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In this paper, I revise arguments in favor of the PSL�2�2� Wess-Zumino-Novikov-Witten �WZNW� model as
a theory of the plateau transition in integer quantum Hall effect. I show that all available numerical data
�including the correlation length exponent �� are consistent with the predictions of such WZNW model with
the level k=8.
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I. INTRODUCTION

This paper purports to review the evidence in favor of the
Wess-Zumino-Novikov-Witten �WZNW� description of the
plateau transition in integer quantum Hall effect given in
Ref. 1. To avoid the issues related to a possible role of inter-
actions in real quantum Hall systems, I will discuss the pla-
teau transition in a model system, namely, in the Chalker-
Coddington �CC� network model.2 Thus the “experimental”
data I discuss are numerical data taken from simulations on
the CC networks.

As is well known, all attempts of rigorous derivation of
the critical field theory for the plateau transition have re-
mained unsuccessful. The attempts to arrive at such theory
by means of an educated guess made in Ref. 3 and then in
Ref. 1 pointed out to the WZNW model on the PSL�2�2�
group. However, there have been certain disagreements
about the precise form of such model which have never been
resolved. The papers also did not provide a value for the
correlation length exponent. Below I argue that the most re-
cent numerical data are in very good agreement with the
predictions of PSL�2 �2�k=8 WZNW theory. I also identify the
relevant operator responsible for the correlation length expo-
nent.

At present, we have two established models for integer
quantum Hall effect: the Pruisken-Weidenmüller sigma
model4,5 and the Chalker-Coddington model.2 One can arrive
at these model descriptions by means of more or less con-
trollable steps from the Schrödinger equation description for
noninteracting electrons in a disordered potential. However,
neither the continuous �the sigma model� nor the lattice �the
CC model� description gave immediate access to the critical
properties.

To understand the essence of the problem, it is instructive
to compare the situation to the quantum critical point in a
half-integer spin Heisenberg antiferromagnet. The CC model
can be mapped to an antiferromagnetic superspin chain;6 its
analog in this story is the Heisenberg Hamiltonian:

H = J�
n

SnSn+1. �1�

Then the analog of the Pruisken-Weidenmüller sigma model
would be the O�3� nonlinear sigma model with the action

A =� d�dx� 1

2g
���n�2 +

iS

4
����n���n � ��n	�
 , �2�

where n2=1 and g=1/2S. The latter model can be obtained
from the former at S�1 by taking the semiclassical limit in
the path integral:7

Sn = S�m�x� + �− 1�nn�x��1 − m2	 . �3�

In that limit, ferromagnetic fluctuations described by field m
are weak and can be integrated out. In a similar fashion, one
can derive the Pruisken-Weidenmüller sigma model from the
CC model.6

Continuing the analogy with the Pruisken-Weidenmüller
sigma model, we can identify 2S with the Drude conductivity
�0

xx. The second term in Eq. �2� is topological; its contribu-
tion to the action is 2�iS �integer number�. The coefficient at
the topological term in Eq. �2� should be identified with �0

xy

�strictly speaking, we can discuss only the case of �xy =1/2
corresponding to half-integer S or �xy =0 corresponding to
integer S�.

Both Pruisken-Weidenmüller and O�3� nonlinear sigma
models scale toward strong coupling. The topological term
gives no contribution to the beta function in any order in
coupling constant g �it gives only nonanalytic contributions�.
For this reason, one would not be able to notice its effect on
correlation functions until very large distances. For the O�3�
sigma model, the corresponding length scale is

	O�3� � ag exp��/g�, g = 1/2S , �4�

where a is the lattice spacing, and for the Pruisken-
Weidenmüller model, it is

	Q � 
 exp��4��0
xx�2	 , �5�

where 
 is the mean free path. One may suspect, however,
that at large distances a difference between integer and half-
integer spins �or �xy =0 and �xy =1/2� does exist. Indeed, in
the first case, exp�2�iS	=1 and there is no contribution to
the partition function, but in the second case, the contribution
is nontrivial. On that grounds Haldane made his famous
conjecture8 that Heisenberg antiferromagnets with half-
integer spins are critical. In the same way, following
Pruisken,4 we believe that in two dimensions noninteracting
disordered electrons with �xy =1/2 are also critical. Of
course, in both cases, this belief is supported by ample nu-
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merical evidence, but for the Heisenberg antiferromagnet,
extra factors intervene so that for the Heisenberg magnet we
are able to tell the story until the end. It was conjectured by
Polyakov9 that the critical point, if it exists, is the same as for
the S=1/2 Heisenberg antiferromagnet. This was not that
evident because the sigma model derivation is valid only for
large S. However, later exact solution of sigma model �2�
was constructed10 and it was demonstrated that the physical
properties thus obtained indeed interpolate between the O�3�
sigma model at small �x��	 and S=1/2 Heisenberg at large
�x��	 distances. The critical theory for the S=1/2 Heisen-
berg antiferromagnet is known. The most amazing fact is that
this theory is not the O�3� sigma model but the SU1�2�
WZNW model. The order parameter in the critical region is
not a three-component vector but a four-component matrix
G. The extra component is the dimerization operator

d�x� = �− 1�nSnSn+1, �6�

which at the critical point has the same scaling dimension as
staggered magnetization n. So we have

Ĝ�x� = Îd�x� + i�� n�x� . �7�

The lessons one takes from the Heisenberg antiferromag-
net are that �i� sigma models with topological terms are not
renormalizable and �ii� the resulting critical action may be
defined on a manifold greater than the original one. In that
spirit, a search for a suitable critical model for the plateau
transition was conducted and the WZNW model on PSL�2�2�
group was suggested as a candidate:3,1

A =
1

2g
� d2x Str���G−1��G� + ik�G	 . �8�

Here G is a matrix from PSL�2�2� group, �G	 is the Wess-
Zumino term �not to be confused with the topological one
present in the original sigma model�, and k is an integer. In
Ref. 3, Zirnbauer argued for k=1; in Ref. 1, it was suggested
that g=1/k. In the latter case, the model has an extended
symmetry PSL�2 �2�R� PSL�2 �2�L.

The standard situation with WZNW models is that it is
critical only at g=1/k and a deviation of g from 1/k gener-
ates an irrelevant perturbation. The corresponding Renormal-
ization Group equation is

dg

d ln��/k�
= − a�g − 1/k� , �9�

with a�Cadj�0, where Cadj is the quadratic Casimir in the
adjoint representation of the group. Since for PSL�n �n�
group this Casimir is zero, it was argued that Eq. �8� was
critical for any value of g3 though the extended �Kac-
Moody� symmetry exists only at g=1/k. It was also sug-
gested in Ref. 3 that there was no Kac-Moody symmetry at
the plateau transition. One reason for that assumption was
that the critical coupling g was identified with the critical
value of the conductivity:

g = 1/��xx = 2/� , �10�

which is not integer. Since the Kac-Moody symmetry re-
quires 1 /g=k to be integer, one is forced to conclude that it

is not there. The argument, however, hangs on the identifi-
cation �10�. However, as was pointed out in Ref. 1, since the
critical action is not the original sigma model, such assump-
tion is really difficult to justify. To this, it should be added
that since at the critical point the conductivity has O�1� me-
soscopic fluctuations, it is not quite clear what is meant by
�xx. To talk about its value, one must specify how one aver-
ages over the conductance distribution.

In any case, in the absence of Kac-Moody symmetry, we
know nothing about the critical properties of model �8�.
Therefore we cannot compare the available numerical evi-
dence with theoretical predictions which do not exist. Mean-
while, for the Kac-Moody WZNW model, we know quite a
lot and can compare. Below I will argue that such compari-
son leads to quite a satisfactory agreement for one particular
value k=8. At present, I have no clue why such value of k
may be chosen by the scaling. In my defence, I can say that
properties of WZNW models on supermanifolds are not well
studied and future research in this direction is required to
establish the soundness of my conjecture.

II. OPERATORS, SCALING DIMENSIONS, AND THE
NUMERICAL DATA

The available numerical evidence essentially consists of
four sets of data. Each set contains information related to
certain universal properties of the model.

�a� For eigenstates away from the critical energy Ec, we
know the localization �correlation� length exponent

	�E� � �E − Ec�−�, �  2.3 – 2.35. �11�

�b� From Refs. 11 and 12, we know the statistical distri-
bution of the two-point conductances P�T�x ,y�	.

�c� From Ref. 13, we know the statistical distribution of
the wave functions �participation ratios�. We also have an
estimate of the scaling dimension of the first irrelevant op-
erator d=2.38±0.04.13,14

Few words about the PSL�2�2� group are in order. This
group consists of 4�4 supermatices with unit superdetermi-
nant. Matrix G from this group can be parametrized as
follows:

G = e�� I 0

� I
��A 0

0 B
�� I �̄

0 I
� , �12�

where � , �̄ are fermionic 4�4 matrices, A is a matrix from
H+

3 =SL�2,C� /SU�2�, and B is a SU�2� matrix.
It turns out that field � does not enter into action �8�.

Therefore the PSL�2�2� model can be understood as SL�2�2�,
but with a certain restriction on the Hilbert space. Namely,
one has to consider only operators which are invariant under
local multiplication of field G by a number, that is, fields of
the general form

QX = GXG−1, S det X = 1, �13�

with X being constant matrices.
The axioms of the conformal field theory state that one

can introduce a basis in the space of fields so that every field
��x ,y� in the theory can be decomposed into a sum of fields
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�operators� from this basis. The operators which compose the
basis can be grouped into “conformal towers.” Each tower
consists of a multiplet of so-called primary fields and their
descendants. The latter ones are fields generated from the
primaries by generators of conformal transformations. Con-
formal dimensions of descendants differ from dimensions of
their primaries by positive integer numbers. For this reason,
descendants are less relevant.

In WZNW models, primary fields compose multiplets
such that fields within each multiplet transform into each
other under the action of the group. The generators of group
transformations are currents composing a Kac-Moody alge-
bra. The scaling dimensions of the primary fields in the
PSL�2�2� WZNW model are15

h�jF,jB� = h̄�jF,jB� =
1

k
�jF�jF + 1� − jB�jB + 1�	 . �14�

Here jF characterizing the compact sector run through the
discrete series jF=0,1 , . . . ,k /2−1 �Eq. �13� excludes half-
integer jF	. The angular moment eigenvalue jB may be either
discrete j2=−q �q is a positive real number q� �k+1� /2	 or
continuous jB=−1/2+ ip /2. In the first case, the correspond-
ing representations of su�1,1� are �+, jB� and �−, jB�, which
denote representations with lowest and highest weight, with
eigenvalues of the Cartan operator K1

0 being q+n �n
=0,1 ,2 , . . . � and −q−n, respectively. In the latter case, the
representations have neither highest nor lowest weight states.
Eigenvalues of K1

0 take values of �+n, where 0���1, but
the Casimir is independent of �.

If PSL�2�2� WZNW indeed describes the critical point of
CC model, there must exist an integer k such that dimensions
�14� describe power asymptotics of various correlation func-
tions. This requirement stands for any WZNW model defined
on a group containing compact submanifolds �such as SU�2�
subgroup for the PSL�2�2�	.

Let us now return to the numerical evidence and see
whether it supports Eq. �14� with integer k. It was suggested
in Ref. 1 that the operators corresponding to the qth power of
local densities of states have jF=0 and jB=−q such that

hq = h̄q =
q�1 − q�

k
. �15�

This hypothesis was checked against numerical
calculations.13 This work also reported that numerical simu-
lations on CC networks are plagued by strong size effects,
and to get valuable estimates, one should consider really
large samples. Simulations conducted on large samples con-
firmed the parabolic spectrum �15� with 2/k=0.26±0.003.
The parabolicity of the spectrum is all important for the
WZNW model interpretation. As far as the numerical value
of k is concerned, it is rather close to integer value k=8.

Now let us discuss the localization length exponent �. In
the sigma model, the corresponding perturbation is generated
by deviation of �xy from its critical value 1/2. Since �xy
stands at the topological term and the latter term gives non-
trivial contributions only when the compact sector of the
theory is involved, the perturbation must have nonzero jF. As
I mentioned above, jF must be integer. The operator with

jF=2 and jB=−1/2+ ip /2 �thus it is not a single operator but
rather a continuum of fields� does the job. The corresponding
scaling dimensions are

d�p� =
25 + p2

16
. �16�

As far as physical quantities are concerned, their behavior is
dominated by d�p� at p�1 �see the discussion in Sec. III�.
The minimal scaling dimension of the correlation function
�=1/ �2−d�0�	=16/72.29 differs by 2% from the ac-
cepted value of 2.35. The fact that the perturbation consists
of the entire continuum of operators must generate strong
size effects. Below I will return to this matter and discuss it
in more detail later.

It may well be that the first decendant of the operator with
jF=1 and jB=−1/2+ ip /2, with scaling dimension

dirr�p� = 2 +
9 + p2

16
, �17�

also fits in the picture. If we believe that the finite-size cor-
rections to the wave functions in Refs. 13 and 14 are domi-
nated by the region of small p, then it gives for the observed
scaling dimension the value dirr−20.45, which is not that
different from the value 0.38±0.04 given in Refs. 13 and 14

As we see, k=8 works rather well on two pieces of nu-
merics itemized above. In that light, I suggest looking again
at earlier numerical experiments of Refs. 11 and 12. In Ref.
11, it was suggested that an average of the qth power of the
two-point conductance measured between points �x ,y� and
�0, 0� on a cylinder is given by

�Tq�x,y�� = �
0

�

d��p��C�q,p��2� �

W
sinh���x + iy�

W
��−4h�p�

,

�18�

where W is the circumference of the cylinder, h�p� corre-
sponds to jF=0 and jB=−1/2+ ip /2,

d��p� = dp
p

2
tanh��p

2
�

is the Plancherel measure for the continuous series, and
C�q , p� is the Clebsh-Gordan coefficient. Comparing numer-
ics with Eq. �18�, the authors of Ref. 11 found that

�a� the conductance does scale with

� = ��/W sinh���x + iy�/W	� ,

which strongly supports the conformal invariance;
�b� the scaling dimension is parabolic

2h�p� = �1 + p2�Xt/8;

�c� Xt=0.63±0.03.
The numerical value of Xt was judged to be close to 2/�,
which excluded integer k and worked as an argument against
the WZNW model as a possible candidate for the plateau
transition. However, the later improved numerical calcula-
tions reported in Ref. 12 found Xt=0.54 and Xt=0.57, which
are much closer to the desired value of 0.5. It is also likely
that a limited accuracy of the numerical calculations is not
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the only source of deviations, and there are systematic errors.
The point is that the formulas for the powers of conductance
suggested by Refs. 11 and 12 interpret the fusion factor
C�q , p� as the Clebsch-Gordan coefficient of the GL�2�2�
group. Such choice is an approximation which can be justi-
fied only in the limit k→�. For quantum field theory, struc-
ture constants characterizing the fusion of two operators do
not coincide with the Clebsch-Gordan coefficients of the
group theory.

Let me illustrate this argument by an example. Consider
some well familiar group, say, the SU�2� one. The represen-
tations of this group are labeled by spin j. A tensor product
of two operators �matrices� belonging to representations j1
and j2 can be decomposed into the sum

��j1���j2� = �
j3=�j1−j2�

j1+j2

Cj3

�j1,j2���j3�. �19�

Now let us consider the WZNW model on the same group.
The operators carry the group indices and transform accord-
ing to representations of the group:

�m,m�
j �z, z̄� .

The crucial difference is that now they depend on a space
point, so they are not simply matrices from SU�2� group but
fields. Studying correlation functions of the corresponding
WZNW model instead of Eq. �19�, one arrives at more com-
plicated fusion rules:

��j1��z1, z̄1���j2��z2, z̄2� = �
j3=�j1−j2�

j1+j2

�z12��d3−d1−d2�C j3

�j1,j2�

����j3��z2, z̄2� + z12
n z̄12

m An,m

���j3;n,m��z2, z̄2�	 , �20�

where ��j3,n� are operators with conformal dimensions
h�j3�+n and h�j3�+m �decendants�, and Anm are numerical
coefficients. The quantum Clebsch-Gordan coefficients C do
not coincide with the group coefficients except for k→�.16

III. PREDICTIONS FOR THE OFF-CRITICAL
SCALING

I suggest that at E�Ec, the effective action has the form

S = S* + a�E − Ec� � dzdz̄

�� d��p�Str���jF=2,jB=−1/2+ip/2��z, z̄�	 , �21�

where S* is the critical action. As a consequence, the correc-
tions to physical quantities in a system of size L will include
integrals as

�� d��p�L�2−d�p�	 = �L2−d�0� � dpp tanh��p

2
�

�exp�−
ln L

16
p2� . �22�

From this expression, one can conclude that the dominant
contribution to scaling will come from d�0�, but there will be
significant logarithmic corrections. These corrections will be
a source of errors in one-parameter scaling fits of numerical
data obtained for finite samples. Since logarithm is a slow
function, fits made in the limited range of sample sizes will
produce a perfect illusion of a single power law for a given
physical quantity. The corrections to power laws will survive
even for very large samples when the integral �22� is domi-
nated by p� �1 �this corresponds to L�e16�104�. Indeed,
the estimate of Eq. �22� shows us that at large L the param-
eter �=a�E−Ec� enters in combination

�L7/16�ln L	−3/2, �23�

so that the correlation length behaves as

	 � �16/7�ln �	24/7. �24�
The described effects set a very tough standard for the size of
the critical region and may explain the large magnitude of
the size effects observed in Ref. 13.

IV. CONCLUSIONS

The review of numerical results on plateau transition in
the CC model demonstrates that PSL�2�2� WZNW model
with k=8 stands as a very good candidate to model this
transition. It goes without saying that this identification
leaves many questions unanswered. One may wonder, for
instance, what makes k=8 so special or why the correlation
length exponent is controlled by the operator with jF=2 and
not with jF=1. All these questions can be answered only
when detailed information about operator expansion in PSL
WZNW models are available.

As a way forward, I can suggest two things. First, one
should study the operator algebra for the PSL�2�2� WZNW
models and see whether it possesses some peculiar properties
which allow the selection of certain values of k. From this
algebra, one will also be able to extract quantum Clebsch-
Gordan coefficients to use in Eq. �18�. In this way, we will
obtain more accurate theoretical prediction for the distribu-
tion of conductances. Second, one may undertake to study
numerically the deviations from a simple scaling predicted in
the last section. In this context, it should be emphasized that
the continuous spectra of scaling dimensions, being a generic
feature of critical sigma models on noncompact manifolds,
are not a unique feature of the PSL�2�2� WZNW theory.
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