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We investigate a supersolid state in hardcore boson models on the face-centered-cubic �fcc� lattice. The
supersolid state is characterized by a coexistence of crystalline order and superfluidity. Using a quantum Monte
Carlo method based on the directed-loop algorithm, we calculate static structure factors and superfluid density
at finite temperature, from which we obtain the phase diagram. The supersolid phase exists at intermediate
fillings between a three-quarter-filled solid phase and a half-filled solid phase. We also discuss the mechanism
of the supersolid state on the fcc lattice.
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Whether a supersolid state, where both solidity and super-
fluidity coexist, realizes in 4He or not, has been discussed
theoretically.1–5 Recently, characteristic behavior of superflu-
idity has been reported in torsional oscillator experiments on
the solid 4He by Kim and Chan �KC�,6 while a number of
experiments failed to detect the superfluidity in the solid
4He. In their measurements, a sudden drop in the resonant
period was observed around T�0.2 K. The drop implies
emergence of nonclassical rotational inertia in the solid 4He.
They concluded that this was a signature of a transition into
the supersolid phase. However, some experimental and the-
oretical studies suggested different interpretations of KC’s
observation. For instance, the signal of the superfluidity in
the solid 4He became weaker as annealing cycles were
repeated7 and the superflow was blocked by the solid 4He
with no grain boundaries.8 Theoretically, the possibility of
the superflow induced by vacancies in the commensurate
solid 4He, in which the total number of atoms equals a mul-
tiple of the number of lattice sites, was ruled out,9,10 and the
superglass behavior appeared in a quenched system.11 Al-
though several mechanisms of the superflow in the solid 4He
have been proposed, the satisfactory interpretation of KC’s
results is still controversial.

The bosonic lattice model was introduced as a reasonable
model of liquid 4He.12 Recently, the possibility of the super-
solid on the lattice model in triangular lattice13–16 and
kagome lattice17 cases was studied by quantum Monte Carlo
simulations. From these studies it became clear that the frus-
trated interactions on the triangular lattice stabilize the super-
current induced by vacancies in the crystalline ordering with
the wave vector Q= �4� /3 ,0� or �2� /3 ,0�. In contrast, the
supersolid is not stabilized on the kagome lattice where the
frustrated interactions exist. In the three-dimensional lattice
cases, the phase diagrams of the system on the body-
centered-cubic �bcc� lattice was obtained by a mean-field ap-
proximation and concluded that the supersolid state appears
if the next-nearest-neighbor interactions are present.4,5 How-
ever, the reason for the stabilization of the supersolid state on
the bcc lattice and the microscopic picture was not cleared
from the mean-field results. �Note that the bcc lattice is bi-
partite and has no frustration if one does not take into ac-
count the next-nearest-neighbor interactions.�

Theoretical study beyond the mean-field theory for three-
dimensional systems is still missing. In this Rapid Commu-

nication, the supersolid state in a three-dimensional bosonic-
lattice model is studied by a quantum Monte Carlo method
based on the directed loop algorithm.18,19 We wish to address
the generic question what ingredient is necessary to realize
the supersolidity. From the study of the two-dimensional
case mentioned above, it is presumable that the geometrical
frustration plays an essential role in the supersolidity in the
bosonic lattice model. We therefore focus on a hardcore-
bosonic model on the face-centered-cubic �fcc� lattice, which
does not have a direct connection to the lattice structure of
the real solid helium because the fcc lattice is one of the
simplest lattices with geometric frustration.

More specifically, we consider the bosonic lattice model
with the positive hopping amplitude t�0 and the nearest-
neighbor repulsion V�0 on the fcc lattice. The model
Hamiltonian is defined by

H = − t�
�ij�

�bi
†bj + H.c.� + V�

�ij�
n̂in̂j − ��

i

n̂i, �1�

where � is the chemical potential, bi
†�bi� is the bosonic cre-

ation �annihilation� operator, and n̂i=bi
†bi. The summation

�ij� is over the nearest-neighbor pairs and the system size is
defined by N=L3. The periodic boundary condition is ap-
plied. Under the hardcore condition, the original bosonic-
lattice model is identically mapped onto the S=1/2 XXZ
model,

H = − J��
�ij�

�Si
xSj

x + Si
ySj

y� − Jz�
�ij�

Si
zSj

z − H�
i

Si
z, �2�

where J�=2t, Jz=−V, and H=�−6V. Note that J� and
Jz� ��� 0 mean the antiferromagnetic �ferromagnetic� inter-
actions. In the spin language, the supersolidity is character-
ized by the following two properties: sublattice-dependent
expectation values of the longitudinal spin components �bro-
ken translational symmetry, or crystallization� and nonvan-
ishing transverse spin components �off-diagonal long range
order, or superfluidity�.

In the limit J� / �Jz�→0 �Ising model�, the ordered states
were investigated and the H-T phase diagram was
obtained.20–22 At the magnetization m= ��iSi

z /N�=0 and 1/4,
there appear two solid phases conventionally referred to as
AB and A3B. Representative spin configurations of the two
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phases are shown in Fig. 1. The phase transition from the AB
phase to the A3B phase occurs at HIsing=2�Jz� at absolute zero
temperature.

In order to investigate the crystalline order and the off-
diagonal long-range order for J��0, we calculate the static
structure factor �SSF� S�Q� and the superfluid density �s,

23

defined by

S�Q� = �	�
i

exp
iQ · ri�Si
z	2� �3�

and

�s =
kBT�W2�

3J�L
, �4�

where W= �Wx ,Wy ,Wz� denotes the winding number of the
world-lines. In what follows, we express the wave vector Q
by the conventional choice of the unit reciprocal vectors.

When the system is in the AB or A3B ordered state, the
SSF is proportional to N and strong system-size dependence
is expected at Qsol= �� ,� ,0�, �� ,0 ,��, and �0,� ,��. For
other Q’s, the SSF should be system-size independent. It was
reported for the classical case �J�=0�22,24 that a perfect solid
state, either AB or A3B, can hardly be observed in a system
of computationally accessible size due to antiphase domain
boundaries �APBs�. While the states with domain boundaries
have negligible weight in the thermodynamic limit, they
have non-negligible contributions for small systems because
the domain-wall free-energy is small due to the frustrated
nature of the interactions. The APBs reduce S�Qsol� since
contributions from different phases have opposite signs.
However, the magnitude of the reduction depends on the
locations of the APBs and the cancellation does not in gen-
eral make S�Qsol� completely vanishing. Therefore the aver-
age S�Qsol� is still proportional to the system size even if the
APBs are present. As for the effect of the APBs on the su-
perfluid density, we have confirmed that it is relatively minor
compared to that on S�Qsol�. To see this, we evaluated �s in
two ways 
see Fig. 4�b��. One is a long equilibrium simula-
tion starting from random initial configurations, in which
APBs are observed. The other is relatively short Monte Carlo
simulations starting from the perfect AB or A3B configura-
tion. In the latter, the length of the simulation is chosen such
that APBs do not appear. In both cases, the superfluid density
yielded the same value within the statistical error.

In Fig. 2, we show the results of the field dependence of

S�Qsol� and �s at �J� ,Jz�= �0.2,−1.0�J and kBT=0.1J, where
J�Jz� is our unit of energy. The H axis can be divided into
four regions according to the behaviors of S�Qsol� and �s: �I�
the low-field region 0�H�Hsolid1�1.15J; �II� the lower-
intermediate region Hsolid1�H�H*�2.2J; �III� the upper-
intermediate region H*�H�Hsolid2�3.1J; and �IV� the
high-field region Hsolid2�H, where Hsolid1, H*, and Hsolid2 are
temperature-dependent transition fields.

In regions I, III, and IV, the crystalline order exists. This
is evident from the fact that S�Qsol� increases in proportion to
the system size. In region II, on the other hand, S�Qsol� does
not show a system-size dependence indicating no crystalline
ordering in this region. The superfluid density �s is almost
zero in regions I and IV whereas in the intermediate regions
II and III, it stays finite. Judging from these results, we con-
clude that the ground state is the solid state in regions I and
IV. As shown in Fig. 3, the magnetization plateaus at m=0
and 1/4 appear in the corresponding fields. Therefore these
solid phases are the AB and A3B ordered phases, respec-
tively. Region II is the superfluid phase. Finally in region III,
since the crystalline order and the superfluidity coexist, there
appears the supersolid phase. Hence we conclude that the
supersolid state is stable in three dimensions.

Next we study the temperature dependence. The results at
H=2.7J �in the supersolid region III� are shown in Fig. 4.
As we decrease the temperature with fixed magnetic
field, S�Qsol� almost discontinuously increases at kBT
=kBTsolid�0.32J and the system-size dependence appears for

FIG. 1. The perfectly ordered spin configurations. �a� AB state
and �b� A3B state. Note that the dashed lines connecting next-
nearest neighbors are mere guide lines to the eye and there is no
direct coupling corresponding to these lines. �The direct couplings
exist only for nearest-neighbor pairs.� The gray lines denote the
superflow paths in the supersolid state �see text�.

FIG. 2. The field dependence of S�Qsol� and �s at
�J� ,Jz�= �0.2,−1.0�J and kBT=0.1J. The open circles, the closed
circles, and the inverted triangles denote the results of L=6, 12, and
18, respectively. Note that the results of S�Qsol� are averaged values
of S�0,� ,��, S�� ,0 ,��, and S�� ,� ,0�. The inset shows the system
size dependence of S�Qsol� /N at H /Jz=3.0.
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T�Tsolid. However, the superfluid density remains very
small; �s�5�10−3 near Tsolid. This is the transition from the
normal fluid to the solid phase. Since S�Qsol� takes the same
values of those in the A3B solid region IV and scarcely
shows the temperature dependence in T�Tsolid, we identify
this solid phase as the A3B ordered phase. At even lower
temperature, the system undergoes another transition from
the solid phase to the supersolid phase. This is marked by
the increase in the superfluid density �s that starts at
kBTsuper�0.22J. To estimate Tsuper, we analyze the finite-
size-scaling behavior of the superfluid density �s by the scal-
ing form �sL= f�L1/��T−Tsuper�� using the exponents of the
three dimensional XY model �=0.6723.25 As shown in the
inset of Fig. 4�b�, the data collapse is obtained with the criti-
cal temperature, kBTsuper=0.221�2�J. Thus we conclude that
the phase transition from the solid phase to the supersolid

phase is of the second order and its universality class is that
of the three-dimensional XY model as expected. In this way,
we estimate the critical temperatures Tsolid and Tsuper for vari-
ous other values of H to obtain the phase boundary. Here,
Tsolid and Tsuper denote the transition temperatures where the
crystalline order and the superfluid order, respectively,
emerge. The results are shown in Fig. 5.

From the phase diagram in Fig. 5, we find that the super-
solid phase exists between the AB and A3B solid phases. This
region locates slightly above HIsing=2.0J at which the phase
transition occurs in the classical case �J�=0� from the AB to
A3B phase. To discuss the mechanism of the supersolid state
on the fcc lattice, we consider the spin configuration above
HIsing. In the classical case, at the critical field, the spins at
the centers of faces of the cubic lattice 
the up spins in Fig.
1�b�� become dangling spins; they can be reversed without
changing the energy. Let us regard down �up� spins at these
locations as hard-core particles �holes�. Then, H−HIsing can
be interpreted as the excitation gap for creating a particle and
the ground state is the empty state at H larger than the criti-
cal value. However, once the hopping �J�� is turned on, the
excited particles may move along the gray lines in Fig. 1�b�
and can in general condense. If the magnetic field is far
larger than HIsing, the classical gap is larger than the scale of
the hopping constant J� �i.e., the bandwidth of particle ex-
citation�, the gap remains open even if the quantum hopping
is present. As we decrease the magnetic field, however, at
some point the classical gap becomes smaller than the scale
of the hopping constant. Accordingly the actual gap closes
and the ground state starts exhibiting superfluidity. At this
point, in contrast to the spins on the faces, the spins at the
corners can hardly be affected by the hopping term because
the energy cost of reversing one of these spins is �E� 3

4 �Jz�
and is still too large. Therefore they stay in a solid crystalline
order. As we further decrease the magnetic field, the density
of condensed particles at the dangling spin locations gradu-
ally increases. This generates positive molecular fields at the

FIG. 3. The field dependence of the magnetization at
�J� ,Jz�= �0.2,−1.0�J and kBT=0.1J. The value of m=1/4 corre-
sponds to half of the saturation magnetization.

FIG. 4. The temperature dependence of S�Qsol� and �s for
�J� ,Jz�= �0.2,−1.0�J and H=2.7J. In �b�, the cross symbols denote
the results starting from the perfect A3B configuration in L=18 and
the others are those starting from the random initial configurations.
The inset in �b� is the finite-size scaling of the superfluid density.
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FIG. 5. The H-T phase diagram for �J� ,Jz�= �0.2,−1.0�J. The
open circles and the closed circles indicate the first-order and the
second-order transitions, respectively. The solid lines are mere
guide lines to the eye. The labels, “N.F.”, “S.F.”, and “S.S.” stand
for the normal fluid phase, the superfluid phase, and the supersolid
phase, respectively.
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corners, destabilizing the crystalline order. This destabilizing
effect finally melts the crystal at H=H*. This latter transition
point must be larger than HIsing because the transition must
take place before the classical excitation gap closes and
therefore the density of the excited particles diverges. This is
the microscopic scenario of the two transitions, the solid to
the supersolid transition and the supersolid to the superfluid
transition. Indeed, we successfully confirmed the existence
of the A3B-type supersolid states in the corresponding pa-
rameter region in the present simulation.

This scenario predicts a supersolid phase of another type
in the region H�HIsing, which we could call the AB-type.

The mechanism of the AB-type supersolid is again under-
stood by the dangling spins. This time, the dangling spins
appear at the sites occupied by down spins in Fig. 1�a�, and
we should regard the up spins on these sites as excited par-
ticles, which condense in the AB-type supersolid phase that
locates below HIsing. The excited particles hop along the gray
lines in Fig. 1�a�, while rigid spins 
those pointed up in Fig.
1�a�� stay in the crystalline order. The AB-type supersolid has
the characteristic two-dimensional paths of the superfluid
due to the alternate stacks of the superfluid and solid layers,
while the A3B-type supersolid has the three-dimensional su-
perfluid connections. Perturbatively, the effective interac-
tions between these superfluid layers may arise in the second
order of J�. In Fig. 6, we show some results of the superfluid
density and the structure factor at �J� ,Jz�= �0.15,−1.0�J and
H=1.65J�HIsing. In this case, while an anomaly, which is
cleared by the calculations in the larger system size, appears
in S�Qsol� at kBT�1.5 due to the APBs, the AB-type super-
solid realizes in the region kBT�kBTsuper�0.104�2�.

To summarize, we have calculated the SSF and �s for the
S=1/2 XXZ model on the fcc lattice and obtained a phase
diagram at fixed J� /Jz. We have also discussed the micro-
scopic mechanism of the supersolidity in the present model
and pointed out that the connections of dangling spins result-
ing from the geometrical frustration play a key role in the
formation of the supersolid state.
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