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The evolution of damage produced by collision cascades in Fe is studied using both kinetic Monte Carlo
�kMC� and rate theory �RT� approaches. The initial damage distribution is obtained from molecular-dynamics
simulations of 30 keV recoils in Fe. An isochronal annealing is simulated to identify the different thermally
activated mechanisms that govern defect evolution. When clusters form during collision cascades, kMC simu-
lations show that additional recovery peaks should be expected, in comparison to recovery curves obtained
under electron irradiation conditions. Detailed kMC and RT simulations reveal that some of these recovery
peaks are due to correlated recombinations at low temperature between defects. In particular, we show that
under cascade-damage conditions it is possible to observe correlated recombinations between vacancies and
self-interstitial clusters. These correlated recombinations cannot be reproduced with a RT model, and therefore
kMC and RT differ at low temperature. However, for the conditions presented here, the contribution of
correlated recombination is very small and therefore no significant differences are observed at high tempera-
tures between these two models.
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I. INTRODUCTION

The displacement damage produced in metals by high-
energy particles such as electrons, protons, ions, or neutrons
can result in significantly different defect distributions. Typi-
cally, collisions with light particles such as electrons produce
Frenkel pairs,1 i.e., pairs of spatially separated self-
interstitials and vacancies. In contrast, particles such as
heavy ions or neutrons create collision cascades which yield
not only Frenkel pairs but also interstitial and vacancy
clusters,2,3 resulting in a heterogeneous defect distribution.
Depending on temperature, point defects produced during
irradiation can migrate and either recombine or agglomerate
to form larger defect clusters. These defects can alter the
microstructure and thus, the mechanical properties of the ma-
terial. Therefore, in view of providing models able to predict
the long-term performance of materials under irradiation,
and in particular metals, considerable effort is being devoted
to calculate the energetic properties of defects4,5 and to un-
derstand the physical mechanisms governing their nucleation
and growth.6–10

The evolution of defects upon irradiation and annealing is
by nature a multiscale phenomenon. Indeed, displacement
cascades take place in volumes and times of the order of nm3

and ps, respectively, whereas defects diffuse for hours or
even years over large distances. Therefore, the study of de-
fect evolution requires a multilevel analysis which spans
from atomistic to continuum approaches.11 Molecular dy-
namics �MD� is nowadays a widely used simulation tech-
nique for studying the formation of defects generated by
atomic collision cascades in materials.2,3 Given an inter-
atomic potential, the Newton equations of motion of each
atom are numerically solved. It is therefore a powerful tool
to investigate displacement cascades. However, at tempera-
tures at which defects produced in the cascade are mobile,
diffusion gives rise to interactions that extend over macro-
scopic length and time scales, which are computationally un-

accessible to MD simulations. A simulation tool able to
simulate the long-time evolution of displacement cascade is
thus necessary. During the past decade, kinetic Monte Carlo
�kMC� has become a common modeling technique to simu-
late the ensuing evolution of defects produced during
irradiation.6–8 kMC follows the evolution of an ensemble of
defects in time, given the type of atomistic processes those
defects can undergo and given the probability for each event
to occur. Therefore, it requires previous knowledge of de-
fects created during irradiation, their mobilities as well as
their energetic properties, i.e., binding energies of clusters.
One of the main advantages of this method is that it retains
the atomic nature of processes, and therefore, can treat diffi-
cult issues such as spatial correlations or inhomogeneities
induced by displacement cascades. However, in practice,
kMC simulations are limited to small volumes �up to 1 �m
cube, depending on the conditions� and become computa-
tionally expensive when the irradiation dose is high and/or
when time scales of the order of nuclear reactor lifetime
should be explored. This limitation can be circumvented by
using rate theory �RT� as an alternative. Within this approach
based on the mean-field approximation, the diffusion of de-
fects is modeled through a set of diffusion-reaction rate
equations, whereas the nucleation and/or growth of clusters
is described by the master equation. The small computational
resources required by RT approach make it attractive and
allow us to explore the evolution of defects over large time
scales and over large distances, close to those achieved ex-
perimentally. Different research teams12–17 have used this ap-
proach to study the nucleation and growth of defects in vari-
ous materials over the years. Recently, Rottler et al.18 used
the RT formalism to investigate point defect dynamics in
metals and showed that when defects are homogeneously
distributed, kMC and RT models are in near perfect agree-
ment. However, one of the basic assumptions in the mean-
field approximation is that defect production is uniform in
time and space at some appropriate value. Therefore, under
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continuous irradiation conditions, the RT approach does not
account for the stochastic effects caused by the random na-
ture of the cascade initiation. Indeed, point defects and clus-
ters are generated randomly in time and space during irradia-
tion. In a rigorous theoretical investigation, Semenov and
Woo19,20 showed that under typical cascade-damage condi-
tions, cascade-induced fluctuations play a much more impor-
tant role than fluctuations due to the random point defect
jumps. Hence, the conventional RT approach is not adequate
to describe the evolution of the microstruture under continu-
ous irradiation and must be reformulated beyond the mean-
field approximation and such that the probabilistic nature of
cascade initiation is taken into account, as it was done by
Semenov and Woo.20,21 Also, when complex mechanisms
have to be considered, results obtained by RT models can
deviate from those obtained by kMC. For instance, in a re-
cent work, Fu et al.9 successfully reproduced resistivity re-
covery experiments of electron-irradiated iron from Takaki
et al.1 using a kMC model with input parameters from ab
initio calculations. Using the same input parameters, Dalla
Torre et al.22 showed that due to the lack of spatial correla-
tions in the mean-field approach, the results from RT
strongly differ from those obtained by kMC. In particular,
the authors evidenced that RT is unable to predict stage ID2,
responsible for the recombination of correlated I-V Frenkel
pairs at T=107.5 K. On the other hand, the authors also
showed that RT models can achieve a quantitative agreement
with kMC results when the exact defect population after
stage IE, corresponding to the uncorrelated recombination of
I-V due to the free migration of I at T�140 K, is first cal-
culated by kMC and used as initial conditions in the RT
model. This multiscale approach ensures that correlated re-
combinations occurring at the beginning of annealing are
taken into account in the rate equations.

Under most irradiation conditions other than electron ir-
radiation, the localized damage areas produced result not
only in the formation of well separated Frenkel pairs but also
in the formation of clusters of vacancies and self-interstitials
just a few picoseconds after the initial collision. Conse-
quently, the spatial and size distributions of defects produced
during, e.g., ion irradiation are much more complex than
those generated by an electron irradiation. It is thus expected
that the ensuing evolution of defects follows a more complex
kinetics as well. Thus, under these conditions, it is not clear
how reliable RT models are as compared to kMC to study the
evolution of defects in irradiated materials. To further eluci-
date this question, in the present contribution, we propose to
study the evolution of defects produced in collision cascades
in iron during a subsequent isochronal annealing, using kMC
and RT approaches. In particular, the aim of the present in-
vestigation is to shed light on the role of initial intracascade
clustering and correlated recombinations in the evolution of
the cluster and point defect populations. In Secs. II and III,
kMC and RT formalisms are briefly described. The main
atomistic processes governing interaction between defects in
iron as well as the parameters used in the model are given in
Sec. IV. In Sec. V, we compare kMC and RT results for an
isochronal annealing of defects created by displacement cas-
cades produced by a 30 keV Fe irradiation in Fe. Simulation
results obtained with the kMC and RT models are then dis-
cussed in Sec. VI.

II. KINETIC MONTE CARLO MODEL

The name kinetic Monte Carlo is often used to describe
different types of algorithms that involve evolution in time. It
follows the evolution of a set of objects, given the type of
events those objects can perform and the probability for each
event to occur. The first simulations using this technique date
back to the middle 1960s to early 1970s,23,24 but it is in
recent years when it has been more commonly used in the
field of radiation effects. In the case of radiation in solids, the
objects of interest are the defects produced during irradia-
tion, that is, vacancies, self-interstitials, and their clusters. In
this model, defects are assumed to be pointlike, i.e., their
detailed atomic configuration is ignored. The events these
objects—defects here—can perform are diffusion jumps, dis-
sociation from a cluster, or interaction between different de-
fects. The probabilities of these events are given by their
migration and binding energies. For example, the probability
of a defect of type i undergoing a migration event is propor-
tional to the jump frequency given by

�m
i = �0

i exp�−
Em

i

kT
� , �1�

where �0
i is the attempt frequency, Em

i is the migration en-
ergy for that particular defect, k is Boltzmann’s constant, and
T is the absolute temperature. When a migration event is
selected, the object is moved a distance � �the jump dis-
tance�, which is often selected between the first and second
nearest neighbors. After a defect undergoes a jump, it can
spontaneously recombine or aggregate to another defect
whenever their mutual distance is smaller than a critical dis-
tance called the capture distance.

The probability of a defect of type i to dissociate from a
cluster is related to the dissociation frequency:

�d
i = �0

i exp�−
Em

i + Eb
i

kT
� , �2�

where Eb
i is the binding energy of the defect to the cluster. In

general, this energy depends on the size of the cluster.
To simulate the evolution of the system, the kMC algo-

rithm proceeds by selecting an event from all the possible
ones. First, the cumulative function Ri is defined as follows:

Ri = �
j=1

i

� jNj , �3�

for i=1, . . . ,N where N is the total number of transitions.
The probability of an event i is �i and the number of objects
that can undergo that event is Ni. Then, a random number
�� �0,1� is chosen and the event i to carry out is selected
such that Ri−1��RN�Ri, RN being the total rate for all
events. Once the event has been selected, an object is chosen
randomly between 0 and Ni from all those that can undergo
that event. The time of the simulation is then increased by �t
such that
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�t =
− log 	

RN
, �4�

where 	 is a random number between 0 and 1, that is used to
obtain a Poisson distribution of the time.

The initial conditions of the simulation are the �x ,y ,z�
coordinates of those defects produced by the irradiation as
well as their type. This information can be obtained, for ex-
ample, by MD simulations.

III. RATE THEORY FORMALISM

Alternatively, the atomistic processes described by the
kMC model can be described within a rate equation formal-
ism. In this framework, point defect and cluster kinetics are
assumed to follow the kinetic law of mass action derived by
Bronsted.25 As in the kMC model, reactions between point
defects and clusters are supposed to occur via binary reac-
tions of the type

A + B

kA+B
+

�
kC

−

C . �5�

The symbols kA+B
+ and kC

− stand for the capture and dissocia-
tion rate constants of the reaction, respectively. Assuming
that the reaction rates follow the kinetic law of mass action,
the generation-recombination �GR� rate corresponding to re-
action �5�, i.e., the net difference between the generation and
the loss rate, can be written as

GRA+B = kA+B
+ CACB − kC

−CC. �6�

Then, according to the mass conservation, it follows that the
time evolution of the mean concentration of, e.g., species B
is governed by the partial differential equation �PDE�:

�CB

�t
= − div JB

� − GRA+B = DB�CB − �kA+B
+ CACB − kC

−CC� ,

�7�

in which it was assumed that atoms B diffuse with a constant
diffusion coefficient DB. Equations for species A and C can
be derived following the same methodology. As we can see,
within this formalism, the time evolution of the system is
governed by a set of coupled nonlinear PDEs. However, the
kinetic law of mass action only gives the structure of kinetic
equations but does not give any information about the rate
constants, namely, kA+B

+ and kC
−. These constants, which de-

termine the velocity of forward and backward reactions,
must be obtained from kinetic theories. This point will be
addressed in the following sections.

A. Forward constant

A convenient way to obtain the rate constant in the for-
ward direction is the theory of diffusion-limited reactions.
First presented by von Smoluchowski26 in 1917 for the co-
agulation in colloidal solutions and derived later by Waite27

on a statistical basis, the forward rate constant of diffusion-

limited reactions A+B→C is determined mainly by the dif-
fusion of the reactants toward each other and is written as
follows:

kA+B
+ � 4
�rA + rB��DA + DB� , �8�

where DA and DB are the diffusion coefficients of the react-
ing species A and B, respectively. These diffusion coeffi-
cients are related to the jump frequencies used in kMC �see
Eq. �1�� as D=�m

i �2 /2d, where d is the dimension for diffu-
sion. Similar to the kMC approach, the reaction is assumed
to take place spontaneously when the reactants approach one
another to within a critical distance rAB=rA+rB. At this point,
it is important to note that the constant in the form �8� was
derived by Waite27 in the particular case of particles ran-
domly distributed with respect to one another, i.e., conditions
in which correlation effects do not play any role. Since it is
expected that under irradiation conditions defects might oc-
cupy closely correlated sites, Waite28 and later Peak and
Corbett29 discussed possible extensions to include spatial
correlation effects within the Waite formalism presented in
Ref. 27. However, solutions given in both attempts strongly
depend on the assumption that is made on the initial spatial
distribution of defects. Hence, in most cases the theory of
diffusion-limited reactions can only account for the regime
of uncorrelated recombinations, which rate constant is given
by Eq. �8�.

B. Backward constant

Having quantified the formation rate constant of reaction
�5�, we need to derive also the corresponding backward rate
constant, i.e., the frequency at which the inverse reaction C
→A+B occurs. To do so, we consider the fact that in steady
state, formation and dissociation rates must be equal, i.e.,
GRA+B=0. This leads to the well-known law of mass action:

kC
−

kA+B
+ = 	CACB

CC
	

eq
. �9�

Alternatively, this expression can be written in terms of the
energetics of defects, which enables us to express the disso-
ciation frequency kC

− as follows:

kC
− = kA+B

+ Ns exp�−
GA

f + GB
f − GC

f

kBT
� , �10�

where GA
f , GB

f , and GC
f are the Gibbs free formation energies

of species A, B, and C, respectively. These energies are re-
lated to the binding energy Eb

i used in kMC simulations by
Eb

i =GA
f +GB

f −GC
f . Ns is the number of available sites, which

is assumed to be the same for all defects considered here.

IV. POINT DEFECT AND CLUSTER KINETICS
IN IRRADIATED Fe

In order to illuminate the role of intracascade clustering
and correlated recombinations in the evolution of defects in
irradiated materials, we selected to study the case of cascade
damage in iron. In this section, we provide the various ato-
mistic processes describing the kinetics of point defects and
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clusters in iron. The mobile species considered in this model
are single vacancies, single self-interstitials, and di-
interstitials. The experimental observations of Takaki et al.1

and recent theoretical calculations of Fu et al.5 have shown
that mobile di-interstitial clusters must be considered to re-
produce some of the features observed in irradiated Fe. For
simplicity, larger self-interstitial and vacancy clusters are
considered immobile in this model. Based on these assump-
tions, the reactions that govern the evolution of point defects
and clusters are the following.

�1� Recombination between self-interstitials and vacan-
cies:

I + V � 0, �11�

where I denotes self-interstitials and V vacancies. This reac-
tion is characterized by the forward constant kI+V

+ .
�2� Formation of vacancy clusters:

Vn + V � Vn+1, �12�

where Vn and Vn+1 stand for vacancy clusters comprising n
and n+1 vacancies, respectively. The aggregation of vacan-
cies to clusters of n vacancies and dissolution of Vn+1 clus-
ters occur with rates �n

+ and �n+1
− , respectively.

�3� Formation of self-interstitial clusters:

In + I � In+1, �13�

in which In and In+1 denote clusters containing n and n+1
self-interstitials, respectively. Formation and dissociation of
In+1 clusters occur with rates �n

+ and �n+1
− , respectively.

�4� Formation of self-interstitial clusters by agglomeration
of di-interstitials:

In + I2 � In+2. �14�

According to this reaction, interstitial clusters can also form
by agglomeration of mobile di-interstitials. The correspond-
ing formation and dissociation rates are n

+ and n+2
− , respec-

tively.
�5� Recombination of vacancies with self-interstitial clus-

ters:

In + V → In−1. �15�

The loss rate of vacancies by recombination with In clusters
is kIn+V

+ . Since this reaction is considered to be irreversible
due to its high binding energy, the reverse reaction rate does
not need to be defined here.

Recombination of self-interstitials with vacancy clusters:

Vn + I → Vn−1, �16�

which occurs with rate kVn+I
+ . The emission of a self-

interstitial from a vacancy cluster is neglected because of the
high binding energy involved in the reaction.

At this point, we want to stress that the purpose of this
work is not to develop a physical model able to predict in
detail the kinetics of defects in irradiated iron but to under-
line the role of intracascade clustering in the evolution of
defects in materials under collision cascade conditions.
Therefore, the assumptions made above are sufficient to cap-
ture the main characteristics of defect evolution in irradiated

iron. In particular, we shall see that even though migration of
large clusters is not taken into consideration, the inclusion of
intracascade clustering leads to surprisingly different features
of the defect-population evolution, in comparison to electron
irradiation conditions.

A. Rate equations

Following the formalism introduced in Sec. III and ac-
cording to the model depicted above, we shall now derive the
continuity equations that govern the kinetics of point defects
and clusters in irradiated iron. Taking into account the differ-
ent reactions involving self-interstitials, the mean concentra-
tion of I evolves according to the following PDE:

�CI

�t
= DI�CI − GRI+V − GRIn+I + GRI2+V − GRVn+I.

�17�

The first term on the right-hand side �RHS� of the equation
above is the Fickian term accounting for diffusion of self-
interstitials. The next term, GRI+V, results from the mutual
annihilation of self-interstitials and vacancies in the bulk cor-
responding to reaction �11�. Agglomeration of self-
interstitials into interstitial clusters is described by the term
GRIn+I �Eq. �13��. The term GRI2+V accounts for the genera-
tion of self-interstitials by recombination of di-interstitials
with vacancies, which is a particular case of reaction �15�.
Finally, the last term takes into account the annihilation of
interstitials at vacancy clusters, corresponding to reaction
�16�. Now, let us specify each of the GR terms present in Eq.
�17�. As it can be easily demonstrated, the recombination rate
of I and V can be obtained from steady-state considerations
and can be expressed in terms of the capture constant kI+V

+

and the equilibrium concentrations of point defects so that
GRI+V can be written in the well-known form

GRI+V = kI+V
+ �CICV − CI

eqCV
eq� , �18�

where CI
eq and CV

eq are the concentrations of self-interstitials
and vacancies at thermodynamical equilibrium, respectively.
To determine the generation-recombination term GRIn+I, we
must consider all possible reactions between self-interstitials
and In clusters of all sizes. This leads to the following ex-
pression for GRIn+I:

GRIn+I = 2��1
+CI

2 − �2
−CI2

� + �
n�2

��n
+CIn

CI − �n+1
− CIn+1

� .

�19�

The factor 2 in front of the first term in the equation above
comes from the fact that the formation or the dissociation of
a di-interstitial removes or releases two self-interstitials, re-
spectively. The generation rate of interstitials resulting from
the reaction of di-interstitials with vacancies is simply given
by

GRI2+V = kI2+V
+ CI2

CV. �20�

Finally, the annihilation rate of interstitials at vacancy clus-
ters is given by the following sum:

C. J. ORTIZ AND M. J. CATURLA PHYSICAL REVIEW B 75, 184101 �2007�

184101-4



GRVn+I = �
n�2

kVn+I
+ CVn

CI. �21�

In order to derive the continuity equation for vacancies,
one proceeds in a similar way and easily gets

�CV

�t
= DV�CV − GRI+V − GRVn+V − GRIn+V + GRV2+I.

�22�

The term GRI+V, previously calculated for the bulk recombi-
nation of self-interstitials, is given by Eq. �18�. The next term
corresponds to the formation-dissociation of Vn clusters of all
sizes and is given by an expression similar to Eq. �19�. The
next GR term of Eq. �22� accounts for the loss of vacancies
by recombination with interstitial clusters. The last term ap-
pearing on the RHS of Eq. �22� accounts for the formation of
a vacancy when a divacancy recombines with a self-
interstitial. As for the case of self-interstitials, the expression
of these GR terms can be derived in a straightforward way
and will not be given here. Following the same procedure,
one can derive the diffusion-reaction equation governing the
concentration of mobile di-interstitials:

�CI2

�t
= DI2

�CI2
− GRIn+I2

− GRI2+V + GRI+I. �23�

The first GR term on the RHS of Eq. �23� accounts for the
agglomeration of di-interstitials. GRI2+V term accounts for
the annihilation of di-interstitials with vacancies. The last
term accounts for the formation and dissociation of I2 clus-
ters.

Now that the continuity equations for mobile defects have
been derived, we must obtain the equations governing the
evolution of immobile In and Vn clusters. According to reac-
tions �13�–�15�, the concentration of interstitial clusters
In—with a discrete number of atoms n—evolves according
to

�CIn

�t
= �n−1

+ CICIn−1
− �n

−CIn
− �n

+CICIn
+ �n+1

− CIn+1

+ n−2
+ CI2

CIn−2
− n

−CIn
− n

+CI2
CIn

+ n+2
− CIn+2

− kIn+V
+ CVCIn

+ kIn+1+V
+ CVCIn+1

. �24�

Similarly, a master equation can be derived for vacancy
clusters containing n vacancies:

�CVn

�t
= �n−1

+ CVCVn−1
− �n

−CVn
− �n

+CVCVn
+ �n+1

− CVn+1

− kVn+I
+ CICVn

+ kVn+1+I
+ CICVn+1

. �25�

Rate constants of reactions �11�–�16� were calculated us-
ing expressions �8� and �10� and the same parameters that
were used in the kMC model to calculate event probabilities.
These parameters are given in the following sections.

B. Energetic properties of defects in Fe

Equations �1� and �2�, defining the probabilities of migra-
tion and dissociation in the kMC model, and Eqs. �8�–�10�,

describing the forward and backward rates of reaction in the
RT model, show that the defect-population evolution is de-
termined by the energetic properties of defects. In this work,
we used the migration and binding energies of defects calcu-
lated by Fu et al.5,9 in the framework of the density-
functional theory. For the formation energies of the mono-
interstitial and monovacancy, the authors found 3.77 and
2.07 eV, respectively. Table I summarizes the binding ener-
gies obtained by Fu et al.9 for small interstitial and vacancy
clusters. For larger clusters, an extrapolation law was used to
calculate their binding energies, as it is done in other
works.9,10,30 According to ab initio calculations from Ref. 5,
migration energies of 0.34, 0.67, and 0.42 eV were used for
the monointerstitial, monovacancy, and di-interstitial clus-
ters, respectively.

C. Capture radii of defects

As we have seen in Secs. II and III, in the kMC and RT
models it is assumed that a reaction between two defects
takes place spontaneously if the defects are located within a
critical distance which is the sum of their capture radii. This
parameter thus defines the distance at which defects interact
with each other. In this work, the interaction volume of a
defect is approximated by a sphere of radius r, in the kMC as
well as in the RT model. This is certainly a simplistic ap-
proach from the atomic-level point of view. However, this
assumption is widely accepted and used in other kMC and
RT models.7,8,22,30 As it is observed experimentally, in our
model, interstitial-type defects develop a larger strain field
than vacancy-type defects. This is achieved by introducing a
bias factor Z=1.15 in the capture radii of interstitial defects.
This value is deduced from experimental results and corre-
sponds to a fairly common choice.7,8,30 The capture radii
used in this work account then for the volume occupied by
the defect and the interaction range corresponding to the
strain field and are given by

rVn
= �3n�

4

�1/3

+ r0, �26�

rIn
= Z
�3n�

4

�1/3

+ r0� , �27�

where rVn
is the capture radius of a vacancy cluster contain-

ing n vacancies and rIn
is the capture radius of an interstitial

cluster comprising n interstitials. � is the atomic volume and
Z the bias factor for interstitial defects. In Eqs. �26� and �27�,
r0=3.3 Å, which was calculated such that the I-V recombi-

TABLE I. Binding energies of small interstitial and vacancy
clusters in Fe according to Ref. 9.

In �eV� Vn �eV�

n=2 0.80 0.30

n=3 0.92 0.37

n=4 1.64 0.62
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nation distance is 3.3 lattice parameters, in agreement with
experimental results31 and simulation works.10,32 The same
approach was used in other works.9

V. EVOLUTION OF DEFECTS IN ION-IRRADIATED Fe:
COMPARISON BETWEEN KMC AND RT

In the present work, we have selected as an example of
damage evolution the case of isochronal annealing of defects
created by a 30 keV Fe irradiation in Fe. As in the recovery
experiment on electron-irradiated Fe, the temperature is
raised from 77 up to 800 K with isochronal steps of �t
=300 s and temperature intervals such that �T /T=0.03. The
defects produced by the 30 keV Fe irradiation were calcu-
lated by means of MD simulations. The interatomic potential
developed by Ackland et al.33 was used to reproduce the
interaction between atoms in the Fe lattice. Although new
potentials developed recently34,35 better reproduce Fe prop-
erties, the choice of the potential is secondary here since the
aim is to compare the evolution obtained by two different
methods starting from the same initial damage distribution.
Moreover, calculations performed using results obtained with
the interatomic potential developed by Dudarev and Derlet35

of 30 keV cascades in Fe do not show significant differences
with those presented here. The average number of Frenkel
pairs produced during the irradiation was obtained on the
basis of ten cascade simulations. The Frenkel pairs were
identified using the Wigner-Seitz cell method. Following this
procedure, we found that on average, 75 stable Frenkel pairs
are produced per cascade, which corresponds approximately
to a 20% efficiency compared to the Norgett-Robinson-
Torrens formula, and in agreement with previous
calculations.32 Considering the capture radii given in Sec. IV,
point defects were then grouped into interstitial and vacancy
clusters. As a result, the final number of Frenkel pairs pro-
duced in a 30 keV Fe cascade after recombination and clus-
tering was found to be 22. In Fig. 1, we reported the pre-
dicted size distribution for interstitial and vacancy clusters
resulting from the 30 keV Fe irradiation in Fe. As one can

see, after irradiation most of the point defects generated by
the collision cascade are agglomerated into clusters. In par-
ticular, MD simulations show that about 50% of the vacancy
clusters that are created during irradiation contain less than
seven vacancies.

To simulate the evolution of these defects with the kMC
model during the isochronal annealing defined above, the
position and size of each defect obtained by MD simulations
were retained and used as initial conditions. The kMC code
BIGMAC �Ref. 36� was used for the calculations presented
here.

First, we examine the evolution of the damage created by
an ion irradiation for a total dose of 10−6 dpa �dpa denotes
displacements per atom�. This corresponds approximately to
a I-V pair concentration of 1017 cm−3. In Fig. 2, we reported
as a function of temperature the evolution of the total num-
ber of point defects predicted by kMC calculations, without
discriminating between free point defects and those in clus-
ters. For comparison, and in order to clearly evidence the
effect of intracascade clustering, we also reported kMC re-
sults obtained for an electron irradiation, i.e., when only iso-
lated Frenkel pairs are produced. As expected, the results
obtained with the two initial conditions strongly differ, quali-
tatively as well as quantitatively. When only Frenkel pairs
are considered, the kMC model predicts that defects highly
recombine at low temperature. This is expected since point
defects are free to migrate, which favors the rate encounter
of reaction. This result is in agreement with kMC calcula-
tions performed by Fu et al.9 In contrast, in the case of the
30 keV Fe irradiation, the total number of defects slowly
decreases with temperature up to T�500 K. This is expected
since most point defects are immobilized into clusters after
irradiation, as shown in Fig. 1. Therefore, at low tempera-
ture, only a small amount of point defects can migrate and
recombine, resulting in a small decrease in the defect popu-
lation. At higher temperatures, defect population decays rap-
idly, indicating that clusters dissolve, releasing point defects,
which in turn, diffuse and annihilate.

The derivative of the total number of defects with tem-
perature for these two cases is shown in Fig. 3. These curves
evidence the different recombination mechanisms that take
place during isochronal annealing. Clearly, the two initial

FIG. 1. Size distribution of interstitial and vacancy clusters
formed by intracascade clustering for a 30 keV Fe irradiation in Fe.

FIG. 2. Evolution of the total number of defects during isochro-
nal annealing obtained by kMC calculations for electron ��� and
30 keV Fe ��� irradiations for a dose of 10−6 dpa.
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conditions lead to very different recovery curves. In the case
where only Frenkel pairs are created, our kMC model pre-
dicts the same recovery stages reported by Takaki et al.1 and
Fu et al.9 for electron-irradiated Fe. These peaks are the so-
called stages ID2, IE, II, and III, related to the recombination
of correlated I-V pairs by free migration of the interstitial,
the recombination of I and V belonging to different Frenkel
pairs by migration of I, and the migration of di-interstitials
and vacancies, respectively. These results thus provide a vali-
dation of our model. On the other hand, when intracascade
clustering occurs during irradiation, the recovery curve ex-
hibits a more complex structure. kMC calculations show that
stages ID2 and IE are still present in the recovery curves,
though their intensity is significantly lower than in the case
of electron irradiation, as can be seen in Fig. 3. This is due to
the fact that most interstitials and vacancies are immobilized
into clusters after the 30 keV Fe irradiation �see Fig. 1�.
Therefore, correlated and uncorrelated I-V recombinations
are less effective when irradiation generates intracascade
clustering than in electron irradiation conditions. This is in
agreement with experimental results of Matsui et al.37 who
observed that the fractional recovery of stage I is much
smaller in the case of neutron irradiation compared to elec-
tron irradiation. Stage II can also be seen in the recovery
curve obtained with intracascade clustering, however, shifted
toward lower temperatures and even merging with that of
stage IE. This shift is due to a dose effect. Indeed, Fig. 1
shows that a large amount of di-interstitials is formed during
the cascade, in comparison to electron irradiation. In addition
to the stages expected under electron irradiation, the kMC
model predicts the presence of three new recovery peaks,
centered at T=231 and 400 K and one broadening from
450 to 700 K. Clearly, these new peaks are related to the
initial formation of clusters in the cascade. For convenience
and in order to be consistent with the nomenclature used by
Takaki et al.,1 in the following we will refer to these recov-
ery peaks as IIIA, IVA, and IVB, respectively. Their origin
will be discussed in the next section. Thus, Figs. 2 and 3
clearly evidence that irradiation conditions strongly influence
the subsequent kinetics of defects. Therefore, to simulate the
evolution of damage caused by displacement cascades, it is
crucial to take into account the initial size distribution of
clusters formed during irradiation.

At this point, we want to emphasize that the defect recov-
ery curves obtained here depend on the assumptions made in
the kinetic model used to predict defect evolution. Indeed, in
this study we assumed that vacancy and In�3 clusters are not
mobile and neglected the presence of trapping impurities
such as carbon. However, it is important to note that addi-
tional kMC simulations �not shown here� taking into account
the mobility of V2, V3, and V4 clusters showed very similar
results to those obtained here, i.e., assuming that vacancy
clusters are immobile. Thus, the assumption made on the
mobility of vacancy clusters does not change the conclusions
drawn in the present work.

Next, RT calculations are compared to kMC results for
cascade-damage conditions. Since in the RT approach only
the mean concentration of defects can be followed, RT cal-
culations were performed using as initial conditions the de-
tailed concentrations of I, V, In, and Vn clusters produced in
the cascade. These initial concentrations were obtained from
MD results by dividing—for each defect type and size—the
number of defects by the volume of the simulation box. It is
important to note that this averaging implicitly wipes out the
existing spatial correlations between defects and implies that
clusters are considered to be homogeneously distributed in
space in the RT model. Rate equations �17�–�25� were solved
using the partial differential equation solver PROMIS 1.5.38 In
Fig. 4, the evolution of the total number of defects predicted
by kMC and RT is reported for an irradiation dose of
10−6 dpa. The differences between the two models are very
small and it seems that the evolution of the defect population
can be reproduced by the RT model.

The corresponding recovery curves obtained from the de-
rivative with temperature and presented in Fig. 5 reveal that,
in fact, there are some significant differences between RT
and kMC calculations. As expected, the RT model does not
predict stage ID2 resulting from correlated recombinations
between interstitials and vacancies around T=115 K. Stages
IE and II corresponding to the migration of I and I2 are pre-
dicted by the RT model, although their position is slightly
shifted toward higher temperatures. This is again due to a
dose effect. The recovery peak predicted by the kMC model
at T=231 K �IIIA� is also not accounted for by the RT model.
However, interestingly, the amplitudes and positions of all

FIG. 3. Recovery stages predicted by kMC for electron ��� and
30 keV Fe ��� irradiations for a dose of 10−6 dpa. FIG. 4. Evolution of the total number of defects during isochro-

nal annealing predicted by kMC ��� and RT ��� models for a
30 keV Fe irradiation for a dose of 10−6 dpa.
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subsequent peaks predicted by the kMC are well reproduced
by the RT model. It seems, under these conditions, that the
contribution of spatially correlated recombinations is small,
and therefore the lack of correlations in RT does not signifi-
cantly affect the results obtained at high temperatures.

In Fig. 6, the recovery curves obtained by the kMC and
RT models are presented for a higher dose, 10−4 dpa. As in
the lower-dose case, there are discrepancies at low tempera-
ture between RT and kMC due to the lack of spatial correla-
tions, but there is good agreement at high temperature be-
tween the two models that seems to improve with increasing
dose. The intensities and positions of the peaks for tempera-
tures higher than 300 K are very well reproduced by the RT
model. Notice that for this dose, the RT model predicts a
peak at T=264 K. The origin of this peak will be discussed
in the next section. It is interesting to point out that, unlike in
the case of electron irradiation, the increase in dose does not
shift the position of the different peaks with temperature. In
particular, we can see that stage IE does not change with
dose, in agreement with neutron irradiation experiments car-
ried out by Matsui et al.37

In addition, in Fig. 7 we report the evolution of the In and
Vn cluster mean size calculated by both methods, for a dose
of 10−4 dpa. In comparison to reference kMC simulations,
RT model reproduces well the growth of interstitial and va-
cancy clusters in the whole temperature range.

VI. DISCUSSION

As we have seen in the previous section, when irradiation
yields intracascade clustering, the defect recovery curve ex-
hibits a more complex structure than in electron irradiation
conditions, where only Frenkel pairs are produced. This in-
dicates that additional recombination mechanisms govern the
evolution of defects. Thus, according to the model described
in Sec. IV, kMC calculations show that in addition to stages
ID2, IE, II, and III observed under electron irradiation, three
new recovery peaks can be expected for a 30 keV Fe irradia-
tion in Fe. Clearly, these peaks �IIIA, IVA, and IVB� are re-
lated to the intracascade clustering that occurs during ion
irradiation. In this section, we shall discuss the recombina-
tion mechanisms responsible for these recovery peaks.

A. Peak IIIA

The first recovery peak associated with intracascade clus-
tering is centered at T=231 K, according to kMC results
shown in Fig. 6. To determine the recombination mechanism
responsible for this peak, in Fig. 8 we reported the evolution
of different defect populations obtained with the kMC model
for an irradiation dose of 10−4 dpa. As one can see, peak IIIA

FIG. 5. Recovery stages predicted by kMC ��� and RT ���
models for a 30 keV Fe irradiation for a dose of 10−6 dpa.

FIG. 6. Recovery stages predicted by kMC ��� and RT ���
models for a 30 keV Fe irradiation for a dose of 10−4 dpa.

FIG. 7. Evolution of In and Vn cluster mean size during isochro-
nal annealing for a dose of 10−4 dpa according to kMC �open sym-
bols� and RT �full symbols� models.

FIG. 8. Evolution of different vacancy �open symbols� and in-
terstitial �full symbols� populations during isochronal annealing ob-
tained by kMC calculations for an irradiation dose of 10−4 dpa.
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appears when the population of mobile vacancies drops.
Since all I and I2 have already recombined at this tempera-
ture, as shown in Fig. 8, this seems to indicate that peak IIIA
is due to the annihilation of migrating vacancies with immo-
bile interstitial clusters In�3. However, this peak is not ob-
served in the recovery curve calculated by the RT model.
Instead, a peak at T=264 K is seen in the RT calculations,
i.e., at a higher temperature.

This strongly suggests that the recovery peak IIIA pre-
dicted by kMC calculations results from recombinations of
close correlated V-In�3 arrangements that form during the
collision cascade. To confirm this hypothesis, kMC simula-
tions were performed with, as initial conditions, the defects
created during irradiation homogeneously and randomly dis-
tributed in space, i.e., without spatial correlations. Results
are shown in Fig. 9 and compared to RT simulations. We can
see that in that case, kMC and RT results almost overlap, as
it was observed by Rottler et al.18 in similar conditions. Now,
both kMC and RT models show a peak at T=264 K with the
same intensity and none of them show peak at 231 K. Thus,
peak IIIA seen at T=231 K in the kMC calculations is due to
the recombination of correlated V-In�3 arrangements that
form in the cascade during irradiation, whereas the one ob-
served at T=264 K in the RT model is due to uncorrelated
recombinations between V and In�3. In this last case, i.e.,
when defects are not correlated, the peak appears at a higher
temperature since vacancies must migrate over a larger mean
distance to find an interstitial cluster.

B. Peak IVA

Next, recovery peak �IVA� related to the intracascade clus-
tering is predicted by our model to appear at T=400 K, ac-
cording to Figs. 5 and 6. Figure 8 shows that peak IVA cor-
responds to the fast decay of I3 and V4 cluster populations.
The fact that these clusters have similar dissociation
energies—1.26 eV for I3 against 1.29 eV for V4—as can be
seen in Fig. 10, implies that they must dissociate at similar
rates. This strongly suggests that the recovery peak IVA re-
sults from a double annihilation mechanism. In this scenario,
I3 clusters dissociate through the reaction I3→ I2+ I, which
then may annihilate with vacancy clusters. At the same tem-

perature, V4 clusters dissociate following V4→V3+V. The
vacancies released in this reaction may then recombine with
interstitial-type defects, while in turn, V3 clusters, which are
less stable than V4, dissociate through V3→V2+V. Again, the
vacancies released in this reaction may react with interstitial
clusters. Finally, divacancy clusters which are unstable at this
temperature, release two vacancies that recombine with In
clusters.

C. Peak IVB

Figure 3 shows that last recovery peak related to intra-
cascade clustering and predicted by the kinetic model pre-
sented in Sec. IV spreads from 450 to 700 K �peak IVB�.
This stage was observed by Takaki et al.1 in this temperature
range only at high electron irradiation doses and is often
called stage IV. The authors attributed this stage to the dis-
solution of large clusters. In the case of intracascade cluster-
ing, our simulations also support this view and enable us to
identify the atomistic mechanisms responsible for this recov-
ery stage. Figure 7, in which the mean size evolution of
clusters is reported, reveals that In and Vn clusters formed in
the cascade grow in size in the 77–700 K temperature inter-
val. In particular, we can see that the mean size of vacancy
clusters is significantly larger than that of interstitial ones,
since self-interstitial clusters are considered immobile in
these calculations and vacancy clusters are less stable than
self-interstitial clusters. Thus, the recovery peak IVB is asso-
ciated with the dissolution of large clusters. From Fig. 10, it
is interesting to note that small interstitial clusters have simi-
lar dissociation energies compared to large vacancy voids.
This means that at a given temperature, these two type of
defects must release point defects at a similar rate. Therefore,
we propose that recovery peak IVB spreading from
450 to 700 K is due to the simultaneous dissociation of
small interstitial and large vacancy clusters. In this double
recombination mechanism, large Vn clusters release free va-
cancies through Vn→Vn−1+V, which then annihilate with in-
terstitial clusters following reaction �15�. At the same time,
interstitials dissociate from small In clusters through In
→ In−1+ I and recombine with large vacancy clusters accord-

FIG. 9. Comparison between recovery curves for an irradiation
dose of 10−4 dpa obtained with the kMC model assuming all clus-
ters are homogeneously distributed ��� and the RT ��� model.

FIG. 10. Dissociation energies of In and Vn clusters in Fe. The
dissociation energy is defined as the sum of the binding energy and
the migration energy of the point defect released.
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ing to reaction �16�. These dissociation-recombination reac-
tions continue until all clusters have dissolved.

D. Influence of initial defect size distributions
on damage evolution

In this section, we study in more detail the role of each
defect distribution �In and Vn� created during irradiation on
damage evolution. To do so, RT simulations were performed
with various initial conditions. �i� Only vacancy clusters
form during cascade collisions. All interstitial defects are
considered to be single self-interstitials free to diffuse. �ii�
Only interstitial clusters are created during irradiation. Va-
cancies remain as isolated defects. �iii� All the clusters are
taken into account in the initial conditions. Figure 11 shows
the evolution of the defect population obtained for each ini-
tial condition for an irradiation dose of 10−4 dpa. When ini-
tial conditions �i� are considered, results obtained are similar
to those obtained with the full cascade information, as shown
in Fig. 11. In contrast, when initial conditions �ii� are used,
the model highly underestimates the defect population. This
discrepancy can be explained by the difference in migration
energies of I and V. Indeed, self-interstitials diffuse much
faster than vacancies, with a migration energy of 0.34 eV
against 0.67 eV, respectively. Hence, after irradiation, self-
interstitials may agglomerate into In clusters at low tempera-
ture, which does not affect the subsequent evolution of de-
fects. This situation corresponds to initial conditions �i�. On
the other hand, when all vacancies are assumed to be free to
migrate after irradiation, they may recombine with highly
mobile self-interstitials, di-interstitials, and interstitials re-
leased from In clusters before they agglomerate into Vn clus-
ters. These recombinations strongly affect defect popula-
tions. Thus, to properly predict damage evolution after
cascade damage, it is crucial to properly determine the initial
vacancy cluster size distribution created during irradiation.
On the other hand, the initial size distribution of interstitial
defects seems to play a minor role on the damage evolution.
All self-interstitials created during irradiation can be consid-
ered as mobile since they agglomerate in the very early
stages of annealing.

VII. CONCLUSIONS

Thermal evolution of damage produced in Fe by 30 keV
recoils was studied using two simulation approaches, kinetic
monte carlo and rate theory. kMC simulations showed that
when clusters form during irradiation, the evolution of de-
fects strongly differs from that obtained under electron irra-
diation conditions, where only Frenkel pairs are produced.
Within the kinetic model used in this work, simulated defect
recovery curves show that additional recombination peaks
should be expected in the presence of intracascade cluster-
ing. Detailed kMC and RT simulations showed that some of
these recovery peaks are related to correlated recombinations
between defects. In particular, we show that when there is a
heterogeneous distribution of defects, it is possible to ob-
serve correlated recombinations between vacancies and self-
interstitial clusters. These correlated recombinations cannot
be reproduced with a RT model, and therefore kMC and RT
differ at low temperature. However, for the conditions pre-
sented here, the contribution of correlated recombinations is
very small and therefore no significant differences are ob-
served at high temperature between RT and kMC calcula-
tions. Since RT models require small computational re-
sources, they represent thus an attractive alternative to kMC
approach to predict defect evolution under these conditions.

The peaks obtained by these models at two different doses
have been analyzed in detail. In particular, simulation results
revealed that the first peak, seen at T=231 K �IIIA�, is due to
correlated recombinations of V-In�3 arrangements formed
during irradiation. The next recovery peak, predicted at T
=400 K �IVA�, was found to result from the simultaneous
dissociation of I3 and V4 clusters that have similar dissocia-
tion energies. Similarly, the concomitant dissolution of small
In and large Vn clusters was found to be responsible for the
recovery peak IVB, spreading from 400 to 750 K. Additional
RT simulations showed that the initial size distribution of
vacancy clusters created during irradiation in Fe plays a cru-
cial role in the prediction of the subsequent defect evolution.
On the other hand, we found that the evolution of defects in
Fe after ion irradiation is not affected if the initial formation
of interstitial clusters in the cascade is neglected. Simulations
show that all self-interstitials formed by collision cascades
can be considered as free to migrate. This was explained by
the fact that self-interstitials diffuse at low temperature and
agglomerate into In clusters at the very beginning of anneal-
ing.

Further work will include the effect of damage accumula-
tion under continuum irradiation and the effect of spatial
correlations as well as dose rate and temperature.
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