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Point defect migration is considered as a mechanism for aging in ferroelectrics. Numerical results are given
for the coupled problems of point defect migration and electrostatic energy relaxation in a two-dimensional
domain configuration. The peak values of the clamping pressure at domain walls are in the range of 106 Pa,
which corresponds to macroscopically observed coercive stresses in perovskite ferroelectrics. The effect is
compared to mechanisms involving orientational reordering of defect dipoles in the bulk of domains. Domain
clamping is significantly stronger in the drift mechanism than in the orientational picture for the same material
parameters.
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I. INTRODUCTION

Ferroelectric materials underlie restrictions in technologi-
cal applications because of several degradation phenomena.
One of these phenomena is aging which is defined as the
gradual change of material properties with time t under static
external boundary conditions.1–8 Experimentally, the dielec-
tric constant decreases and hysteresis loops alter their shape
and amplitude in remanent polarization and coercive field.
The dielectric constant decreases as the logarithm of time in
an intermediate time range saturating for long times.9 The
change of material properties is caused by a decreasing do-
main wall mobility stabilizing in an aged domain structure.10

In order to describe the experimentally observed shifted or
deformed ferroelectric hysteresis loops after aging11 the in-
ternal field Ei has been defined as a quantity describing the
strength of domain stabilization.6 Several mechanisms have
been considered to partake in the stabilization process, space
charge formation,3,4 domain splitting,10 ionic drift,11–13 or the
reorientation of defect dipoles.14 Except for domain splitting,
all mechanisms directly involve some reordering of point
defects. Within a microstructure, three relevant locations can
be identified for charge carrier rearrangement: the domain
bulk, grain boundaries, or domain walls. For the bulk effect,
defect dipoles reorient with respect to the direction of the
spontaneous polarization under an electrical field or strain.
For the grain boundary effect, charged point defects move
under electrical fields originating from polarization disconti-
nuities at the grain boundaries or the outer perimeter of the
sample in order to compensate the fields. The same process
can occur at charged domain walls and then becomes a do-
main wall effect.15,16 Local space charge is another electric
driving force for ionic currents observed in LiNbO3-type
crystals17,18 as well as perovskites.19–21

Elastic fields can provide a second driving force for de-
fects inside domains but will not be treated here. For not too
rigid noncharged domain walls, the localization of free
charge carriers at a domain wall is a further possible effect
entailing the wrinkling of the initially planar walls.22–25 Even
though this is a physically interesting mechanism, it will not
be taken into consideration here.

Oxygen vacancies are a well known and frequent defect
in the perovskite structure. They have been considered to
play an important role in aging of ferroelectric materials due
to their low, but finite mobility. In the orientational picture,
oxygen vacancies, when adjoint to an acceptor center, form
electric and elastic defect dipoles in the bulk of a ferroelec-
tric domain.6 The defect dipoles align parallel to the sponta-
neous polarization Ps by diffusion of the mobile oxygen va-
cancy in cage motion. Because of the relatively slow oxygen
vacancy motion,26 the polarization directions of the aligned
defect dipoles stay constant when the direction of Ps changes
for short times. In this case, the defect dipoles generate an
internal electrical field Ei which stabilizes the domain pattern
by increasing the force constant for the reversible displace-
ment of the domain walls.27 This relaxation model has been
well developed.28 It bears two insufficiencies, though, the
time dependence of aging is not reproduced and the absolute
values of clamping pressures are low.29 A second point of
view about the role of oxygen vacancies in aging is the for-
mation of ionic space charges30 which was originally pro-
posed to explain space charge effects in BaTiO3 single
crystals.31 Ionic space charges are well known for highly
doped positive temperature coefficient resistors based on
BaTiO3.32 For aging the mobile charge carriers move to
charged domain faces or grain boundaries and compensate
polarization. This leads to an asymmetric charge distribution
whereby a voltage offset arises yielding the known shift or
deformation of the ferroelectric hysteresis.33 The clamping
pressure on domain walls generated by these space charges
has not been treated mathematically for periodic domain
structures.

This paper describes quantitatively the formation of space
charges in single domains of a periodic structure and shows
the development of the defect distribution inside the domain.
An estimate of bending and clamping pressures on domain
walls and a comparison to the orientational picture14 are
given. Electrostatic clamping of domain walls through the
formation of space charges is calculated to be two orders of
magnitude stronger than clamping through aligned defect di-
poles for the same concentration of charge carriers.
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The model is independent of the type of point defect, as
long as a diffusion constant can be assigned and the defect is
charged. It can thus be equally well applied to hopping of
electronic carriers. The oxygen vacancy was chosen for the
numerical examples in order to be comparable to previous
work, but does not preclude a statement on the physical na-
ture of the mobile carrier.

II. GENERAL MODEL

In order to study the effect of migration of charge carriers
on aging, we chose a two-dimensional periodic array of do-
mains cut by the grain surface, z=0, perpendicular to the
direction of spontaneous polarization which is along the z
axis in Fig. 1. This model configuration is well known in the
physics of polarized media and was used for the study of
equilibrium and dynamic properties of ferromagnetic34,35 and
ferroelectric36,37 materials. We assume for simplicity an iso-
tropic material of the grain occupying the area z�0 charac-
terized by the relative dielectric constant � f. The dielectric
material outside the grain is assumed isotropic too and is
characterized by the relative permittivity �d. As we previ-
ously showed by finite element simulation, the electric fields
arising due to spontaneous polarization in a periodic multi-
domain grain of finite dimensions generate a nearly perfect
periodic pattern except for the very edges of the grain.29 We
thus consider the periodic domain array of Fig. 1 occupying
the semispace −��x�� ,z�0 as a representative model for
a multidomain grain of domain width a much smaller than
the typical grain size. Due to polarization, the domain faces
at z=0 are alternatively charged with the bound surface
charge density �= �Ps�, the spontaneous polarization value. If
the length of the domains L along the z axis is much larger
than their width a along the x axis, which is typically the
case in experiment, field lines are effectively closed at the
same side of the grain �see Fig. 1�. As a consequence, both
components of the electric field E0�x ,z� induced by the al-
ternating surface charge exponentially decrease towards the

interior of the grain along the z axis.29 Migration of the
charged defects driven by the field E0�x ,z� is then expected
to occur in a volume near the grain surface. The domains
may therefore be considered infinitely long along the z axis
without introducing a substantial error.

Let us now derive the equations of evolution for the
charge and field distributions in the considered system. At
any time t, the electric field E�x ,z , t� is determined by the
charged faces of the domains and the imbalanced charge den-
sity of free carriers ��x ,z , t�=qf�c�x ,z , t�−c0� through
Gauss’ law

�E =
qf

�0� f
�c − c0� , �1�

where c�x ,z , t� is the local concentration of mobile carriers
of charge qf, c0 is the background concentration of the im-
mobile charge carriers of opposite polarity warranting total
electroneutrality, and �0 is the permittivity of vacuum. In the
initial state, the system is locally neutral assuming c�x ,z ,0�
�c0, the electric field E�x ,z ,0��E0�x ,z� is yet to be found.

In the presence of an electric field and a gradient of con-
centration, the flow of charge carriers is given by the sum of
drift and diffusion contributions to the particle current den-
sity:

s = �cE − D � c , �2�

where � and D are the mobility and diffusivity of charge
carriers, respectively. We assume, for simplicity, that the lat-
ter two quantities are isotropic and connected by the Einstein
relation, D=�k� /qf with k the Boltzmann constant and �
the absolute temperature. Migration of charge carriers is gov-
erned by the continuity equation

�tc = − ���cE� + D	c . �3�

For boundary conditions to the system of equations �1� and
�3� we assume chemical and electrical isolation of the grain.
The first requirement means vanishing particle current

sz = �cEz − D�zc = 0, �4�

at the grain boundary, z=0. The second requirement means
vanishing total electric current,

qf��cEz − D�zc� + �0� f�tEz = 0, �5�

at z=0 which results in a constant value of the z component
of the electric field at the grain boundary, �tEz�x ,0 , t�=0.

Equations �4� and �5� together with Eqs. �1� and �3� com-
plete the statement of the problem of charge segregation in a
ferroelectric grain. In the next section we will observe how
the system relaxes according to the equations of evolution
�1� and �3�.

III. SOLUTION OF THE EQUATIONS OF EVOLUTION

In this section we first calculate the field E0�x ,z� in the
virgin state of the system before the process of charge seg-
regation starts. Then we formally solve equation �1� and find
the total electric field E�x ,z , t� for an arbitrary right-hand

FIG. 1. Scheme of a 2D array of 180° domain walls crossing the
grain boundary at a right angle. Straight arrows show the direction
of the polarization and curved arrows the approximate directions of
the local electric fields.
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side. Finally, using the latter result, we numerically solve Eq.
�3�, self-consistently describing drift and diffusion of the mo-
bile charge defects in the domain arrangement of Fig. 1.

A. Electric field in the virgin state of a multidomain
grain

To use the bilateral symmetry of the problem, the origin is
chosen in the center of the positively charged domain face as
shown in Fig. 2.

The bound charge density of the domain faces is repre-
sented by an alternating function35

�b�x,z� = �
�z� �
n=−�

�

�− 1�n��a

2
− an + x	��a

2
+ an − x	 ,

�6�

where 
�z� and ��x� are the Dirac 
 function and the Heavi-
side unit step function, respectively. The electrostatic poten-
tial induced by this bound charge is given by the expression

�b�x,z� = −
1

2�0�� f + �d�
−�

�

dx0

−�

�

dz0�b�x0,z0�

�ln�� x − x0

a
	2

+ � z − z0

a
	2� �7�

in both areas z�0 and z�0. The formula �7� is simply a
superposition of the potentials generated by straight parallel
charged lines located at the grain boundary z=0 between the
media with dielectric constants �d and � f.

35

The z component of the electric field created by the bound
charge, E0=−��b, may be directly calculated by substitution
of �b, Eq. �6�, into Eq. �7� and subsequent summation38

which results in the form

Ez
0�x,z� =

2�

�0�� f + �d�
arctan� cos�x/a�

sinh�z/a�	 �8�

valid for both media.
Direct calculation of the other field component, Ex

0=
−�x�b, is more complicated because of slow convergence of
the appropriate series. Instead, Ex

0 may be calculated for

z�0 from Gauss’ law �E0=0, taking into account that, from
the symmetry of the problem, Ex

0�0,z�=Ex
0�±a ,z�=0. Pro-

ceeding with integration of the latter Gauss’ equation over
distance along the x axis and using the mentioned boundary
conditions one finds the form

Ex
0�x,z� =

�

�0�� f + �d�
ln� cosh�z/a� + sin�x/a�

cosh�z/a� − sin�x/a�	 �9�

valid inside and outside the grain. Both field components
exhibit periodic dependence along the x axis, as expected
from the periodic domain arrangement, and exponentially
decrease at large distance from the charged surface �z��a, as
expected from the previous finite element simulations.29 We
note here that the short range fields, Eqs. �8� and �9�, may be
very large. For example, in BaTiO3 the depolarization field
amplitude may be as high as 108 V/m.29 The presence of
high local fields were confirmed at least partly in observa-
tions on the acceptor doped BaTiO3, where internal fields
were experimentally found in the range of 105 V/m for up to
1 mol % Ni doping and temperatures below 80 °C.6

B. Electric field due to redistribution of charged defects

At any arbitrary moment, the total electric field in the
system may be conveniently decomposed as E=E0+Ei,
where the field E0 is determined by the charged faces of the
domains, Eqs. �8� and �9�, and the field Ei is generated by the
distribution of the charge density in the area z�0. Thanks to
periodicity and the bilateral symmetry of the initial condi-
tions, both the charge density and the electrostatic potential
remain periodic and bilaterally symmetric in the course of
the charge redistribution, as illustrated in Fig. 2. This allows
us to consider the region −a�x�a as a repetitive basic unit
of the system and confine ourselves to the consideration of
processes in this area. To get a full description of the electric
field under these circumstances, it is sufficient to construct
the Green’s function of the symmetrical Neumann problem
in the mentioned region, Gs�x ,z �x0 ,z0�, so that the electro-
static potential induced by redistribution of charged defects
with z0�0 may then be presented in the form39

�i�x,z,t� = 

0

a

dx0

0

�

dz0��x0,z0,t�Gs�x,z�x0,z0� , �10�

followed by the field expression Ei=−��i.
The Green’s function satisfies the equation

	Gs�x,z�x0,z0� = −
1

�0� f

�z − z0��
�x − x0� + 
�x + x0��

�11�

with boundary conditions �xGs�x= ±a ,z �x0 ,z0�=0. The latter
requirement is a consequence of the constraint Ex�±a ,z�=0
inherent to the chosen domain arrangement. Boundary con-
ditions for the electrostatic potential, Eq. �10�, on the inter-
face between the two media at z=0 �Ref. 39� impose two
additional boundary conditions on the Green’s function

Gs�x,− 0�x0,z0� = Gs�x, + 0�x0,z0� ,

�d�zGs�x,− 0�x0,z0� = � f�zGs�x, + 0�x0,z0� . �12�

FIG. 2. Scheme of expected charge redistribution induced by the
local electric field within the central region −a�x�a ,z�0, pre-
senting repeating element of the periodic domain arrangement of
Fig. 1. Thin layers of positive charge carriers piled up at the nega-
tively charged domain faces as well as a wide �shaded� area de-
pleted of mobile charge carriers near the positively charged domain
face are shown.
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Using the fundamental solution of the two-dimensional
�2D� Poisson equation39 and taking into account periodicity
of the problem the solution of Eq. �11� may be reduced to
summation of a series,

Gs�x,z�x0,z0� = −
1

2�0�� f + �d� �
n=−�

� ln�� x − x0

a
− 2n	2

+ � z − z0

a
	2�� + �x0 → − x0� �13�

for the area z�0 and

Gs�x,z�x0,z0� = −
1

4�0� f
�

n=−�

� ln�� x − x0

a
− 2n	2

+ � z − z0

a
	2� +

� f − �d

� f + �d
ln�� x − x0

a
− 2n	2

+ � z + z0

a
	2�� + �x0 → − x0� �14�

for the area z�0.
Because of slow convergence of this series it is more

convenient to perform summation for the derivatives �xGs
and �zGs and then to restore the function Gs itself by inte-
gration using boundary conditions. This leads after all to the
solution of Eq. �11�,

Gs�x,z�x0,z0� = −
1

2�0�� f + �d�
ln�cosh

�z − z0�
a

− cos
�x − x0�

a
	 + �x0 → − x0� �15�

for the area z�0 and

Gs�x,z�x0,z0� = −
1

4�0� f
�ln�cosh

�z − z0�
a

− cos
�x − x0�

a
	 +

� f − �d

� f + �d
ln�cosh

�z + z0�
a

− cos
�x − x0�

a
	� + �x0 → − x0� �16�

for the area z�0, which are periodic, bilaterally symmetric
and satisfy the proper boundary conditions. Now, from the
expressions �10�, �15�, and �16�, the components of the elec-
tric field induced by the redistribution of charged defects
may be obtained. It is easy to verify that the total electric
field satisfies the boundary condition Ex�x= ±a ,z�=0 for any
bilaterally symmetric charge density ��x ,z , t�.

C. Numerical solution of the evolution equations

Having solved Eq. �1� explicitly allows for the implemen-
tation of a simple direct Euler scheme for numerical treat-
ment of the problem. Space and time will be discretized. At
every time step, the change in the carrier concentration will
be calculated from the previous values of the concentration
and the electric fields using Eq. �3�. Then, the updated values

of the field will be calculated directly from the updated val-
ues of the concentration using Eq. �10�. The calculation is
repeated until convergence. Taking into account the bilateral
symmetry of the problem, it is sufficient to consider the
charge redistribution within the area 0�x�a.

We first introduce dimensionless variables which is help-
ful for the following numerical analysis and reveals those
parameters of the system which are relevant to the relaxation
process. Dimensionless coordinates are naturally introduced
as X=x /a and Z=z /a. The dimensionless field F=E /E* is
expressed in units of the characteristic value E*=� /2�0� f.
The system reveals two characteristic time scales: the drift
time ��=a /�E* and the diffusion time �D=a2 /D. For the
typical parameters involved, �D��� therefore we will intro-
duce dimensionless time as T= t /��. The concentration of
defects is now reduced to n�X ,Z ,T�=c�x ,z , t� /c* with the
characteristic value c*=� /2aqf. The latter has the physical
meaning of a concentration of defects on an area a2, which
completely neutralizes the bound charge � at the domain
faces. The reduced initial concentration n0=c0 /c* measures
whether the density of defects is high or low with respect to
the charge compensation concentration.

The continuity equation �3� now acquires the form

�tn = − n�n − n0� − F � n + �	n , �17�

where all differentiations are performed with respect to the
dimensionless variables. The parameter �=�� /�D�1 char-
acterizes a weak contribution of diffusion to the migration of
defects in ferroelectrics. It is now seen from Eq. �17� that
only two composed parameters, n0 and �, control the relax-
ation process.

Though the parameter � may be rather small, it cannot be
neglected as is clearly seen from the boundary condition for
the particle current, Eq. �4�, taken in a dimensionless form

nFy − ��yn = 0, Z = 0, �18�

otherwise this boundary condition is not compatible with the
initial conditions. The finite value of � means compensation
of the drift contribution to the current by the diffusion con-
tribution at the grain boundary and this way defines the
structure of a thin layer of charged defects piling up at this
boundary.

Equation �17� is supplemented by expressions for the di-
mensionless field F=F0+Fi which can be easily derived
from Eqs. �8�–�10�, �15�, and �16�, namely,

Fx
0�X,Z� =

1



2� f

� f + �d
ln� cosh Z + sin X

cosh Z − sin X
	 ,

Fz
0�X,Z� =

2



2� f

� f + �d
arctan� cos X

sinh Z
	 , �19�

and
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Fx,z
i �X,Z,T� = 


0

1

dX0

0

�

dZ0fx,z�X,Z�X0,Z0�

��n�X0,Z0,T� − n0� , �20�

where the kernels in this integral are presented by the func-
tions

fx�X,Z�X0,Z0� =
� f

2�� f + �d�
sin �X − X0�

cosh �Z − Z0� − cos �X − X0�

+ �X0 → − X0� ,

fz�X,Z�X0,Z0� =
� f

2�� f + �d�
sinh �Z − Z0�

cosh �Z − Z0� − cos �X − X0�

+ �X0 → − X0� , �21�

for Z�0 and by functions

fx�X,Z�X0,Z0� =
1

4
�� f − �d

� f + �d

sin �X − X0�
cosh �Z + Z0� − cos �X − X0�

+
sin �X − X0�

cosh �Z − Z0� − cos �X − X0�

+ �X0 → − X0�	 ,

fz�X,Z�X0,Z0� =
1

4
�� f − �d

� f + �d

sinh �Z + Z0�
cosh �Z + Z0� − cos �X − X0�

+
sinh �Z − Z0�

cosh �Z − Z0� − cos �X − X0�

+ �X0 → − X0�	 �22�

for Z�0.
Since the system remains electrically neutral within the

domain of integration during the redistribution of defects,
arbitrary constants may be added to the kernels �21� and �22�
without changing the results of integration in Eqs. �20�. This
property is used in the numerical procedure to facilitate the
conversion of the integrals in Eqs. �20�.

As an example, we now consider the aging process in
BaTiO3. For the numerical simulations, the material param-
eters of BaTiO3 at room temperature are taken from Wer-
nicke and Jaffe et al.,40,41 namely, Ps=2.71�10−5 C/cm2,
� f =170, �=1.73�10−20 m2/V s, a=0.5 �m and qf is 2
times the elementary charge, implying positively charged
oxygen vacancies as mobile defects. For the dielectric me-
dium between ferroelectric grains we take the same but non-
polarized material with �d=170. This yields c*=1.69
�1018 cm−3, ��=1.61�105 s, �D=1.14�109 s. As was
shown in one-dimensional simulations,29 the parameter
��1 has no effect on the dynamics of the relaxation. The
only physical characteristic depending on ��1 is the thick-
ness of the positively charged layer of defects piling up at the
negative face of the domain. To make this layer visible in
figures and to avoid numerical problems invoked by the
strong gradients of the defect density we take the value �

=5�10−2 instead of the actual ratio �� /�D=1.4�10−4 for
our simulations.

A snapshot of the development of the defect concentration
profile over the reference area 0�X�1,0�Z�4 starting
with the background defect concentration n0=1 is presented
in Fig. 3 for the moment T=0.05. A wide depleted zone
forms near the positively charged face at 0�X�0.5,Z=0
and a very thin excess charge layer of high concentration
near the negatively charged face at 0.5�X�1,Z=0.

The structural difference of these two space charge areas
is better seen in Figs. 4 and 5 presenting vertical cross sec-
tions of the concentration profile along the lines X=0.25 and
X=0.75, respectively. A succession of snapshots of the con-
centrations along the line X=0.25 �Fig. 4� exhibits the evo-
lution of the charge defect density near the positive face of
the domain. The profile positions at the moments T=4 and 5
cannot be discerned any more which indicates saturation at
time T�5 �corresponding to t�8�105 s�. The characteris-
tic width of this zone in the final relaxed state is of the order
of unity. The defects piling up near the negative face of the
domain form a much thinner layer of a characteristic width
of the order of � as is represented by concentration profiles
along the line X=0.75 in Fig. 5. The final relaxed state is

FIG. 3. Distribution of oxygen vacancies cVo
�X ,Z� over the ref-

erence area 0�X�1,0�Z�4 at time T=0.05 for an initial con-
centration of defects c0=c*=1.69�1018 cm−3.

FIG. 4. Defect concentration profile along the line X=0.25 for a
succession of times T=0.1,1 ,2 ,3 ,4 ,5 �from left to right� for the
initial concentration of defects c0=n0 ·c*.

DRIFT OF CHARGED DEFECTS IN LOCAL FIELDS AS… PHYSICAL REVIEW B 75, 184107 �2007�

184107-5



reached also at about T�5. The corresponding evolution of
the front cross section of the concentration profile along the
line Z=0 shown in Fig. 6 exhibits saturation at about T�5,
too.

In our model, drift-dominated migration of the charged
defects is caused by local electric fields near the charged
faces of a grain. This migration process only stops, if either
no mobile defects remain in the area where fields are present
or there is no remaining field in the area where the defect
concentration is not zero. The process of field compensation
due to defect migration is exemplified by the evolution of the
electric field component Fz=Fz

0+Fz
i at the line Z=2 repre-

sented in Fig. 7. Fz
i saturates at the values opposite to the

local values of the initial electric field Fz
0 determined by the

bound surface charge. Relaxation leads to an energy mini-
mum where the system will resist any change of the domain
wall positions. The final distribution of free charges then
determines the equilibrium domain configuration of the sys-
tem. For an effectively low mobility of the free charge car-
riers the transition above the Curie point will not readily
rearrange the charge carrier configuration due to thermal ex-
citation. The defect charge density then determines the sub-
sequent domain configuration after recooling the sample to
low temperature. Experimentally it is observed that the origi-
nal domain configuration is reproduced to a great extent.7,8,42

IV. FORCES EXERTED UPON A DOMAIN WALL

From the known development of the charge density and
the electric field in our model, the time-dependent forces
exerted upon domain walls can be evaluated. Using the gen-
eral formula derived by Nechaev et al.43 and taking into
account only electrostatic contributions to the energy one can
obtain the local pressure f exerted upon a wall. For a straight
rigid wall considered here, one finds f =2PE where P and E
are the local values of spontaneous polarization and electric
field, respectively. This relation is reduced, in the geometry
of Fig. 1, to f =2PsEz �note that, in the case of the same
arrangement of the 90°-domain walls, the � would merely
decrease by a factor of �2 and the force by a factor of 2, the
configuration and results are otherwise identical�.

Although only one end of the domains is present in the
mentioned geometry of Fig. 1 it is obvious that similar seg-
regation of the charged defects occurs on the other end of the
domain, too. This results in the antisymmetric force of oppo-
site sign exerted upon the domain wall on the other end of
the domain yielding a total force equal to zero. This force
cannot move the domain wall as a whole or prevent its mo-
tion but it may lead to bending of the wall violating our
assumption of rigid straight domains. This is frequently en-
countered in real systems. Domains forming needle tips near
external interfaces are commonly observed.44,45 In this case,
part of the compensation arises within the bulk and not only
right at the grain interface. The final defect distribution will
be different from the case calculated here, but the essential
effect of bending will remain the same. Our model of drift of
free charge carriers also supports a coalescence of domains
rather than their splitting. Without any further details in-
cluded in the model, it contradicts the experimental observa-
tions of Ikegami and Ueda of domain splitting during
aging.10

The evolution of the bending pressure f�T� averaged over
one-half of the domain wall length, assumed as long as
L=20a, is shown in Fig. 8 for three different values of the
initial background concentration of defects. It is seen that
systems with smaller concentrations need an inversely longer
time to relax. For the system with n0=1 it takes about
T�5 while for the system with n0=0.5 this time is roughly

FIG. 5. Defect concentration profile along the line X=0.75 for a
succession of times T=0.1,1 ,2 ,3 ,4 ,5 �from left to right� for an
initial concentration of defects c0=n0 ·c*.

FIG. 6. Defect concentration profile along the line Z=0 for a
succession of times T=0.1,1 ,2 ,3 ,4 ,5 �upwards� for the initial con-
centration of defects c0=n0 ·c*.

FIG. 7. The electric field component Fz plotted along the line
Z=2 for a succession of times T=0,0.1,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 in
a system with the initial concentration of defects c0=c*. The arrows
show the direction of evolution.
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doubled. All curves can be well fitted by the exponential
form f0 tanh��n0T /2� where the parameters f0�1 MPa and
��1 and slowly increase when n0 decreases. A reliable
simulation of defect concentrations smaller than n0=0.5 is
impossible on the chosen template �0�X�1,0�Z�4�
since in this case migration involves defects from a wider
area in order to compensate the bound charge at the domain
faces.

One more general feature of time dependencies of the
bending pressure in Fig. 8 is worth discussion. All the curves
exhibit a small region at small times where the value of
pressure is negative. This is not an artefact of the numerical
discretization procedure but has a physical meaning. Indeed
at any time, the characteristic width of the positive space
charge zone near the domain face 0.5�X�1,Z=0 is of the
order of � which follows from the boundary condition, Eq.
�4�. On the other hand, at the very beginning of charge defect
migration, the characteristic width of the negative space
charge zone in the area 0�X�0.5,Z�0 is less than �. This
means that a negative value of the field component Fz pre-
vails at the domain wall at this stage. This is confirmed by
the dependence of Fz on position Z for different times as
presented in Fig. 9.

The above considered bending force does not directly de-
scribe the aging phenomenon as long as rigid straight domain
walls are retained. In fact, the total force exerted upon the
walls remains equal to zero during the defect redistribution if
both ends of the domains are taken into account. Neverthe-
less, the loss of domain wall mobility characteristic of aging
may be captured in this model, too. Indeed, the segregation
of charge carriers in the fixed domain framework of Fig. 1
leads to the relaxation of the energy of the electrostatic de-
polarization field. The decrease of this energy per unit length
of domain wall measures the clamping pressure preventing
the displacement of the wall from the energy minimum,

Pcl�z,t� =
�0� f

2a



0

a

dx�E0�x,z�2 − E�x,z,t�2� . �23�

The dependence of this pressure along the length of the
wall is shown in Fig. 10 for a succession of times. The mag-
nitude of the pressure saturates as expected at about a time
T�5 for a defect concentration of c0=c*. The corresponding
peak value of the pressure around 1.5 MPa is comparable
with the average bending pressure at the wall, Fig. 8. The
magnitude of the saturated pressure increases monotonously
with the defect concentration c0 as is seen from Fig. 11.

The irreversible migration of charged defects entails
growing immobilization of the domain walls and, conse-
quently, enhancement of the coercive field, Ec. To estimate
this effect one should compare the pressure �PsE exerted by
the external field, E, upon a domain wall with the clamping
pressure, Eq. �23�, averaged over the domain wall length, L.
This results in the following estimate for the coercive field

Ec�t� =
2

PsL



0

L/2

dzPcl�z,t� , �24�

where integration over the half-length of the wall accounts
for the other end of the domain. Evaluation of the time-
dependent coercive field assuming the typical length of the
domain wall L=20a obtains a characteristic value of Ec
�1 kV/cm which is of the order of the coercive field in
unaged bulk samples of BaTiO3.7,8 In fact, the magnitude of

FIG. 8. Bending pressure f as a function of time T= t /�� at room
temperature for BaTiO3 is plotted for three different sample con-
centrations of oxygen vacancies c0=n0 ·c* with n0=0.5, 1, and 2
�solid lines�. Dashed lines show fitting of the pressure by the func-
tion f0 tanh��n0T /2� with parameters f0=1.095,0.91,0.66 MPa
and �=0.91,0.86,0.76 for n0=0.5, 1 and 2, respectively.

FIG. 9. Snapshots of the distribution profile of the field compo-
nent Fz along the domain wall for the succession of times T
=0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1 �upwards� for BaTiO3 at
room temperature for an oxygen vacancy concentration c0=n0 ·c*.

FIG. 10. Snap-shots of the clamping pressure distribution along
the domain wall for the succession of times T=0,0.1,1 ,2 ,3 ,4 ,5
�upwards� for BaTiO3 at room temperature for an oxygen vacancy
concentration c0=n0 ·c*.
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the clamping pressure and, consequently, the value of the
coercive field may be substantially larger than it was esti-
mated using Eq. �24�. First, the peak value of the pressure
must be approximately doubled if one takes into account the
reduction of the energy of electrostatic field in the dielectric
material outside the grain which is approximately the same
as in the ferroelectric area assuming �d=� f. Second, the con-
sideration of the anisotropy of the dielectric constant is ex-
pected to scale up the pressure together with the energy gain
by the factor of ��a /�c which is about 6 for BaTiO3. Finally,
values of a few MPa are expected for the average clamping
pressure at the domain wall and the values of few kV/mm are
expected for the coercive field due to charge carrier migra-
tion which is in agreement with the characteristic values ob-
served on the aged samples of BaTiO3.7,8 Accordingly, the
coercive field, Eq. �24�, multiplied by the factor of 12 is
shown in Fig. 12 in physical units to compare with known
experimental data. The dashed line shows that the time be-
havior of Ec mimics logarithmic time dependence for dura-
tions less than a few ��.

One more essential factor which brings about enhance-
ment of the coercive field is that the minimum energy of the
system will further substantially decrease if domain wall

bending is allowed contributing to the increase of the clamp-
ing pressure, Eq. �23�. This mechanism is, however, beyond
the consideration in our model of rigid walls.

The above obtained values are much larger than typical
magnitudes of clamping pressure arising due to dipole
reorientation.14 Indeed, for uniformly aligned dipoles in the
latter mechanism, the dipole moments exert upon the domain
wall a clamping pressure Por�c0Ezd where the dipole mo-
ment d=qfl /2 with the dipole length of l=4�10−10 m. For
the material parameters assumed in the above estimations
and c0=c* this results in the peak value of the clamping
pressure Por=9.7 kPa which is two orders of magnitude
smaller than that in the drift mechanism.

A common feature of these two aging mechanisms is that
both dipole reorientation and defect migration occur in those
areas where a depolarization electric field is present. In re-
spect thereof these mechanisms can be classified neither as
volume nor as boundary ones as was suggested in the recent
works by Zhang and Ren7,8 but rather as geometry depen-
dent. Indeed, in the two-dimensional periodic array of do-
mains considered here the depolarization field is present only
near the grain boundaries causing both defect drift and dipole
reorientation only in this area. On the other hand, in the
single domain state of a Mn-doped BaTiO3 single crystal
observed in Ref. 8 a one-dimensional geometry is virtually
realized where the depolarization field is present in the whole
sample29 and invokes both dipole reorientation and defect
drift in the whole volume.

V. CONCLUSIONS

In this work, we have considered migration of charged
defects as a possible reason for aging in ferroelectrics. The
model is based on two main assumptions: �1� existence of
mobile carriers of ionic or electronic nature in the bulk ma-
terial and �2� presence of strong local depolarization fields
due to bound charges at the domain faces. The first assump-
tion is based on direct measurements of the conductivity in
perovskites,26 the second one was at least partly confirmed in
observations of Ref. 6. Solving self-consistently the drift-
diffusion equation together with the Gauss equation for the
fixed two-dimensional domain array34–37 reveals gradual for-
mation of space charge zones compensating the field gener-
ated by charged domain faces. Charged domain walls, which
are tip-to-tip or tail-to-tail configurations of the polarization
in adjacent domains, are electrically equivalent to our model.
The biggest difference arises due to the fact that charged
domain walls are often observed as needle tip domains in
single crystals.45 The geometry is thus considerably different
from the model of parallel domain walls presented in our
paper, where only periodic straight domain configurations
are captured.

The process of charge defect migration is accompanied by
the reduction of the energy of the electrostatic depolarization
field which leads to the energy minimum where the system
will resist any change of the domain pattern. The character-
istic time of this relaxation depends on the doping and is
typically about 5 ·���8�105 s�9 days, where �� is a time
of drift over the distance of domain width. That is why, after

FIG. 11. The saturated clamping pressure distribution along the
domain wall for BaTiO3 at room temperature for the oxygen va-
cancy concentrations c0=n0 ·c* with n0=0.5, 1, 1.5 and n0=2
�upwards�.

FIG. 12. Coercive field due to charged defect migration as a
function of time �solid line� for the oxygen vacancy concentration
c0=n0 ·c*. Dashed line shows fitting with logarithmic dependence
for intermediate times.
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aging, a clamping force at a domain wall arises if an external
electric field attempts to shift the domain wall from its initial
position. This force may be estimated from the calculated
energy gain due to the reduction of the depolarization field.
The peak value of the clamping pressure is in the range of
1–10 MPa but the pressure is distributed very inhomoge-
neously along the domain wall concentrating near the do-
main ends. Nevertheless, the total value of the clamping
force at the domain wall results in the characteristic coercive
field of few kV/mm which is comparable with that observed
on the aged samples of Mn-doped BaTiO3.8

Clamping pressures on domain walls in the presented
two-dimensional model are considerably lower than in the
uniaxial case29 and approach macroscopically observable
values. They are two orders of magnitude larger than in the
picture of defect dipole reorientation14 and are thus a plau-
sible mechanism for aging in ferroelectrics. In contrast to the
one-dimensional case with only one characteristic value of
electric field, Ed= Ps /� f�0, treated earlier29 the two-
dimensional model exhibits seemingly a wide spectrum of
characteristic times according to the position-dependent val-
ues of the electric field E�x ,y�. This allows one to expect a
time dependence of the clamping pressure in a two-
dimensional array of domains different from the one-
dimensional case.29 Nevertheless, comparing time evolution
of the field and defect concentration in Ref. 29 with Figs.
4–7 one observes a striking similarity between them. We are
thus concerned with a single characteristic time constant �r
=�� /n0 characterizing the relaxation of the system. This time
is independent of the width of the domains, a. In fact, �r
=� f�0 /� with �=qfc0� being the conductivity of the mate-
rial is the Maxwell relaxation time which only depends on
the mobility and local concentration of the mobile carriers.
This in turn means that a distribution of grain sizes in the
material and accordingly a distribution of domain sizes does
not entail a distribution of characteristic relaxation times.
The logarithmic time dependence of the dielectric constant
during aging yet remains to be explained.

A crucial parameter for the plausibility of the time scale in
our simulations is the mobility of charged species in a ferro-
electric material. The mobility of oxygen vacancies consid-
ered is still a highly disputable issue. The activation barrier
for this ionic defect is usually estimated in the range of
0.9–1.1 eV in both experimental works and first principle
calculations46–49 which makes the migration of oxygen va-
cancies over the distance of the order of the domain width
�0.5 �m most unlikely. On the other hand, the estimations
of the mobility in Refs. 26, 30, 50, and 51 are similar to or
higher than that given in Refs. 40 and 41 which we used for
simulations in our study. We would like to stress here there-
fore that the nature of the charge carriers plays no important
role for the model presented. These may be also electronic
carriers as was suggested in Refs. 47 and 52. In any case our
input parameters agree with direct measurements of the con-
ductivity of perovskites indifferent to the nature of the charge
carriers.26

It is evident that any real system will contain more than
one mobile charge carrier. In case their mobilities or concen-
trations are considerably different, the final distribution of
defects of the more mobile and/or more frequent carrier will
determine the field environment for the drift of the second
carrier as it was discussed in Ref. 47. The solutions from the
present calculation would have to be taken as a starting con-
dition and iteratively the final solution could be found. In
case of equal mobilities and concentrations, a coupled sys-
tem of equations must be solved which is the issue of forth-
coming work. Similarly the local potential wells for the do-
main wall which determine the dielectric constant will be
given in a future presentation.
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