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We extend the Ginsburg-Landau solution for cutoff function in London equation to low temperatures by
solving numerically the quasiclassical Eilenberger equations in mixed state of s-wave superconductors. As a
result the nonlocal generalized London equation �NGLE� is obtained. The magnetic field and temperature
dependence of the cutoff function parameter k1�B ,T� are calculated. Due to Kramer-Pesch effect k1 decreases
strongly at low temperatures. It is also found that k1 has a minimum at a value of magnetic field depending on
temperature. We reduce the NGLE model to an effective local model and calculate the value of an effective
penetration depth �eff�B ,T�. The sublinear field dependence of �eff is predicted that agrees with experimental
�SR results for the penetration depth of magnetic field in the s-wave superconductor V3Si and NbSe2.
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I. INTRODUCTION

Structural and electronic properties of the flux-line lattice
�FLL� in type-II superconductors have been extensively stud-
ied by microscopic techniques such as scanning tunneling
spectroscopy �STS�, small-angle neutron scattering �SANS�,
nuclear magnetic resonance, and muon spin rotation ��SR�
experiments. In particular, recent development has made it
possible to find details of the spatial field distribution h�r� of
the FLL directly from �SR time spectra.1,2 Experimental re-
sults on the magnetic field distribution in the mixed state of
superconductors are usually explained by the modified Lon-
don equation. In this approach the effect of the vortex core is
phenomenologically described by a cutoff function obtained
from solution of the Ginzburg-Landau equations �GL� �Refs.
3 and 4� valid at temperatures near Tc.

The supercurrent flowing around the vortex core modifies
the superconducting electron density resulting in change of
the second moment ��h2� of the field distribution in the vor-
tex lattice.5 Magnetic properties of clean superconductors at
low temperatures are affected by nonlocality of the micro-
scopic current-field relation. A theory taking into account
the first order nonlocal correction to the London equation has
been elaborated6 and used for explanation of the structural
transitions of FLL observed experimentally.7,8 The nonlocal
generalized London equation �NGLE� including higher-
order gradient corrections9,10 has been used for description of
the temperature and field dependences of the penetration
depth ��T ,B� in the high-Tc d-wave superconductor
YBa2Cu3O6.95,

11,12 treating the core effects and nonlinear ef-
fects phenomenologically and perturbatively, respectively.

In recent years there has been great interest in measure-
ments of the magnetic penetration depth in s-wave supercon-
ductors such as V3Si, MgB2, LuNi2B2C, YNi2B2C to get
information about their vortex state and the underlying
physics.13–20 However, it is not easy to compare the experi-
mental results with the prediction of the GL theory which
fails in the region of T�Tc and does not take into account
nonlocal corrections to the London equation. To avoid these
difficulties we bridge in the present paper the phenomeno-
logical and microscopical theories by solving the quasiclas-

sical Eilenberger equations21 and NGLE for the mixed state
of s-wave superconductors. In this way the nonlocal, the
nonlinear and the core effects can be included simulta-
neously and the parameters of generalized London equation
can be obtained.

We construct a model where the vortex core effects and
the nonlinear corrections are described by an effective cutoff
function. The nonlocal screening effects are included in the
model explicitly, i.e., instead of the fitting parameter ��T ,B�
we use an analytically obtained anisotropic electromagnetic
response tensor9,10 which is the exact solution of the Eilen-
berger equations neglecting the core effects. As a result a
good agreement between the quasiclassical approach and
NGLE is obtained and the k1�B ,T� dependence is found.
Thus, we do not use a phenomenologically introduced field
dependent London penetration depth in NGLE. Instead, field
distribution h�r� in the mixed state is described only by the
cutoff parameter k1�B ,T� of the order of the normalized vor-
tex core size ��B ,T� /�0. We show that the second moment of
the field distribution depends strongly on k1�B ,T�.

To make connection with experimental results we reduce
NGLE to a local effective London equation �LELE� with
field dependent �eff. The LELE results reasonably explain the
experimental �SR data.13

II. CUTOFF FUNCTION FOR NGLE

To consider the mixed state of an s-wave superconductor
we assume that the Fermi surface is isotropic and cylindrical.
Then the magnetic field distribution in the NGLE approxi-
mation can be given as9

h�r� =
�0

S
�
G

F�G�eiG·r

1 + Lij�G�GiGj
, �1�

where

Lij�G� =
Qij�G�

detQ̂�G�
�2�

and S is the surface of the vortex lattice unit cell. The aniso-
tropic electromagnetic response tensor is defined as
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0
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�̄�	�2v̂Fiv̂Fj

��n
2 + �̄�	�2��n

2 + �̄�	�2 + �G
2 	

, �3�

where �0= �c2 /4�e2vF
2N0�1/2 is the London penetration depth

at T=0, including the Fermi velocity vF and the density of
states N0 at the Fermi surface, 	 is the angle between the k
vector at the Fermi surface and the x axis, and �G=vF ·G /2.
In Eq. �3� the term including �p describes the nonlocal cor-
rection to the London equation. With �G=0 we obtain the
London result Lij�p�=��T�2�ij.

The cutoff function for NGLE is written in the form of
F�G�=uK1�u�, where K1�u� is the modified Bessel function,
u=k1

�2�BCSG, G is a reciprocal lattice vector, �BCS
=vF /��T��, and ��T� is a temperature dependent uniform
gap. The cutoff parameter k1 can be found by comparison of
the solution of the Eilenberger equations with NGLE. Our
approach follows the previously developed idea to extend the
Ginzburg-Landau �GL� theory to low temperatures. Calcula-
tions of the parameters 
1�T� and 
2�T� with Eilenberger
equations22 were used to distinguish the temperature depen-
dences of the upper critical field Hc2 and the initial slope of
the magnetization M /H, respectively.23 At high temperatures
these parameters correspond to 
GL. In the same way we
extend the GL solution for h�r� at high temperatures3 by
introducing a cutoff parameter k1�B ,T� describing the core
size at low temperatures. Therefore the shape of the cutoff
function F�G� is taken in the form of analytical GL solution.3

This method was successfully used for the problem of single
vortex24 and FLL �Ref. 25� in d-wave superconductors. It
was shown that a cutoff function with exponential shape
leads to a worse agreement between the NGLE and the
Eilenberger equations.24

To derive the quasiclassical Green functions the quasi-
classical Eilenberger equations are solved for the s-wave

pairing potential ��r�= �̄�r�exp�i�� with exp�i��= �x+ iy� /r.
Throughout this paper, the energies, temperatures and the
lengths are measured in units of Tc and the coherence length
�0=�BCS�Tc�0=vF /Tc, respectively. The magnetic field h is
given in units of �0 /2��0

2. Taking into account the value of
�BCS=100 Å we find that the unit of the magnetic field is
0.126 T. We solve the Eilenberger equations by using the
Riccati transformation.26–28 In this method the quasiclassical
Green functions are parametrized via

f̄ =
2ā

1 + āb̄
, f †̄ =

2b̄

1 + āb̄
, g =

1 − āb̄

1 + āb̄
, �4�

where the anomalous Green functions f̄ and f †̄ are related to

the usual notations as f = f̄ exp�i�� and f†= f †̄ exp�−i��. The

functions ā and b̄ satisfy the independent nonlinear Riccati
equations

�
ā��n,	,r� = �̄�r� − �2�n + i��
� − A
�

+ �̄*�r�ā��n,	,r�	ā��n,	,r� , �5�

�
b̄��n,	,r� = − �̄*�r� + �2�n + i��
� − A
�

+ �̄�r�b̄��n,	,r�	b̄��n,	,r� , �6�

where �n= �2n+1��T is the fermionic Matsubara frequency,
�
 =d /dr
, and �
�=−r� /r2. Here we use the coordinate sys-
tem û=cos 	x̂+sin 	ŷ, v̂=−sin 	x̂+cos 	ŷ. Thus a point r
=xx̂+yŷ is denoted as r=r
û+r�v̂. Equations �5� and �6�
include both the nonlocal effects ��
ā and �
b̄ terms� and the

nonlinear effects �ā and b̄ are nonlinear functions of �
�� and
��r� is obtained self-consistently from BCS relations.26 To
take into account the influence of screening, the vector po-
tential A�r� in Eqs. �5� and �6� is obtained from the equation

� 
 � 
 A =
4


2J , �7�

where the supercurrent J�r� is given in terms of g��n ,	 ,r�
by the equation

J�r� = 2�T �
�n�0

�
0

2� d	

2�

k̂

i
g��n,	,r� . �8�

A and J are in units of �0 /2��0 and 2evFN0Tc, respectively,
and 
=��T=0� /�0. The spatial variation of the internal field
h�r� is determined by the Maxwell equation.

For every temperature T and magnetic field B we solve
Eqs. �5� and �6� by the fast Fourier transform method for a
triangular flux line lattice25,26 taking the resulting magnetic
field distribution as the origin. Then the NGLE is solved with
the cutoff parameter k1 and the detailed magnetic field dis-
tribution is compared with that origin. The value of k1 is
found using the criterion of minimum mean-square differ-
ence between the magnetic field distributions. The quality of
the fitting can be seen from Fig. 1 where the normalized
difference between the fields calculated in the NGLE model
and the Eilenberger equation at B=3, T=0.5, and 
=10 is
shown. The accuracy of the fitting is better than 2%.

Temperature dependence of k1 in units of Tc is depicted in
Fig. 2, in the case of 
=10. The shrinking of the core size
and k1 with decreasing values of T can be attributed to ther-
mal depopulation of the more spatially extended high-energy
core states �Kramer-Pesch �KP� effect29	. The strong de-
crease of k1 with reducing of the temperature, as shown in
Fig. 2, is in agreement with recent experimental results.13

A similar temperature dependence was found for the effec-
tive core radius �eff determined by the ratio 1/�eff
= �����r� � /�r	r=0 / ��NN�.30 Here ��NN� is the maximum value
of the order parameter along the nearest-neighbor direction,
which is also the direction of taking the derivative.

As shown in Fig. 3 the k1�B� dependence has a minimum
at a certain value of the magnetic field Bmin. Three important
reasons for existence of Bmin can be given.
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�i� Nonlinear effects arising due to current in the core area
comparable to depairing current: increasing of the magnetic
field results in a significant overlap of the currents of nearest-
neighbor vortices leading to shrinking of the vortex core.3

�ii� Nonlocal effects: solution of linearized Eilenberger
equations gives a monotonically decreasing function ��B� as-
suming a uniform magnetic field.31,32 Both �i� and �ii� can be
used to explain the decreasing of k1 in increasing fields be-
low Bmin, in agreement with the behavior of the vortex core
observed experimentally in different materials.2

�iii� Core effect �the nonlinear terms of ��: at high tem-
peratures in high magnetic fields comparable with the second
critical field Bc2, the suppression of the superconducting gap
by the field becomes important with the result that the coher-

ence length and k1 are increased for B�Bmin.
3 At low tem-

peratures the KP effect becomes important decreasing
strongly the value of k1 with temperature.

At high temperatures T�0.5 the tendency of the depen-
dence of Bmin on T is in agreement with prediction of the
local Hao-Clem theory3 because the nonlocal effects are not
important. Then the Abrikosov solution for FLL can be used
which gives a minimum in the k1�B� dependence.31 In low
magnetic fields the solution of the Ginzburg-Landau theory4

gives the value of k1�3/2 which is also clearly visible from
our results in the inset to Fig. 2 at the limit of T→Tc. The
decreasing of Bmin with increasing temperature, as shown in
Fig. 4 at T�0.5, is similar to the behavior predicted by the
Ginzburg-Landau theory3 although the applicability of this
theory is limited to temperatures near Tc resulting in some
quantitative deviation from our calculation. The behavior
k1�B ,T� at high temperatures �called the GL regime in Fig. 4�

FIG. 1. �Color online� Normalized differences between the
fields calculated with the London model �NGLE� and the Eilen-
berger equation �ELENB� for B=3 and T=0.5. The scales of
lengths are those of the flux line lattice unit vectors.

FIG. 2. Temperature dependence of the cutoff parameter k1�T�
for s-wave superconductors obtained at 
=10 and B=1 from fitting
to the solution of the Eilenberger equations. The inset demonstrates
k1�T� dependence at B � 0.1.

FIG. 3. �Color online� The field dependence of the cutoff pa-
rameter k1 for s-wave superconductors with 
 � 10 and T � 0.2,
0.5, and 0.8 from fitting to the solution of the Eilenberger equations.

FIG. 4. The temperature dependance of the magnetic field Bmin

at which the cutoff parameter k1 has the minimum in s-wave
superconductors.
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can be explained by decreasing of Bc2 and the corresponding
increasing of the B /Bc2 ratio. Therefore, the effect �iii� above
prevails the effects �i� and �ii� in smaller fields.

As shown in Fig. 4 the Bmin�T� dependence has a ma-
ximum at the temperature Tmax�0.5. The k1�B ,T� de-
pendences at T�Tmax resemble the behavior of �eff�B ,T�
found by solving the Eilenberger equations for dirty
superconductors.33 According to the results in Ref. 33 the
value of Bmin decreases strongly with increasing of the elec-
tron mean-free path l0. The same effect can be obtained by
decreasing the temperature. As can be seen from Fig. 7 in
Ref. 33 the position of Bmin increases with decreasing of the
mean free path l when 0��0 / l�0.5. This corresponds to the
behavior of k1�B ,T� in the KP regime 0�T�0.5. Because
�eff�B ,T� is determined by the order parameter behavior in
the vortex center it depends strongly on the KP effect at low
temperatures �iii�. This effect has an opposite influence to the
slope of the field dependence k1�B� than those in �i� and �ii�,
resulting in appearance of the minimum in �eff�B� and k1�B�.
Decreasing of the value of Bmin with decreasing temperature
at T�Tmax is similar to the behavior of �eff�B ,T� and can
also be explained by the KP effect. We call this regime the
KP regime �see Fig. 4�.

To show the influence of the magnetic field and tempera-
ture dependence of k1 we calculate the values of ��h2� using
the field distribution obtained in the NGLE model. Figure 5
shows the temperature dependence of the ratio of ��h2� ob-
tained from the solution of the Eilenberger equations to that
of the NGLE model with the fixed parameter k1=1. As one
can find from the data presented in Fig. 5, this ratio deviates
considerably from unity when the temperature is lowered.

III. EFFECTIVE LOCAL PENETRATION DEPTH

A local effective London equation �LELE� with field de-
pendent penetration depth is often used for analysis of the
experimental data ��SR, SANS, magnetization, etc.�.13–20

The way of reducing NGLE to LELE was suggested in Refs.
10 and 12:

�eff

�
= 
�B0

2

�B2�1/4

. �9�

Here �B0
2 is the mean squared value of the magnetic field

B0�r�−Bav obtained by applying the ordinary London model
with the same average field Bav and �. However, the cutoff
function was not determined10,12 which is important for
quantitative interpretation of the results.10,24 We use the
proper shape of the cutoff function obtained from the Eilen-
berger equation in the previous section. The values of �eff
defined in this way are determined by a large scale of the
order of the FLL period and is not very sensitive to details of
the microscopical core structure and the cutoff parameter.25

In Fig. 6 are shown the temperature dependences of
�0

2 /�eff
2 . The low-field result �B=0.1� for �eff is close to ��T�

in the Meissner state.
�SR measurements of � in different s-wave low-

temperature superconductors often show some magnetic field
dependence. To demonstrate this for �eff�T ,B� we use an
expression ��eff= ��eff�T ,B�−��T ,0�	�B��T�, where the val-
ues of �eff�T ,0� in zero field are obtained from the BCS
theory in the Meissner state. A similar phenomenological ex-
pression is often used for fitting experimental results con-
cerning the vortex state.14,17 Temperature dependence of the
exponent ��T� is shown in the inset to Fig. 6.

In Fig. 7 the experimental data of the magnetic penetra-
tion depth � obtained for s-wave superconductors V3Si and
NbSe2 are shown.13 These materials have an anisotropy dif-
ferent from that used in our calculations, V3Si possesses a
simple cubic crystal structure and NbSe2 is an anisotropic
two-band superconductor. Nevertheless, these compounds
demonstrate clear sublinear field dependence of � which is
quite different from prediction of the mixed state model of a
rigid vortex core.30,34 Similar effects were observed in the
field dependences of the quasiparticle DOS �Ref. 34� and
specific heat.35 Our calculations also predict sublinear
��B ,T� dependence with power coefficient � shown in the

FIG. 5. �Color online� Temperature dependence of the ratio of
the second moment of the magnetic field distributions obtained
from the solution of the Eilenberger equations to that of the NGLE
model with the parameter k1=1.

FIG. 6. �Color online� Temperature dependence of the ratio
�0

2 /�eff
2 calculated for B=0−5. The upmost curve with the open

circles shows the values in the Meissner state. The inset shows the
coefficient ��T� in the field dependence of ��eff.
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inset to Fig. 6. As can be seen from Fig. 7 low temperature
extrapolation of � to 0.6 �see inset to Fig. 6� describes the
shape of the experimental field dependence of �. The coeffi-
cient of proportionality of ��eff is determined by the band
structure and is out of scope of our model.

IV. CONCLUSION

To conclude, we have solved numerically the quasiclassi-
cal Eilenberger equations in the mixed state of s-wave super-
conductors by parametrizing them with nonlinear Riccati
equations. The obtained magnetic field distribution within
the vortex core is fitted by the solution of the NGLE. It is
found that the field dependence of k1 is nonmonotonous and
shows a minimum at a field Bmin which depends on tempera-
ture. At high temperatures the behavior of Bmin�T� agrees
with the prediction of the Hao-Clem theory.3 At low tem-
peratures the Kramer-Pesch effect is important resulting in
appearance of a maximum in the Bmin�T� dependence. We
reduce the NGLE model to effective LELE model and cal-
culate �eff�B ,T� predicting the sublinear field dependence of
�eff. The obtained dependences k1�B ,T� and �eff�B ,T� are
quite different from the predictions of a rigid core model.
Our results agree with experimental �SR results for the pen-
etration depth of the magnetic field in the s-wave supercon-
ductors V3Si and NbSe2.13
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