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The phonon dispersion relations for equilibrium and photoexcited bismuth are calculated from first-
principles density-functional perturbation theory, with constrained occupation of excited electronic states. The
dependence of phonon frequency on photoexcited electron-hole plasma density is found for modes throughout
the Brillouin zone. The resulting phonon dispersion curves are in good agreement with available neutron-
scattering data for the equilibrium occupation of electronic bands. We find the effect of phonon softening by
the electron-hole plasma to be substantially larger in the optical modes than in the acoustic modes throughout
the Brillouin zone.
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I. INTRODUCTION

Developments in pump-probe optical spectroscopy using
powerful femtosecond pulsed lasers now allow direct time-
domain investigations of phonon motion and electron-
phonon coupling.1 Bismuth has been the focus of many stud-
ies of high amplitude coherent phonon generation.2–6 Other
materials such as antimony3 and tellurium3,7 have also shown
some similar behavior. The effects of these very short, in-
tense laser pulses and of the resulting excited electron-hole
plasma on materials are not well understood. The aim of this
work is to provide a better understanding of the electron and
phonon dynamics involved in ultrafast pump-probe experi-
ments on the picosecond time scale.

Previous work on laser-induced electron-hole plasmas in
Si and GaAs �Refs. 8–10� found, using a phenomenological
model for the cohesive energy, that the zone-boundary
acoustic modes in these semiconductors became unstable in
the excited system. This was also found in more recent work
on Si �Ref. 11� using density-functional perturbation theory
with a finite temperature Fermi-Dirac distribution to incorpo-
rate the effects of electronic excitation. In this work, we use
first-principles electronic structure methods to calculate the
effect of photoexcitation on the phonon dispersion curves in
bismuth for densities of photoexcited carriers up to 1% of the
valence electron density per unit cell. We use a constrained
density-functional theory approach, which has provided re-
sults in good agreement with experiment for the zone-center
longitudinal-optical �A1g� mode in previous work on
bismuth.12,13 Our approach differs from that of Ref. 11 in the
representation of the excited system; we represent the pho-
toexcited distribution on the time scale of a typical pump-
probe experiment �� picosecond�, assuming it to be much
shorter than a typical electron-hole recombination time
�� nanosecond14�. The calculations are performed using a
version of the open-source density-functional theory �DFT�
code ABINIT,15,16 in which we have implemented the con-
strained DFT method. In contrast with tetrahedrally bonded
semiconductors, we obtain no significant softening of the
acoustic modes in photoexcited bismuth, making its behavior
more similar to that of Al.11

The equilibrium unit-cell structure of bismuth is rhombo-
hedral A7 �Ref. 17�. The direction of the trigonal axis is
usually chosen as the z axis. There are two atoms in the unit
cell, the second located a fractional distance x along the
trigonal axis, as shown in Fig. 1. In its equilibrium configu-
ration �in the ground electronic state�, x=0.468 14. If x were
0.5, i.e., halfway along the trigonal axis, and � were 60°, this
would be a simple cubic structure with one atom per cubic
unit cell. The observed deviation from cubic symmetry is
caused by a Peierls distortion. It is because of the existence
of this Peierls distortion that the equilibrium bismuth struc-

FIG. 1. Bismuth atomic structure with experimental lattice pa-
rameters taken from Ref. 20. The bold line marks the trigonal axis,
the dashed lines mark out the unit cell, while the remaining solid
lines indicate the bonding. The two atoms in a primitive unit cell are
shown as solid circles, while adjacent atoms are dashed.
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ture is very sensitive to the excitation of electrons to higher
bands. When electrons are moved to higher bands, the ener-
getic advantage of the off-symmetry structure is reduced,
causing relaxation toward the more symmetric configuration,
i.e., the value of x shifts toward 0.5 with increased excitation.
This process is evident in ultrafast pump-probe experiments
on bismuth, where an intense pump pulse excites electrons
from the valence to the conduction bands, causing changes in
the atomic equilibrium positions and restoring forces as de-
scribed, so that the atoms oscillate about their new equilibria.
This allows for the generation of large-amplitude coherent
phonons by displacive excitation,3,18 a mechanism that is a
special case of stimulated Raman scattering involving an
imaginary component of the susceptibility.19 In ultrafast
pump-probe experiments, oscillations of the A1g mode are
detected, corresponding to the variation of the parameter x.

We begin this paper with a description of the theoretical
approach used in the calculations. This includes discussions
of constrained density-functional theory, density-functional
perturbation theory �DFPT�,21–24 and a description of the al-
terations needed to standard DFPT to incorporate the con-
strained DFT approach and apply it to photoexcited systems.
Section III then gives details of the computational scheme
used for the calculations presented here. Section IV gives our
main results. This includes a comparison of phonon frequen-
cies calculated from both the DFPT method and the frozen-
phonon method, the DFPT dispersion curves for the nonex-
cited system compared with neutron-scattering experiments,
and the predicted dispersion curves for the photoexcited sys-
tem. The conclusions of this work are discussed in Sec. V.

II. THEORY

A. Constrained density-functional theory

Constrained density-functional theory25,26 has been devel-
oped to allow first-principles calculations to be performed on
photoexcited systems in which the electron-hole recombina-
tion time is longer than the typical phonon period. In a
pump-probe experiment, the primary effect of the pump
pulse on the time scale of interest in phonon motion is the
creation of an excited distribution of electrons within the
bands. In our approach, the intraband scattering rate is as-
sumed to be much faster than the time scale of interest in
pump-probe experiments, allowing the electrons and holes to
relax into a Fermi-Dirac distribution while remaining within
the conduction or valence bands. Constrained DFT calcula-
tions have been used to replicate this effect by separately
constraining the total occupations of the valence bands and
conduction bands. Bismuth, while normally termed a semi-
metal, has less than 2�10−5 free carriers per unit cell,17

allowing it to be treated effectively as a zero-band-gap semi-
conductor. The valence and conduction bands are filled inde-
pendently of each other using Fermi-Dirac distributions, the
chemical potentials of which are determined by requiring the
correct total number of electrons within each set of bands
separately. It is in this way that a constrained DFT calcula-
tion differs from the standard DFT method. This allows the
total energy to be calculated for a constant density of free
carriers, n, excited to the conduction bands and has been

previously shown to accurately predict the phonon softening
of the zone-center modes in photoexcited tellurium25,26 and
bismuth.12

Zone-center mode frequencies can be calculated with con-
strained DFT using the frozen-phonon technique. To do this,
a finite amplitude displacement of atoms is “frozen” into the
system for a fixed excited electron-hole plasma density and
the resulting energy calculated directly. To calculate the A1g
frequency in bismuth, for example, the total energy is calcu-
lated for a range of values of x about its equilibrium and the
phonon frequency is then found from the resulting curvature.
This approach has also been used to investigate the effect of
anharmonicity of the A1g phonon in bismuth.12 The inter-
atomic potential-energy surface for photoexcited bismuth
calculated using this method has been shown to be in excel-
lent agreement with recent experimental measurements.13

B. Density-functional perturbation theory

DFPT �Refs. 21, 22, and 27� allows the response of the
electronic system to an applied perturbation to be calculated
self-consistently from first principles. It has many
applications,24 such as calculating the result of the applica-
tion of an electric field or the effect of a strain on a system.
When the perturbing potential arises from the displacement
of the atomic positions, the interatomic force matrix can be
calculated and the phonon frequencies are obtained from the
resulting dynamical matrix. The principal advantage of the
DFPT approach to calculating phonon frequencies is that the
workload of the calculation is independent of the phonon
wavelength, as the responses to perturbations of different
wavelengths are decoupled. This is in contrast to the frozen-
phonon method, which requires the use of large supercells to
calculate phonon frequencies for long-wavelength phonons.

C. DFPT for photoexcited systems

In order to apply DFPT to photoexcited systems, we have
combined it with constrained DFT. Constrained DFT is quite
similar in implementation to Fermi-Dirac smearing for
metals.23 In standard Fermi-Dirac smearing, there is a single
Fermi energy, determined by normalization to the total num-
ber of electrons; in our constrained DFT, there are two inde-
pendent chemical potentials, one for conduction bands and
one for valence bands, determined by the number of excited
electron-hole pairs required. We follow the treatment for
DFPT in metals as implemented for non-zone-center
phonons in ABINIT, the theory behind this being well de-
scribed in Sec. II C 4 of Ref. 24. This method is altered to
handle a system with two chemical potentials instead of the
single Fermi level used in Fermi-Dirac smearing. We find the
changes in state occupations and total energy that result from
a perturbation of atomic positions, while using the con-
strained occupation as described in Sec. II A. This occurs as
changes in the atomic positions will lead to changes in the
calculated energy levels of the system, which will then lead
to changes in the filling of these levels within the Fermi-
Dirac distributions used in the constrained DFT method. This
leads to the need to calculate the first-order variation in the
density. This is given in Eq. �68� of Ref. 24. As this work is
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focused on the calculation of non-zone-center phonons, the
second term in this equation vanishes; as in the metallic case,
the chemical potentials are unaffected by the perturbation to
linear order for q�0. As described in Ref. 24, the expression
for the variation in the density can be written as

�n�r� = Rn,m�n
*�r��m�r���m��VSCF��n� ,

where Rn,m= ��̃F,n− �̃F,m� / ��n−�m�. The difference between
the standard Fermi-Dirac smearing calculation and our con-
strained occupation calculation arises in the accurate calcu-
lation of Rn,m. It can be calculated directly when �n and �m
differ sufficiently, but its limit must be found whenever �m
→�n. This limit is calculated via the analytic calculation of
the derivative of the occupation with respect to the energy of
each band. In our system, this is the derivative with respect
to �n of the Fermi-Dirac distribution function at state n, and
is given by

Dn = −

exp� �n − �i

	
�

		1 + exp� �n − �i

	
�
2

,

where the subscript n refers to the band in question, while
the subscript i indicates that the value of the chemical poten-
tial � depends on whether n is a valence band or a conduc-
tion band. The required ratio, Rn,m, is then found as the av-
erage of this derivative calculated explicitly at each of the
bands n and m, 1

2 �Dn+Dm�, in the calculation. All other as-
pects of the calculation can proceed as in the Fermi-Dirac
smearing case.

III. COMPUTATIONAL SCHEME

The open-source code ABINIT �Refs. 15 and 16� was
used for the calculations. The calculation of linear response
for ground-state systems, including metals, has already been
fully implemented in the code. It was then altered to make
use of the constrained DFT approach for photoexcited
systems as described in Sec. II C. All the calculations were
performed using the Hartwigsen-Goedecker-Hutter
pseudopotential28 for bismuth, including spin-orbit coupling,
and the local-density approximation to exchange and corre-
lation. An energy cutoff of 15 hartree was used in the plane-
wave expansion of wave functions and four shifted 8�8
�8 Monkhurst-Pack k point grids were used for the
Brillouin-zone integration. For the photoexcited system, the
temperature kBT for the Fermi-Dirac distribution was fixed at
0.5 eV. For this value, the average energy per electron-hole
pair is equal to the incident photon energy �1.5 eV� in a
typical pump-probe experiment.12

The minimum-energy lattice parameters for the ground-
state system were found by structural optimization using the
Broyden-Fletcher-Goldfarb-Shanno minimization.29 The lat-
tice parameters obtained in this manner differ slightly from
the experimental values quoted in Sec. I, with a0=4.695 Å
and �=57.56°. The equilibrium value of x was found for

each excitation density, while keeping the lattice parameters
fixed at the values obtained for the ground state, as their
variation would correspond to a change in the volume of the
crystal as a whole, which cannot occur on the time scale of
ultrafast pump-probe experiments. The relation between x
and the level of excitation obtained from our calculations is
shown in Fig. 2. We then performed a linear-response
calculation,30,31 where the dynamical matrix is found by cal-
culating the second-order derivatives of the energy with re-
spect to ionic displacements �see Sec. II C of Ref. 24�, and
the phonon frequencies are obtained as the square root of its
eigenvalues.

The dynamical matrices of a grid of four shifted 4�4
�4 phonon wave vectors were calculated using ABINIT.
The dynamical matrices are interpolated by taking the Fou-
rier transform to find the real-space interatomic force con-
stants using the ANADDB program from the package. It is
then possible, by taking the inverse Fourier transform at the
desired wave vector, to obtain the dynamical matrix, and
hence phonon frequencies, for any phonon in the Brillouin
zone.

IV. RESULTS

A. Comparison to frozen-phonon results

Frozen-phonon calculations were performed for both the
excited and unexcited systems for the modes at the T point in
the Brillouin zone, using a supercell of double the primitive
unit-cell size, in order to compare these results with those
obtained from the linear-response method. In both of these
methods, the temperature of the Fermi-Dirac distribution is
constrained to be constant when calculating the phonon fre-
quency. The results from both approaches for both the
ground and excited states are shown in Table I. The differ-
ences between both methods are small in all cases. The par-
tial filling of bands in the n=1% case gives rise to a greater
sensitivity to Brillouin-zone sampling and a greater discrep-
ancy between the frozen-phonon and linear-response results.

FIG. 2. Variation of the internal cell parameter, x, as a function
of the fraction, n, of valence electrons excited to the conduction
bands.
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B. Ground state

Figure 3 shows how the calculated dispersion curves for
the ground-state system compare to experimental inelastic-
neutron-scattering results.32,33 It is clear that most of the ex-
perimental optical- and acoustic-mode frequencies are well
reproduced in the calculations, with the largest difference on
the order of 5%, for the TO mode at 
. It should be noted,
however, that the work of Smith33 shows poor agreement for
the mode in the binary direction labeled b in Fig. 3. All other
calculated modes agree well with his results �see Fig. 3,

-K-X line�. The behavior we calculate for this mode is in
agreement with the inelastic-neutron-scattering results of
MacFarlane, as shown in Ref. 34. Along the binary direction,
Smith has obtained two acoustic modes quite close together
in a frequency region, where our calculations predict a single
acoustic mode. This may have occurred due to difficulty in
resolving mixed longitudinal and transverse modes along the
binary direction in the experiments, as the agreement be-
tween theory and experiment is otherwise excellent. The
eigenvectors for modes propagating in the binary direction

have two distinct symmetries, with the modes labeled c, d,
and f in Fig. 3 being symmetric under twofold rotation about
the wave-vector direction, while those labeled a, b, and e are
antisymmetric under twofold rotation about this direction.
We find that modes along this direction show significant
mixing of longitudinal and transverse behaviors. The modes
labeled a and b are almost pure transverse-acoustic modes
near the 
 point along this direction, but show an increasing
mixing of longitudinal-optical behavior away from the 

point. The mode labeled b shows significantly more varia-
tion, becoming almost completely longitudinal optical in the
region near the K point, and returning to transverse acoustic
in the region near the X point. The mode labeled a remains
primarily transverse acoustic in the region near the K point,
but becomes longitudinal optical as it approaches the X
point. The mode labeled c begins as longitudinal acoustic
near the 
 point, but its behavior is almost entirely transverse
optical near the K point and remains as such near the X point.

C. Excited state

The dispersion curves calculated for both 0% and 1% of
the valence electrons excited to the conduction bands are
shown in Fig. 4. We obtain a value of 2.61 THz for the A1g
frequency at 1%, compared to a value of 2.51 THz obtained
in the experiments described in Ref. 13. It is evident that the
acoustic modes are largely unaffected by the photoexcitation
of electrons, with the only significant change near the X
point, while there is a noticeable reduction in all the optical-
mode frequencies. This reduction is almost uniform through-
out the Brillouin zone, although the largest softening occurs
for the LO mode at the zone center, where the reduction in
frequency is approximately twice that which occurs away
from the zone center. This is also seen in the phonon density
of states, shown in Fig. 4. The peak at higher frequency,
corresponding to the optical modes, is almost uniformly re-
duced in frequency, while the peak corresponding to the
acoustic modes shows little change.

In order to investigate the nature of the bond softening
evident, the interatomic force constants obtained were exam-
ined. For each pair of interacting atoms, a 3�3 force tensor
is obtained, with elements corresponding to movement of
each of the atoms along the Cartesian directions. In order to
give a measure of the strength of this interaction, we use the

TABLE I. Comparison of frozen-phonon �FP� results with
linear-response �LR� results for calculations of mode frequencies at
the T point. n is the fraction of the valence electrons excited to the
conduction bands. All frequencies are in THz.

n=0% n=1%

LR FP LR FP

TA 1.161 1.161 1.191 1.183

LA 1.759 1.758 1.771 1.765

TO 2.994 2.994 2.795 2.800

LO 3.232 3.231 3.068 3.061

FIG. 3. �Color online� Calculated dispersion curves for the
ground state �red lines� compared to the experimental neutron-
scattering results of Yarnell et al. �Ref. 32� �blue+signs� and Smith
�Ref. 33� �green�signs� for phonons in the trigonal direction �T to

 in the first Brillouin zone� and in the binary direction �
 to X of
an adjacent Brillouin zone, passing through the zone boundary at
K�. The labels a–f are discussed in the text.

FIG. 4. �Color online� Phonon dispersion curves and density of
states calculated for both the ground and excited states. Results are
shown for n=0% �red solid� and n=1% �blue dashed�, where n is
the fraction of the valence electrons excited to the conduction
bands.
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trace of the interatomic force constant tensor. This property
is directly connected to the phonon frequencies35 and has the
advantage of being independent of the coordinate system
used. Table II and Fig. 5 show the changes in the trace of the
interatomic force constant tensor for some of the different
pairs of atoms available. They show that the strongest inter-
action is with the nearest-neighbor atoms, and this reduces

markedly in magnitude going from n=0% to n=1%. The
second strongest interaction is between the pair of atoms
labeled “G”. This interaction shows a slight increase in mag-
nitude in the photoexcited case.

Two main factors contribute to the softening of modes in
the excited case. First, the bond strength itself is reduced by
moving electrons out of their bonding states. Second, as the
equilibrium moves toward x=0.5, the optical modes must
tend toward their corresponding acoustic modes, as the sys-
tem moves from a two atom unit cell to a single atom unit
cell system. To show the relative importance of each of these
contributions to the resulting mode softening, the phonon
dispersion curve for the unexcited system was calculated
with the second atom fixed at the equilibrium value of x
found for n=1% of the valence-band electrons excited into
the conduction bands. In this way, the contribution to the
mode softening from the change in x alone can be seen. The
resulting dispersion curves are shown, together with the
original n=0% and n=1% calculations, in Fig. 6. The result-
ing curve for the LO mode falls approximately halfway be-
tween the original n=0% and n=1% calculations. This indi-

TABLE II. Comparison of the trace of the interatomic force constant tensor �in units of
10−3 hartree/bohr2�, between pairs of atoms as labeled in Fig. 5, along with the distances between the atoms
�in bohr units� for n=0% and n=1% of the valence electrons excited into the conduction bands. The trace for
the fifth and seventh nearest-neighbor pairs is negligible and is omitted.

Pair NN

IFC Trace Distance

n=0% n=1% n=0% n=1%

A First −33.23 −27.74 5.766 5.807

B Second −0.88 −0.52 6.604 6.552

C Third −0.67 −0.86 8.544 8.544

D Fourth −0.30 −0.50 8.873 8.873

E Sixth −0.26 −0.16 10.360 10.439

F Eighth −0.43 −0.26 11.766 11.687

G Ninth −4.16 −4.40 12.318 12.318

FIG. 5. Pairs of bismuth atoms labeled in Table II where the
trace of interatomic force constant tensor, and distance between the
atoms, is listed for both the unexcited and excited system. The
dashed line joining the pairs marked C, D, and G indicates that,
unlike the other marked pairs, these pairs are between an atom in
the primitive unit cell and its equivalent atom in an adjacent unit
cell. These distances depend only on the lattice parameters and are
thus fixed at their values for the unexcited system, as described in
Sec. III. The dotted line shows the unit-cell outline.

FIG. 6. �Color online� Phonon dispersion curves for n=0%,
x�n=0% � �red solid�; n=1%, x�n=1% � �blue dashed�; and n=0%,
x�n=1% � �green dotted�.
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cates a roughly equal contribution to the softening coming
from the excitation of electrons and the change in the equi-
librium value of x. The dispersion curves for the TO modes,
which are degenerate between 
 and T, fall quite close to the
original n=1% curves. This would indicate that the change
in the equilibrium value of x in the excited case is the domi-
nating factor in the softening of the TO modes.

V. CONCLUSIONS

We have demonstrated a method to calculate phonon soft-
ening throughout the Brillouin zone in a photoexcited mate-
rial. Photoexcitation of bismuth causes an almost uniform
reduction in the optical-mode frequencies, while the acoustic
modes are largely unaffected. This result is explained by an
analysis of the changes in the interatomic force constants
induced by photoexcitation. The optical modes are primarily
governed by interactions between the two different atoms in

the unit cell, while acoustic modes are largely determined by
interactions between an atom in the unit cell and its corre-
sponding atom in nearby unit cells. We find that interactions
of the first type are reduced noticeably in magnitude on pho-
toexcitation, in contrast with those of the second type, which
show a slight increase.
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