3)s monoskeleton FS. They originate
from the (3)g fragment in the (2)g-(3)g compound skeletons
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of cluster types 5-36, 5-37, and 5-38. A fragment of type (3)g
is identical to a cluster of type 3 in the J; model (Fig. 3 of
Ref. 9), which is a “pure” J; triplet.

I. High intensity lines in the high-field part of the MST
spectrum

The intensities of the spectral lines are governed by clus-
ter statistics. Above the gap the most intense spectral lines, at
least for x<<0.2, are from pure J; pairs. These pairs corre-
spond to cluster type 2-1 in both the J,-J, and the J;-J3
models. For S=5/2, the 2-1 lines are exactly at b;=2n,
where n=1,2,...,5. Slightly above each of these fields there
is a line from cluster type 3-3, which corresponds to a J; pair
that is connected to a third spin by a weak exchange bond
(Fig. 1). The 3-3 lines have the second-highest intensity
above the gap. Both the 2-1 lines and the 3-3 lines belong to
the (2)g monoskeleton FS (see Fig. 2).

The spectrum above the gap includes five conspicuous
asymmetric doublets, each consisting of a strong 2-1 line (at
b;=2n, where n=1,2,...,5) followed by a weaker 3-3 line.
The field splitting within each of the doublets, which de-
pends on n, was first calculated by Vu."'116 Using these
results, the observed splitting in any of these conspicuous
doublets can be used to determine the smaller exchange con-
stant. Identifying this exchange constant as J, or J5 is much
more difficult.

III. EXPERIMENTAL TECHNIQUES

A. Samples

Crystals of (CH;-NH;3),Mn,Cd,_,Cl, were grown from
solution, as described earlier.® Three powder samples, called
“B,” “C,” and “E,” were used in the present work. They were
portions of “products” B, C, and E of Ref. 8, respectively.
The Mn concentrations x for these products, taken from the
last column of Table I in Ref. 8, are x=0.063+0.011 for B,
x=0.067+0.008 for C, and x=0.157+0.008 for E. These are
the best available values of x for the samples used in the
present work.

B. Magnetization measurements

The magnetization M was measured at 7=20 mK. Two
plastic dilution refrigerators were used.!” Sample “B” was
measured at 24 mK in one refrigerator. Samples “C” and “E”
were measured at 16 mK in the other refrigerator. The main
magnetic field B was generated by a Nb;Sn superconducting
magnet, with a maximum field of 17 T. The field sweep rate,
|dB/dt, was 0.17 T/min for sample “B,” and 0.43 T/min
for both samples “C” and “E.”

The magnetization was measured by the force method.
The experimental setup and procedures were similar to those
described earlier.!” The magnetic force acting on the sample
was produced by a magnetic-field gradient, generated by a
superconducting gradient coil. This gradient was superim-
posed on the main magnetic field from the Nbs;Sn magnet. A
typical gradient of about 10 T/m (equivalent to 1 kG/cm),
and a typical sample length of 3 mm, resulted in a field
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FIG. 3. (Color online) Magnetization curves of the three
samples over the full range of the magnetic field B. The ordinate
my7 is the magnetization M normalized to its value at 17 T. The
very-low-field region, the low-field region, and the field regions n
=1 and n=2, are indicated.

variation (6B)g,q=0.03 T over the sample. The currents in
the superconducting gradient coil and in the Nb3;Sn magnet
were controlled independently.

The magnetic force was measured by a capacitance tech-
nique. The output signal included a small spurious back-
ground. This background was determined by repeating the
measurement with no current in the gradient coil. The back-
ground was then subtracted from the total output signal.

IV. RESULTS
A. Magnetization curves for the full field range

The isothermal magnetization M was measured as a func-
tion of B at T=20 mK. For each sample, two sets of data in
increasing B and two in decreasing B were taken over the
full field range. Additional data over limited field ranges
were taken for sample “B.” The results showed practically no
hysteresis.

Figure 3 shows the magnetization curves for the full field
range. Each curve is an average of the data for increasing and
decreasing B. The ordinate m ;=M (B)/M(17 T) is the mag-
netization normalized to its value at the highest available
field, 17 T. In the theoretical papers M was normalized to its
saturation value M, which is a different normalization.

The curves in Fig. 3 exhibit the following gross features
in increasing B:

(1) In the very-low-field (VLF) region, B below a small
fraction of 1 T, the magnetization M rises very rapidly, due
to the alignment of the magnetic moments of the singles, and
of “spontaneous magnetic moments” of some other cluster
types. (Spontaneous magnetic moments are finite magnetic
moments in zero magnetic field.)

(2) In the low-field (LF) region, above a small fraction of
a tesla but below about 2 T, the magnetization still rises at a
moderately fast rate. The rise of M in the LF region is the
result of a superposition of MSTs which are related to abrupt
changes in the energies of the weak exchange bond. These
bonds are those with the smaller exchange constant, J@,

(3) Two prominent MSTs occur at much higher fields,
near 6.6 and 13 T. Each of these MSTs is preceded by a
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FIG. 4. (Color online) Experimental derivative dm;/dB of the
normalized magnetization m;;=M/M(17 T) in the low-field region.

“plateau,” in which the variation of M with B is very slow.
The prominent MSTs near 6.6 and 13 T were observed ear-
lier at 0.6 K, but with a much lower resolution.® They were
interpreted as the first (z=1) and the second (n=2) MSTs
from NN pairs, respectively. This interpretation was based on
the J, model. The present study demonstrates that at T
=20 mK these MSTs develop a fine structure. Such a FS is
expected from a model which includes both J, and J? when
J® is much smaller than J;."" In Fig. 3 the field regions near
6.6 and 13 T are labeled as n=1 and n=2, even though the
FS’s in these field regions include spectral lines other than
the n=1 and n=2 lines from pure NN pairs.'8

B. Derivative curves in the low-field region
1. MSTs in the LF region

The structure of the magnetization curves in the LF region
of Fig. 3 is revealed by the derivative curves, dm;/dB ver-
sus B. These curves, which were obtained by numerical dif-
ferentiation, are shown in Fig. 4. Samples “C” (x=0.067)
and “E” (x=0.157) exhibit four peaks below 2 T. The last
three of these four peaks are also obvious in the curve for
sample “B” (x=0.063), but for this sample the first of the
four peaks barely manifests itself as an inflection point.

From the theory outlined in Sec. II, the most prominent
MSTs in the LF region arise from J?) pairs. Each such pair
consists of two spins coupled by a J® bond. The four de-
rivative peaks in Fig. 4 are therefore attributed to such pairs.
Actually, the J® pairs should produce a total of five lines.
The first of these lines is not seen in Fig. 4 because it occurs
in the VLF region. In that field region the line is masked by
the large derivative from the singles and the spontaneous
magnetic moments.

2. Linewidths

The derivative peaks in Fig. 4 are substantially wider than
expected from thermal broadening alone. The theoretical
thermal width (SB); is given by!

(0B)r=3.53kpT/g s, 3)

where ¢=2.0045 is the g-factor of the Mn?* jon in the
present compounds.'® At 20 mK, the thermal width is only
0.05 T, which is obviously much smaller than the experi-
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FIG. 5. (Color online) Experimental derivative (EXP) dm;/dB
for x=0.067 and simulations based on the J;-J3 model (see Ref.
20). One simulation is for the actual experimental temperature, 7
=20 mK. The other is for an effective temperature 7=100 mK. The
simulations use the exchange constants Jilkg=JD/ky=—4.39 K,
and J3/ky=J®/ky=-0.227 K. These results are for the LF region.

mental linewidths in Fig. 4. To account for the observed
linewidths on the basis of thermal broadening alone, it is
necessary to assume an effective temperature of about
100 mK.

These conclusions are illustrated in Fig. 5 which shows
the derivative of the experimental magnetization curve for
x=0.067 (sample “C”), and simulations for 7=20 mK and
for 7=100 mK. Only thermal broadening is included in these
simulations.?® The tallest peaks in the simulation for 20 mK
are from J? pairs. The peaks that are about a factor of 6
smaller are from J triplets.

There are several known nonthermal mechanisms of line
broadening. Those that are quantifiable include (1) the field
variation over the sample, (6B)g,q=0.03 T, due to the field
gradient, and (2) the finite field interval, (6B)4,=0.1 T, used
in the numerical derivative. Mechanisms of line broadening
that are not readily quantified include: exchange constants
smaller than J(z), weak anisotropies, and local strains.!

The assumption of unstrained square Mn layers is an ide-
alization. This idealization was used successfully in previous
studies of the magnetic properties of these materials, namely,
the susceptibility® and the spin-wave dispersion curves.’
However, linewidths of MSTs are likely to be more sensitive
to strains than these previously studied properties.

The compounds (CH;-NH;),Mn,Cd,_,Cl, are among the
better physical realizations of the diluted Heisenberg antifer-
romagnet on the square lattice, but they are not ideal. Crys-
tallographic phase transitions that occur as the samples are
cooled (Sec. I of Ref. 8) lead to deviations from square sym-
metry. Although relatively small, these deviations are likely
to result in strains. Small deviations from square symmetry
may also cause some lines of the MST spectrum to split.
Although no clear evidence for such line splitting was ob-
served in the data, it is possible that unresolved splitting
increased some linewidths.

3. Exchange constant J® from the MSTs in the LF region

The second-largest exchange constant J@ was determined
from the field separation (B,,;—B,) between successive
MSTs from J@ pairs. The relevant equation is!10
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FIG. 6. (Color online) Magnetization curves in the field region
n=1. The vertical gains for the three curves were adjusted so that
between 6.0 and 8.0 T the change of the ordinate is the same for all
samples.

gup(B,, - B,) =2/7). (4)

Analysis of the derivative curves in Fig. 4, and of similar
derivative curves obtained with somewhat smaller (6B) e
led to the following average separations between successive
MSTs: 0.336 T for sample “B” (x=0.063), 0.337 T for
sample “C” (x=0.067), and 0.338 T for sample “E” (x
=0.157). The spread in these values is much smaller than a
realistic estimate of the actual uncertainty. The overall aver-
age separation and its estimated uncertainty are (B,.;—B,)
=0.337+0.015 T. Equation (4) then gives J®/kg
=-0.227+0.010 K.

C. Fine structure near the first MST from NN pairs

The field region n=1 (Fig. 3) is near the first MST from
“pure” J, pairs.'® The magnetization curves at 7=20 mK for
this field region are shown in Fig. 6. The vertical gains for
these curves were adjusted so that between 6.0 and 8.0 T the
change in the ordinate is the same for all three samples.

Each curve in Fig. 6 exhibits two well-resolved succes-
sive rises of M with increasing B. The earlier lower-
resolution data at 0.6 K (Ref. 8) showed only one rise of M
with increasing B in this field range. Thus, what in the earlier
work appeared as one MST from NN pairs (J; pairs) is ac-
tually a superposition of at least two MSTs. The two distinct
MSTs in Fig. 6 correspond to a resolved fine-structure (FS)
splitting of the single MST observed earlier at 0.6 K.

Details of the FS in the field region n=1 are revealed
more clearly by the derivative curves in Fig. 7. These rather
smooth curves for dM/dB were obtained with (6B)ge
=(.16 T. Derivative curves obtained with smaller (6B)ge,
were noisier, but some were still acceptable for further analy-
sis. Each of the derivative curves in Fig. 7 exhibits two
clearly resolved peaks which overlap slightly. Obviously,
these two peaks correspond to the two successive magneti-
zation rises in Fig. 6.

The FS in the field region n=1 was discussed in Ref. 11.
The main result was restated in Sec. II of the present paper.
Assuming that J* is much smaller than J!V'=J,, and that J®
is either J, or J3, two spectral lines in the field region n=1
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FIG. 7. (Color online) Derivatives of the magnetization curves
in Fig. 6, for the field region n=1.

have much higher “intensities” than all the others. The stron-
gest line is from pure J; pairs (cluster type 2-1). The mag-
netic field at this line will be called B;. The second-strongest
line is from “mixed” triplets (cluster type 3-3), each consist-
ing of a J; pair attached to a third spin by a J® bond. [The
triplet is called mixed because it has one J; bond and one J?)
bond.] The line from these triplets is at a field B}, which is
slightly higher than B;.

Each derivative curve in Fig. 7 was interpreted as the
superposition of the most intense and the second most in-
tense lines predicted by the theory. The other, much weaker,
predicted lines in the field region n=1 were ignored. Each
curve in Fig. 7 was therefore decomposed into two slightly
overlapping peaks. As predicted, the taller peak is at a lower
magnetic field. The field at the taller peak was taken as B,
and the field at the smaller peak was taken as B|. Alternative
methods of decomposing each derivative curve into two
peaks gave nearly the same values for B, and Bj. The results
for these magnetic fields are given in Table I. The accuracy
of the results for B, and Bj is expected to be higher for x
=0.063 and 0.067 than for x=0.157. The reason is that the
neglect of lines other than those from the cluster types 2-1
and 3-3 is more justified for low x. However, even for x
=0.157 the results are expected to be quite accurate.

D. Fine structure near the second MST from NN pairs

The field region n=2 (Fig. 3) is near the second MST
from pure J; pairs. The magnetization curves at 7=20 mK
in the field interval from 10 to 15 T are shown in Fig. 8. This
field interval is actually slightly wider than the n=2 region.
The vertical gains for the curves in Fig. 8 were adjusted so
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FIG. 8. (Color online) Magnetization curves between 10 and
15 T. This field interval includes the field region n=2. The vertical
gains were adjusted so that the change in the ordinate between 10
and 15 T is the same for all three curves.

that the change in the ordinate between 10 and 15 T is the
same for all three curves. The derivative curves correspond-
ing to Fig. 8 are shown in Fig. 9.

For B=12 T the derivative curves in Fig. 9 are qualita-
tively similar to those in Fig. 7 (field region n=1). The main
difference is that the separation between the two overlapping
peaks is smaller. That is, the overlap is stronger in Fig. 9.
The resolution of the two individual overlapping peaks is
therefore poorer. As in Fig. 7 the taller of the two overlap-
ping peaks is attributed to pure J; pairs, and the smaller to
mixed J,-J? triplets. The magnetic fields at these two peaks
are called B, and B), respectively. The values of B,, and
estimated values of (B,—B,), are given in Table I. As ex-
pected from the theory (Fig. 12 of Ref. 11) the difference
(B;—B,) in the field region n=2 is smaller than the differ-
ence (B|—B,) in the region n=1.

In Fig. 9, the curve for x=0.157 has a broad peak near
11 T, in addition to the larger two overlapping peaks near
13 T. The peak near 11 T is interpreted as a superposition of
spectral lines from the so-called (4A)g monoskeleton FS. In
the J; model the 4A quartets give rise to several MSTs. From
Table II of Ref. 9, the third 4A spectral line is at B
=(3.389/4.000)B,=0.847B,, where B, is the field at the sec-
ond line from pure J; pairs. In the present case, B=13.0 T so
that the third 4A spectral line is near 11.0 T.

When the J; model is replaced by the J;-J¥ model, with
JP/J,<1, each 4A line gives rise to a (4A)g monoskeleton
FS (see Fig. 7 of Ref. 11). The FS from the third 4A line
consists of several close (4A)g lines near 11 T. The spectral
lines near 13 T have a completely different origin. These

TABLE I. Magnetic fields B; and B, at the tallest peaks in Figs. 7 and 9, respectively. These peaks are attributed to the first and second
MSTs from pure J; pairs. Also given is the separation (B|—B;) between the two overlapping peaks in Fig. 7, and the estimated separation
(B}—B,) between the two overlapping peaks in Fig. 9. The peaks at B| and Bj are attributed to mixed J,-J triplets.

Sample (x) B, (T) B, (T) B,—B; (T) B|-B; (T) B,—B, (T)
B (0.063) 6.44 12.95 6.51 0.595 0.42
C (0.067) 6.44 12.95 6.52 0.625 0.45
E (0.157) 6.46 13.00 6.54 0.640 0.44
Average 6.45 12.97 6.52 0.620 0.44
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FIG. 9. (Color online) Derivatives of the magnetization curves
in Fig. 8, which includes the field region n=2.

lines evolve largely from the second line (n=2) of the NN
pairs in the J; model, not from the third line of the 4A quar-
tets of that model.

The (4A)g monoskeleton lines near 11 T are all from
quartets or larger clusters.'! In contrast, the dominant two
lines of the FS near 13 T are from pairs and from mixed
triplets. The dependence of the statistics of cluster types on
cluster size implies that in the range 0.06<x=<0.16 the in-
tensities of the lines near 11 T should grow faster with x than
those of the lines near 13 T. For this reason the broad peak
near 11 T, in Fig. 9, stands out much more clearly when x
=0.157 than when x=0.06. Small deviations from a random
Mn distribution should not invalidate this explanation.

E. Exchange constants from high-field spectral lines

Works on the (undiluted) antiferromagnet
(CH;-NHj3),MnCl, have established that the in-plane NN ex-
change constant J; is the largest exchange constant /"), and
that its magnitude is J,/kg=-5 K.%7 The earlier 0.6 K data
on MSTs from (CH;-NH;),Mn,Cd,_Cl, gave J,/kg
=-4.39+0.10 K.} Prior to the present work the only infor-
mation about the second-largest exchange constant J? was
that it is much smaller than J"). The determination of J?)
from the low-field MSTs due to J® pairs was already de-
scribed in Sec. IV B 3. In what follows, both J(V'=J; and J?
are obtained from the high-field results in Table 1.

1. Largest exchange constant

The value of J(V=J, was determined from the fields B,
and B, of the first and second spectral lines from pure J;
pairs.'® The equation®!°

gup(By—By) =2|J| (5)

was used. The average of (B,—B,) in Table I is 6.52 T. The
uncertainty, 0.07 T, is largely due to the uncertainty in the
calibration of the Nb;Sn magnet. Taking g=2.0045 from Ref.
19, Eq. (5) then gives J,/kg=—4.39+0.05 K. This result is in
excellent agreement with the value obtained earlier from the
MST data at 0.6 K.

2. Second-largest exchange constant

The second-largest exchange constant J® was determined
from the separation (B|{—B;) between the lines from mixed
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FIG. 10. Calculated difference Y=gug(B.~B,)/|JV| between
the primary reduced fields at the mixed-triplet line and at the pure-
pair line, plotted as a function of X=J?) /JV. The two curves are
for the field regions n=1 and n=2.

triplets and from pure J; pairs, in the field region n=1. The
procedure was outlined in Sec. VI B of Ref. 11. It makes use
of the theoretical results in Fig. 12 of that reference.

Figure 10 of the present paper shows a subset of the the-
oretical results in Fig. 12 of Ref. 11, but using a very differ-
ent format. The abscissa X in Fig. 10 is the ratio J?/J1),
plotted on a linear scale that extends only up to 0.10. The
ordinate Y is the normalized field separation (B,-B,) for
either of the field regions n=1 or n=2. Unlike Fig. 12 of Ref.
11, the normalization is based on J). That is,

: (6)

where n is either 1 or 2. In the terminology of Sec. II, Y is
the separation between the “primary reduced fields” at the
line from the mixed J,-J? triplets and at the line from the
pure J; pairs. Using Eq. (5) and J,=J", the ordinate ¥ can
also be expressed as

Y= glu’B(Brlz - Bn)/|‘](l)

Y =2(B,-B,)/(B,-B)). (7)

The curves n=1 and n=2 in Fig. 10 are for the field regions
n=1,2, respectively.

The determination of J? used the curve n=1 in Fig. 10.
In Table I the average value of (Bj—B,) is 0.620 T. The
uncertainty, 0.024 T, is largely from the spread of the values
for the different samples. With (B,—B;)=6.52+0.07 T, Eq.
(7) then gives ¥=0.1902+0.0076. The curve n=1 in Fig. 10
then gives X=J%/J1=0.0475£0.0014, which leads to
J? /ky=-0.208+0.006 K. This result for J? is in satisfac-
tory agreement with J/ky=—0.227+0.010 K from the low-
field MSTs due to J@ pairs. The question if the ratio J?/J,
for these materials is sufficiently small for the working
model to qualify as “lopsided” is discussed in Appendix B.

The overlap of the two most-intense lines in the field re-
gion n=2 (Fig. 9) is stronger than the overlap in the region
n=1 (Fig. 7). As a result, the accuracy for (B;—B,) is lower
than that for (B{—B)). The experimental values in Table I
give the ratio (B}—B,)/(B{—B;)=0.71. The theoretically
predicted ratio, from Fig. 10 and J®/J1=0.047, is 0.73.
The agreement supports the interpretation of these spectral
lines.
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FIG. 11. (Color online) Comparison of the full magnetization
curve for x=0.067 and a simulation based on the J;-J3 model. The
simulation uses the exchange constants Ji 1 hg=JV1ky=-4.39 K,
J3lky=J@/ky=—0208 K, and an effective temperature 7T
=100 mK.

3. Undetermined identity of the neighbor associated with J®

The effort to identify the particular neighbor in the cation
lattice that corresponds to J?' was unsuccessful. As dis-
cussed in Refs. 10 and 11, the most likely possibilities are the
second and third neighbors. To choose between these alter-
natives on the basis of MST data alone, the observed MST
spectra should be compared with simulations based on the
two possibilities. The correct choice of neighbor should lead
not only to good agreement, but also to a significantly better
agreement than for the alternative choice of neighbor.?!2?

Numerical simulations of the magnetization curve are
based on the assumption of a random Mn distribution over
the cation sites. The validity of this assumption is crucial for
identifying the neighbor. Unfortunately, the earlier work® had
indicated that at least in some of the samples the Mn distri-
bution was not strictly random. This earlier finding raised the
question whether the deviations from a random Mn distribu-
tion were large enough to spoil the possibility of identifying
the neighbor.

Comparisons of the experimental magnetization curves
with simulations were made for the full magnetic-field range
(0 to 17 T), and for limited field ranges of special interest,
namely, the LF, n=1, and n=2 field ranges. Nonthermal line
broadening was approximated by using an effective tempera-
ture of 100 mK in the simulations. (The conclusions do not
hinge on this approximation.) The simulations used the ex-
change constants J,/kg=-4.39 K and J®/kz=-0.208 K,
from the high-field data.

For the full field range, both choices J®=J, and J@=J,
led only to a qualitative agreement with the simulations. The
details were not well reproduced, as illustrated in Fig. 11,
which compares the full magnetization curve for x=0.067
with a simulation based on the J;-J; model. The simulation
from the J;-J, model (not shown) is practically indistin-
guishable on the scale of this figure. For all three samples
(x=0.063, 0.067, and 0.157) the comparison between the re-
sults for the full field range and the simulations did not lead
to a clear choice of the neighbor associated with J?.

The most pronounced differences between simulations
based on the J;-J, and the J;-J3 model are in the field region
n=1. Figure 12(a) shows the simulations from both models
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FIG. 12. (Color online) (a) Two simulations of magnetization
curve in the field region n=1, assuming that x=0.067 and T
=20 mK. One simulation uses the J;—J, model, and the other the
Ji-J3 model. The exchange constants are J,/kz=—4.39 K and
J@/k=-0.208 K, where J? is either J, or J5. (b) Comparison of
the experimental magnetization curve (EXP) for x=0.067 at T
=20 mK with simulations based on the J;-J, and J;-J3 models. An
effective temperature of 100 mK is used in these simulations.

for x=0.067, when T=20 mK. Either simulation shows the
largest two steps in this field range. The bigger of these two
steps, at B;=6.5 T, is from the pure J; pairs. The magneti-
zation jump at this step is called (AM);. The smaller step, at
Bj, is from mixed J,-J? triplets. Its magnitude is called
(AM)|. The sum (AM),+(AM); is nearly the same for both
JP=7J, and JP=J;. However, the ratio (AM),/(AM)] is
smaller for J@=J;.

The results in Fig. 12(a) assume a random Mn distribu-
tion. The difference between the ratios (AM),/(AM); for
JP =7, and for J®=J; is not huge, but is adequate for iden-
tifying the neighbor experimentally provided that it is known
that the Mn distribution is random. Once again the issue is if
the deviations from a random distribution are large enough to
prevent a reliable determination of the neighbor.

Comparisons of the experimental curve in the region n
=1 with simulations were carried out for all three samples.
Figure 12(b) shows the comparisons for x=0.067. Unlike the
simulations in Fig. 12(a), the simulations in Fig. 12(b) use an
effective temperature 7=100 mK, to allow for nonthermal
broadening.

The experimental ratio (AM),/(AM); for x=0.067 was
estimated from the magnetization curve in Fig. 12(b). An
alternative estimate was made by decomposing the derivative
curve in Fig. 7 into two peaks and integrating each peak. The
estimated experimental ratios (AM),/(AM)| were then com-
pared with the theoretical values for the alternative choices
of the neighbor associated with J?. The same type of analy-
sis was carried out for the other two samples. Neither choice
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of neighbor led to good agreement for all three samples.
Therefore, a definite conclusion as to whether J@ is Jyor J3
could not be reached.

V. DISCUSSION

The main result is the measurement of J? by two inde-
pendent methods that use completely different features of the
MST spectrum. The magnitude of J@ is only 5% of JU.
Nevertheless, J? was still determined with an accuracy of
about 10%.

The present work also verified two important theoretical
results for lopsided working models with two exchange
constants.!! The predicted low-field MSTs from J? pairs
were observed. In much higher magnetic fields, the two
strongest lines in the FS resulting from the splitting of
MST’s from J) pairs were also observed. The splitting is
due to J@.

Not all the original goals of the present work were
achieved. Some were thwarted by less than ideal material
properties. The compounds (CHs-NH;3),Mn,Cd,_,Cl, are
among the better physical realizations of a diluted Heisen-
berg antiferromagnet on the square lattice, but they are not
ideal. The known crystallographic phase transitions probably
resulted in strains, and possibly also in small (unresolved)
line splitting. It is likely that these strains and line splitting
led to nonthermal broadening, which degraded the resolu-
tion.

A more serious material problem was the Mn distribution.
The earlier MST study indicated that this distribution was
not quite random. A likely cause was the growth of the ma-
terials from solutions, near room temperature.8 In most di-
luted magnetic materials that are grown from the melt at
much higher temperatures the distribution of the magnetic
ions is random.! The nonrandom Mn distributions was prob-
ably a major factor in spoiling the identification of the neigh-
bor associated with J?).
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APPENDIX A: MAXIMUM CLUSTER SIZE IN THE
WORKING MODEL

1. Choice of maximum cluster size n,,,

Theoretical calculations of the magnetization curve and of
the MST spectrum involve the exact evaluation of the “trun-
cated sum.” This sum contains the contributions of all cluster
types of sizes n,<n,, (see Sec. Il D). The labor involved in
the evaluation of the truncated sum increases rapidly with
increasing n,,,.. Therefore, an excessively large n,,,, is im-
practical.

In the present work the choice of n,,, was influenced
primarily by the labor associated with diagonalizing Hamil-
tonian matrices for clusters of spins S=5/2. The labor of
calculating cluster probabilities was not the limiting factor.
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The number of Hamiltonian matrices that are diagonalized is
equal to the number of cluster types. With increasing 7,,,,
not only does this number increase rapidly (see Sec. I B 3),
but the matrices become larger. The method which was used
was a numerical diagonalization of sparse matrices using
MATLAB.?3 The method also took advantage of certain sym-
metry properties of the Hamiltonian, as described in Ref. 1.
The choice n,,=5 was based on the labor involved. All
cluster types and their probabilities, for cluster sizes up to 5,
were given in Ref. 10.

2. Adequacy of the choice n,,,,=5

To assess the accuracy of the MST spectrum calculated
with any choice of n,,,, it is useful to note that singles do not
produce MSTs. Therefore only clusters with sizes n,>1
need to be considered. A sufficient condition for the spec-
trum to be reasonably accurate is that the vast majority of all
spins that are in clusters with sizes n,>1 are actually in
cluster with sizes 2<n.<n,,. If this condition is not met,
the calculated spectrum is incomplete.

Because cluster probabilities tend to decrease with cluster
size, even when the sufficient condition stated above is not
met, the calculated spectrum will include the most pro-
nounced spectral lines. The missing lines will be large in
number, but their intensities are expected to be relatively
weak. Lines that are missing in the calculation are important
only if their intensities are large enough to be detected ex-
perimentally.

When the sufficient condition is not met, the magnetiza-
tion curve calculated from the truncated sum alone is defi-
nitely not accurate, even if the missing lines are weak. For
the choice n,,,=5, this shortcoming can be partially rem-
edied if the working model is lopsided. The magnetization
from the remainder may then be approximated by the “cor-
rective quintets method” described in Ref. 11.

Let f be the fraction of the total number of nonsingle
spins that are actually in clusters of sizes 2<n,.<n,,,,. This
fraction depends on several factors: it increases with n,,,,, it
decreases with the Mn concentration x, and it is lower for the
J1-J5 model than for the J;-J, model because the percolation
concentration x. is lower. The previously stated sufficient
condition, which guarantees that the spectrum is reasonably
accurate, can be expressed as (1—f)<<1.

Using the recent results of Bindilatti'> the fraction f was
evaluated for any n,,, up to 8. The following results are for
the Mn concentrations of the samples in the present work
when 7n,,,,=5.

(1) x=0.063: f=0.978 for the J;-J, model, and 0.956 for
the J,-J3 model.

(2) x=0.067: f=0.973 for the J;-J, model, and 0.947 for
the J;-J;3 model.

(3) x=0.157: f=0.702 for the J;-J, model, and 0.556 for
the J;-J;3 model.

These results indicate that the choice n,,=5 is satisfac-
tory for the samples with x=0.063 and 0.067. For the sample
with x=0.157, the spectrum calculated using n,,,,=5 fails to
include many spectral lines, and the magnetization calculated
from the truncated sum alone is definitely inaccurate.
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In Sec. IV E 2 the results for J® were based on the split-
ting between the strongest two lines (2-1 and 3-3 lines) in the
field region n=1. The consistency of the results for the three
samples strongly suggests that (1) these lines were correctly
identified in all three samples, including the sample with x
=0.157, and (2) the many lines from cluster types with n,
>5 did not have any significant affect on the separation
between the 2-1 and 3-3 lines for x=0.157. Also, in the entire
field range that was studied there was no clear evidence in
the measured spectrum for any lines from clusters with n,
>35. That is, the lines from these large clusters were suffi-
ciently weak and/or sufficiently broad to avoid detection.

APPENDIX B: IS THE WORKING MODEL FOR THESE
MATERIALS LOPSIDED?

The “governing criterion” that a working model based on
the J,-J; cluster model is lopsided was discussed in Sec. II C
of Ref. 11. The criterion was expressed as an upper limit for
the ratio J,/J;. This upper limit depends on the spin S, and
on n,,,. Numerical results for the upper limit were given for
S=5/2 and all values of n,,, up to 5. For these combinations
of S and n,,,, (at least) the numerical criteria that a working
model based on the J;-J; model is lopsided are the same,
except, of course, that the upper limits are for J5/J, instead
of J 2/ J 1.

PHYSICAL REVIEW B 75, 184405 (2007)

For the present materials, S=5/2. Assuming that J® is
either J, or Js, the criterion that a J 1-J(2) model is lopsided, is
J@/J,<0.10 for both n,,,=2 and n,,,=3; J?/J,<0.0450
for ., =4; and J?/J, <0.0364 for n,,, =5. The experimen-
tal values of J, and J® give J?/J,=0.052 or 0.047. Thus,
for n,,=2 and n.,,=3 the criterion for a lopsided model is
well satisfied. For n,,,=4 the criterion is not quite satisfied.
For the choice n,,,=5, the criterion for a lopsided model is
not satisfied.

Although the working model is not strictly lopsided if
Npax =4 or 5, the analysis that led to the values of the ex-
change constants remains completely valid. One reason is
that the analysis used only spectral lines from clusters of
sizes n.=2 or 3 (pairs and triplets). Therefore, it was only
necessary for the model to be lopsided for n,,,=3.

Another reason is that the analysis did not use all the
spectral lines in the full field range up to 17 T. The failure of
the working model to be lopsided when n,,, is above 3
means only that for these values of n,,,, there is no gap in the
spectrum.!! That is, if spectral lines from clusters up to quar-
tets (ny=4), or up to quintets (rn,,,=5), are included then
there is some overlap between the low-field and high-field
parts of the spectrum. For the actual ratio J?/J, the
magnetic-field range where overlap occurs is relatively nar-
row: only a portion of the range from 2.5 T to 6.0 T. The
spectrum in the overlap region was not used in the analysis
that led to the exchange constants.
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