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Vortex states in mesoscopic superconducting spheres are investigated within the framework of the phenom-
enological Ginzburg-Landau theory in the presence of an externally applied magnetic field. We treat the
linearized first Ginzburg-Landau equation as an eigenvalue problem and find the cylindrical symmetric giant
vortex states. Taking linear combinations of solutions of the linearized equation and minimizing the free
energy, we obtain the stable multivortex and giant vortex states.
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I. INTRODUCTION

Recent progress in nanofabrication and nanotechnology
made it possible to study the properties of mesoscopic super-
conductors. A mesoscopic sample has sizes comparable to
the coherence length � and/or penetration depth �, and their
magnetic properties are highly affected by the boundary of
the sample. Stable vortex configurations result from the com-
petition between the triangular Abrikosov vortex lattice, hav-
ing the lowest energy in bulk superconductors, and the
boundary that tries to impose its symmetry.

Most of the previous studies on mesoscopic supercon-
ductors were restricted to thin superconducting samples
�which can be considered as �quasi� two dimensional�. Cir-
cular mesoscopic disks have been the most popular in this
respect, both theoretically1–6 and experimentally.7–13 Two
kinds of fundamentally new vortex states were predicted
theoretically: �i� multivortex states with a spatial arrange-
ment of singly quantized vortex states �which can be consid-
ered as the mesoscopic analogon of the Abrikosov vortex
state in bulk superconductors� and �ii� axially symmetric gi-
ant vortex states �or multiply quantized vortex states� with a
single core in the center. When the size of the disk is large
enough, also a combination of the two states can appear.5

Recently, experimental evidence for the existence of the two
kinds of vortex states have been found by using the multiple-
small-tunnel-junction method.12 The effect of the geometry
of the sample on the superconductivity was thoroughly in-
vestigated for thin mesoscopic samples �see, e.g., Refs. 7 and
14–21�. It was found that it can lead to a new vortex con-
figuration consisting of a single antivortex surrounded by
vortices.14,22,23

In thin superconducting samples with thickness d�� ,�,
which are uniform in the direction of the magnetic field, let
us say the z direction, one can assume that inside the sample
the order parameter and the vector potential are independent
of z. The same is true for the opposite limit of d→�, e.g.,
superconducting cylinders.24 In both cases, vortices are
straight lines inside the superconducting sample. But what
happens when the sample is no longer uniform in the z di-
rection? In this case, we may expect that the vortices will
bend due to the effect of the boundary. In the present paper,
we consider strongly type-II mesoscopic superconducting
spheres placed in an externally applied magnetic field. Solv-
ing the first Ginzburg-Landau equation, we calculate the

�meta-�stable vortex states in such a sphere for different
sphere radii. The stability and the properties of the giant and
multivortex states are investigated for different values of the
radius.

Recently, hollow superconducting spheres or spherical
shells were studied by Du and Ju using the Ginzburg-Landau
theory.25 The stable vortex configurations and the nucleation
and/or splitting of vortex pairs near the equator were inves-
tigated. In spherical shells, vortices only nucleate at the
boundary. In order to study vortex configurations inside a
three-dimensional sample, one has to consider massive su-
perconductors. In a previous work,26 the vortex structure in a
mesoscopic superconducting wire containing a constriction
was investigated. Breakup of the vortex structure near the
constriction was found, where �i� curved vortices are formed,
which leave the superconductor at the constriction, and �ii�
the breakup of a giant vortex into smaller and/or individual
vortices near the constriction. To our knowledge, vortex mat-
ter in superconducting spheres have not been studied up to
now.

This paper is organized as follows. In Sec. II, we solve the
linearized first Ginzburg-Landau equation by treating it as an
eigenvalue problem and restricting ourselves to cylindrical
symmetric states. In this way, we obtain the giant vortex
states in superconducting spheres of different sizes. In Sec.
III, we consider linear combinations of two different giant
vortex states in order to find the possible multivortex states
and the stability region of the giant vortex states. Finally, in
Sec. IV, we summarize our results.

II. GIANT VORTEX STATES

Giant vortex states have cylindrical symmetry in samples
of circular symmetry. To find the �meta-�stable giant vortex
states in a sphere, we first solve the linearized first Ginzburg-
Landau equation. This is expected to be a good approxima-
tion near the signal-to-noise ratio �S/N� boundary where
���2�1 and, correspondingly, we may neglect the nonlinear
term in the Ginzburg-Landan �GL� equation. The linearized
first GL equation becomes, in cylindrical coordinates,
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Giant vortex states are cylindrically symmetric, and hence,
their order parameter should be cylindrically symmetric too,
i.e.,

���,�,z� = eiL����,z� . �4�

In this case, Eq. �3� reduces to the following eigenvalue
problem �with �=1−T /Tc�:
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Solving this differential equation with the boundary condi-
tion �� /�r=0 at the boundary 	�2+z2=R gives us the values
of � and the order parameter. To follow the notation of Refs.

1 and 27, we use the L̂ operator, given by
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and the eigenvalues and eigenfunctions of the L̂ operator can
be found from the equation

L̂�L,n��,z� = �L,n�L,n��,z� , �7�

where �=�−1 for fixed vorticity and radius, L is the vortic-
ity, and n=1,2 , . . ., enumerates the different states for the
same vorticity L. n−1 gives also the number of nodes in the
radial direction. The two-dimensional second-order differen-
tial equation is solved numerically using the finite difference
technique.

The superconducting state starts to develop when the

minimal eigenvalue of the operator L̂ is negative �i.e., from
�=1−T /Tc and �=�+1, we have �=−T /Tc�. The eigen-
value � also determines the minimal free energy F of the
giant vortex states. For the giant vortex state, we only con-
sider the states which lie below the F=0 level. Inserting the
solution �see Eqs. �4� and �7�� into the expression for the free
energy �including the nonlinear term� and minimizing with
respect to the normalization constant for the order parameter,
we obtain

���,�,z� = 
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�1/2

�L,n��,z�exp�iL�� , �8�

and the minimal value of the free energy
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As an example, we study numerically the giant vortex
states for three different values of the radius R=2, 4, and 6�.
The eigenvalues and the order parameter �and therefore the
Cooper-pair density and the phase of the order parameter�
are obtained by solving the eigenvalue Eq. �7� for given val-
ues of the magnetic field and the vorticity L.

First, we show in Fig. 1 contour plots of the Cooper-pair
density for a sphere with radius R=4�, for vorticity L=0, 1,
2, and 3 �from left to right� at applied magnetic fields H
=0.18Hc2 �top figures� and H=0.42Hc2 �bottom figures�. For
L=0, no vortex is present and the Cooper-pair density is
maximum around the z axis. Note that the highest density is
found around the poles of the sphere, while the supercon-
ducting density is suppressed near the equator. For larger L,
magnetic field penetrates the sphere and a giant vortex is
formed around the z axis, which leads to ���2��=0,z�=0.
Now the highest Cooper-pair density is found around the
equator. With increasing vorticity, the radius of the giant vor-
tex states increases, just like in the case of thin disks �see
Ref. 1�, but note that this radius tends to increase when we
move away from the equator.

Next, we calculate the Cooper-pair density in the xy plane
at z=0 for the same parameters as in Figs. 1�a�–1�d�. Con-
tour plots of these results are given in Figs. 2�a�–2�d�. For

FIG. 1. �Color online� Contour plots of the Cooper-pair density
in the �� ,z� plane for a sphere with radius R=4� for vorticity
L=0 ��a� and �e��, L=1 ��b� and �f��, L=2 ��c� and �g��, and L=3
��d� and �h�� at applied magnetic fields H=0.18Hc2 ��a�–�d�� and
0.42Hc2 ��e�–�h��. The vertical axis corresponds to the direction of
the applied magnetic field, i.e., the z direction, while the horizontal
axis corresponds to the radial direction �. High �low� Cooper-pair
density is given in red �blue� regions.
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L=0, the Cooper-pair density is highest in the center, while it
decreases with increasing �. When L
0, the Cooper-pair
density is zero in the center, where the giant vortex is situ-
ated. Note that from Figs. 2�a�–2�c� it is also clear that the
size of the giant vortex in the center of the sphere increases
with increasing L as expected, because �
�L for �→0.

The order parameter of the giant vortex state is given by
Eq. �4�. The size of the order parameter, ���� ,z��, can be seen
from Figs. 2�a�–2�d�, where ���� ,z��2 is given. In Figs.
2�e�–2�h�, the phase of the order parameter in the xy plane at
z=0 is shown for the giant vortex states with vorticity L=0,
1, 2, and 3, corresponding to the situations of Figs. 2�a�–2�d�.
In these figures, red indicates phases near 2� and blue indi-
cates phases near zero. By going around the center of the
vortex, the phase jumps L times with 2�. From such plots we
are able to determine the vorticity of the vortex state.

From the eigenvalue Eq. �7�, one can obtain the eigenval-
ues � as a function of the applied magnetic field H for fixed
radius R and L. Figures 3�a�–3�c� show the eigenvalue as a

function of the applied magnetic field for spheres with radius
R=2�, 4�, and 6�, respectively. For R=2� and 4�, we show
all �meta-�stable states, i.e., states with ��0 in a certain
magnetic-field region. For R=6�, we restrict ourselves to
states with L�15.

From Figs. 3�a�–3�c�, it is clear that with increasing
sphere radius, more vortex states stabilize, i.e., more vortex
states have eigenvalues with ��0. The ground-state transi-

FIG. 2. �Color online� ��a�–�d�� Contour plots of the Cooper-pair
density in the xy plane, i.e., z=0, for a sphere with radius R=4� for
vorticity L=0, 1, 2, and 3 at H=0.18Hc2. High �low� Cooper-pair
density is given in red �blue�. �e�–�h� Phase of the order parameter
for the same parameters as in �a�–�d�. Red �blue� indicates phases
near 2� �0�.

FIG. 3. �Color online� The eigenvalue � as a function of the
applied magnetic field H for spheres with radius R=2 �a�, 4 �b�, and
6� �c�.
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tions between the different vortex states and the supercon-
ducting and/or normal transition field move to lower fields
with increasing sphere radius. Notice that the thermody-
namic ground state can be described by a �=aH+b enve-
lope with additional cusps near the transition fields.

From the order parameter and the eigenvalues, we can
calculate the free energy F as a function of the applied mag-
netic field for the different values of L using Eqs. �9� and
�10�. The dependence of the free energy F on the magnetic
field H is shown in Figs. 4�a�–4�c� for all the possible stable
vortex states for spheres with radius R=2�, 4�, and 6�, re-
spectively. The dashed horizontal line corresponds to the
zero energy level. Comparing the magnetic-field dependence
of the free energy for the three different sphere radii, we
clearly see that with increasing radius R, the number of al-
lowed vortex states increases. From Figs. 4�a�–4�c� it is also
clear that with increasing radius R, the critical magnetic field,
where F becomes zero, decreases. Also, the L→L+1
ground-state transition field decreases with increasing radius
R.

Note that all free-energy curves with L�0 start and end
exactly at F=0. This does not mean that those vortex states
are �meta-�stable over this whole region, because we re-
stricted the space of possible solutions to the giant vortex
states. Later, when considering linear combinations of differ-
ent giant vortex states, we will find that the stability region
of the different vortex states are reduced, in particular, near
F=0.

Up to now, we restricted ourselves to the lowest energy
state at each angular momentum. In Eq. �7� this corresponds
to the situation with n=1, i.e., the lowest radial state or,
equivalently, ��� ,z� has no node as a function of �. Now, we
will investigate the excited states, i.e., n
1.

In Fig. 5, the magnetic-field dependence of the eigenvalue
� for both the excited and lowest states with vorticity L=0
and L=1 is given for a sphere with radius R=2�. The red
curves correspond to L=0 and the blue curves are for vortic-
ity L=1. The solid curves are the lowest energy states for
given L. The dashed, dash-dotted, and dotted curves corre-
spond to the first, second, and third excited �radial� states.
Since all the excited states have positive eigenvalues for all
magnetic fields, it is clear that they are not stable. This is the
reason why, later on when considering the order parameter as
a linear combination of the �L,n states, we may restrict our-
selves to n=1.

We show, as an example, in Figs. 6�a�–6�f� contour plots
of the Cooper-pair density of the first �n=2�, second �n=3�,
and third �n=4� excited states for L=0 �Figs. 6�a�–6�c�� and
L=1 �Figs. 6�d�–6�f�� at H=0.6Hc2. High Cooper-pair den-
sity is given by red regions, while low Cooper-pair density is
given by blue regions. Regions with Cooper-pair density less
than 0.01 are plotted as white. For n=2, we find two maxima
in the Cooper-pair density located at the sphere poles, both
for L=0 and L=1, while in the z=0 plane, the Cooper-pair
density is strongly suppressed. For n=3, we find three
maxima in both cases, and two crossing planes with low ���,
rotated over �= ±35° with respect to the z=0 plane. For n
=4, we find four maxima near the sphere boundary for L
=1, but only one maximum for L=0 located at the sphere

center. For L=1, we find that the Cooper-pair density is sup-
pressed in the z=0 plane and at two planes that are rotated
over ±45°. For L=0 and n=4, on the other hand, the Cooper-
pair density is zero on a shell with radius equal to 1.4�.

FIG. 4. �Color online� The free energy F as a function of the
applied magnetic field H for the giant vortex states in a sphere with
radius R=2� �a�, 4� �b�, and 6� �c�.
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III. MULTIVORTEX STATES

For sufficiently large spheres, and when we move away
from the S/N boundary, the giant vortex state can break up
into multivortices. In order to investigate such structures, we
use the method proposed by Schweigert and Peeters,1,29

Yampolskii and Peeters,27 and Palacios3,28 for disks, and ex-
tend it here to spheres in order to determine the stability of
the different multivortex configurations in spheres. Follow-
ing Refs. 27 and 29, the order parameter of the multivortex

state is written as a linear combination of the eigenfunctions
of the linearized Ginzburg-Landau equation �1�, i.e.,

���,�,z� = �
L=0

N

CL�L��,z�exp�iL�� , �11�

where the vorticity L is now the value of the effective total
angular momentum, which is equal to the number of vortices
in the sphere. Note that we restrict ourself to n=1 as done in
Refs. 3, 27, and 28.

Substituting Eq. �11� in the free-energy expression, we
obtain F as a function of the complex parameters �CLj

�.
Minimization of F with respect to these parameters allows us
to find the equilibrium vortex configurations and to deter-
mine their stability. The extremal points are determined by
the solutions �CLj

0 � of the set of equations

�F

�CLj

= 0. �12�

The stable vortex states are determined by the usual criterion
for a multivariable function: the matrix consisting of the sec-
ond derivative �also called the Hessian matrix�, i.e.,

� �2F

�CLj
�CLk

�
CLj

=CLj

0 ,CLk
=CLk

0

, �13�

must be positive definite. The giant vortices are also de-
scribed by Eq. �11�: they correspond to CLj

0 =0, except for
one nonzero coefficient CLj=L

0 . This allows us to check the
stability of giant vortex states with respect to transitions into
a multivortex state.

Let us now consider states which are built up by only two
components in Eq. �11�. This restricts our analysis quantita-
tively but, nevertheless, will give the correct qualitative be-
havior for not too large values of the radius R, as considered
in the present paper, and will facilitate the physical insight
into the problem. The free energy of a two-component state
is

F = CL1

4 AL1
+ CL2

4 AL2
+ 4CL1

2 CL2

2 AL1,L2
+ 2�L1

CL1

2 BL1

+ 2�L2
CL2

2 BL2
, �14�

where

ALi
= �

−R

R

dz�
0

R�z�

�d��Li

4 ��,z� ,

BLi
= �

−R

R

dz�
0

R�z�

�d��Li

2 ��,z� ,

AL1,L2
= �

−R

R

dz�
0

R�z�

�d��L1

2 ��,z��L2

2 ��,z� , �15�

with R�z�=	R2−z2. Although, in general, the coefficients CLj
are complex numbers, for our two-component state, one can
easily show that they are real numbers. Minimization of Eq.

FIG. 5. �Color online� The eigenvalue � as a function of the
applied magnetic field for the states with L=0 �red curves� and L
=1 �blue curves� corresponding to the lowest eigenvalue �solid
curves�, the first excited state �dashed curves�, the second excited
state �dash-dotted curve�, and the third excited state �dotted curve�.

FIG. 6. �Color online� Contour plots of the Cooper-pair density
of the first �n=2�, second �n=3�, and third �n=4� excited states for
L=0 ��a�–�c�� and L=1 ��d�–�f�� at H=0.6Hc2. High �low� Cooper-
pair density is given in red �blue� regions. White regions indicate
���2�0.01.
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�14� with respect to CL1
and CL2

gives the possible equilib-
rium states:

�i� the normal state,

CL1

�0� = CL2

�0� = 0, �16�

�ii� the giant vortex states,

CL1

�0� = 0, CL2

�0� = �− �L2

BL2

AL2

�1/2

,

CL1

�0� = �− �L1

BL1

AL1

�1/2

, CL2

�0� = 0, �17�

�iii� the multivortex states

CL1

�0� = ± �− �L1
AL2

BL1
+ 2�L2

AL1,L2
BL2

AL1
AL2

− 4AL1,2

2 �1/2

,

CL2

�0� = ± �− �L2
AL1

BL2
+ 2�L1

AL1,L2
BL1

AL1
AL2

− 4AL1,2

2 �1/2

. �18�

To check the stability of the different vortex states, we
have to calculate the components of the Hessian matrix �13�,
i.e.,

�2F

�CL1

2 = 12CL1

2 AL1
+ 8CL2

2 AL1,L2
+ 4�L1

BL1
,

�2F

�CL2

2 = 12CL2

2 AL2
+ 8CL1

2 AL1,L2
+ 4�L2

BL2
,

�2F

�CL1
�CL2

= 16CL1
CL2

AL1,L2
. �19�

By substituting the solutions �16�–�18� into Eq. �14�, we ob-
tain the energies of the different equilibrium states, and from
Eq. �19� we get the corresponding conditions for their stabil-
ity.

�i� For the normal state, we obtain F=0. Note from Eq.
�19� that for negative �L1�L2�, this state is always unstable.

�ii� The energies of the giant vortex states are

FLi
= − �Li

2
BLi

2

ALi

2 , �20�

which coincide with the result of Eq. �9�. The conditions for
the stability of the giant vortex states with vorticities L1 and
L2 are

�2F

�CL1

2 =
4

AL2

��L1
AL2

BL1
− 2�L2

AL1,L2
BL2

� 
 0,

�2F

�CL2

2 = − 8�L2
BL2


 0 �21�

and

�2F

�CL2

2 =
4

AL1

��L2
AL1

BL2
− 2�L1

AL1,L2
BL1

� 
 0,

�2F

�CL1

2 = − 8�L1
BL1


 0. �22�

�iii� The energy of the multivortex state becomes

FL1,L2
=

− �L1

2 AL2
BL1

2 − �L2

2 AL1
BL2

2

AL1
AL2

− 4AL1,L2

2 +
4�L1

�L2
AL1,L2

BL1
BL2

AL1
AL2

− 4AL1,L2

2 ,

�23�

and the corresponding stability conditions are

�2F

�CL1

2 = 8AL1

− �L1
AL2

BL1
+ 2�L2

AL1,L2
BL2

AL1
AL2

− 4AL1,L2

2 
 0,

�2F

�CL2

2 = 8AL2

− �L2
AL1

BL2
+ 2�L1

AL1,L2
BL1

AL1
AL2

− 4AL1,L2

2 
 0, �24�

and

�2F

�CL1

2

�2F

�CL2

2 − � �2F

�CL1
�CL2

�2

= �− �L1
AL2

BL1
+ 2�L2

AL1,L2
BL2

�

��− �L2
AL1

BL2
+ 2�L1

AL1,L2
BL1

�

�
64

AL1
AL2

− 4AL1,L2

2 
 0. �25�

We will use the following notation: L state for the giant
vortex state with vorticity L, and �L1 ,L2� state for the multi-
vortex state constructed as a linear combination of the giant
vortex state with vorticity L1 and the giant vortex state with
vorticity L2. The latter state will have vorticity equal to the
maximum of L1 and L2.

First, we calculate the free energy of all the metastable
states in a superconducting sphere with radius R=2, 4, and
6� as a function of the applied magnetic field. This gives us
the possibility to check the dependence of the stability of the
multivortex state on the sphere size. Figure 7 shows the free
energy for the sphere with R=2�. Since the radius of the
sphere is so small, only the 0 state, i.e., the Meissner state,
and the 1 state �both giant vortex states� can nucleate. The
free energy of the L=0 and L=1 states as a function of the
magnetic field is exactly the same as in Fig. 4�a�, but the
stability region is reduced, which is determined by Eq. �21�.

When we increase the sphere size, more multivortex
states become stable over a certain magnetic-field region. In
Fig. 8, we show the free energy of all �meta-�stable giant and
multivortex states in a sphere with radius R=4� as a function
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of the applied magnetic field. The high magnetic-field region
is given in more detail in Fig. 8�b�. Giant vortex states are
given by solid curves, �0,L� multivortex states by dashed
curves, �1,L� multivortex states by dotted curves, and �L

1,L� multivortex states by dash-dotted curves. We find that
giant vortex states stabilize for L=0 up to L=8, �0,L� states
for L=2–7, �1,L� states for L=4–7, and also the �2,7� and
�3,8� states are stable over a certain magnetic-field range.
Different from the R=2� situation, we find that it is possible
that for a given total vorticity L, several vortex states can
nucleate at a certain magnetic field. As an example, for L
=6, we find that at H0 /Hc2=0.95 two multivortex states are
metastable, i.e., the �0,6� state and the �1,6� state, where the
�1,6� state has lower energy than the �0,6� state. The transi-
tions between giant vortex states with vorticity L and the
�0,L� states are continuous �i.e., of second order� as function
of the magnetic field. The other transitions, i.e., between the
different multivortex states, are of first order and the deriva-
tive of the free energy exhibits a jump.

The thermodynamic ground state, i.e., the state with low-
est free energy, is as follows: At low fields, the Meissner
state with L=0 is the ground state. Around H /Hc2=0.37, the
free energy of the 0 state equals that of the 1 state, which is
the ground state up to H /Hc2=0.64 when the 2 state takes
over. Note that for L=3 and 4, the ground state is first given
by the �0,L� state and then by the giant vortex state. To show
the variation of the ground state as a function of the applied
magnetic field, we plot in Fig. 9 the vorticity of the ground
state as a function of the field. When the ground state is a
giant vortex state, the result is given by black curves, while
for the �0,L� state, we indicate the ground state by red
curves. The top axis in Fig. 9 indicates the flux passing
through the equator. As is typical for mesoscopic systems,
we find that the flux increase ��
�0 for each L value and
that Lgroundstate on the average increases faster than linear
with H.

When we further increase the sphere radius to R=6�, the
number of possible �meta�stable multivortex states increases

further. Considering only states with total vorticity L�15,
we find 89 states which are �meta-�stable over a certain
magnetic-field region. Giant vortex states nucleate for all

FIG. 7. �Color online� The free energy as a function of the
applied magnetic field for the �meta-� stable states in a supercon-
ducting sphere with radius R=2�.

FIG. 8. �Color online� �a� The free energy as a function of the
applied magnetic field for all the �meta-�stable states in a supercon-
ducting sphere with radius R=4�. �b� The high magnetic-field re-
gion in more detail.

FIG. 9. �Color online� Vorticity of the ground state for a sphere
with radius R=4� as a function of the applied magnetic field. Giant
vortex states are shown in black; �0,L� states in red. The vertical
dashed lines indicate the transition fields. The top axis gives the flux
penetrating the equator.
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values of the vorticity from L=0 up to L=15, the �0,L� state
for L=2–15, the �1,L� for L=4–15, the �2,L� for L
=5–15, the �3,L� for L=7–15, the �4,L� for L=8–15, the
�5,L� for L=10–15, the �6,L� for L=11–15, the �7,L� for
L=12–15, the �8,L� for L=14 and 15, and finally, also the
�9,15� state nucleates.

Figure 10 shows the vorticity of the ground state as a
function of the applied magnetic field. The different colors of
the curves correspond to the different vortex states. The
ground state is a giant vortex state for L�2 and L�13, a
�0,L� state for L=3–5, a �1,L� state for L=6–8, and a �2,L�
state for L=10 over the whole magnetic-field region, where
the state with vorticity L is a ground state. For L=9, 11, and
12, we find a transition between two different multivortex
states. For L=9, the ground state is first the �2,9� state and
transits with increasing field to the �1,9� state. Note that this
transition is of first order. For L=11, the �3,11� state transits
into the �2,11� state with increasing field, while for L=12, the
�3,12� state transits into the giant vortex state with L=12. For
L�13, only giant vortex states are found, which is a mani-
festation of surface superconductivity at high magnetic
fields.

To gain further insight into the nature of the vortex state,
we investigate the Cooper-pair density in the xy plane of the
sphere. In Fig. 11, contour plots of the Cooper-pair density in
the xy plane are shown for a sphere with radius R=4�. Fig-
ures 11�a�–11�d� correspond to the �0,3�, �0,4�, �0,5�, and
�0,6� states at a magnetic field H=0.85Hc2. High Cooper-pair
density is given by red regions and low Cooper-pair density
by blue regions. The white point is the center of the vortex
where the Cooper-pair density ���2�0.001. When we com-
bine a giant vortex state with L=0 with a giant vortex state
with L=L1
0, we find that the vortex state consists of L1
vortices located on a shell, while there is no vortex in the
center.

What happens when we take a linear combination of two
giant vortex states with L
0? Let us first consider the
�1,L1� states, i.e., a linear combination of the L=1 giant

vortex state and a giant vortex state with vorticity L1. In Figs.
11�e�–11�h�, the Cooper-pair density for a sphere with R
=4� is shown for z=0 for the �1,4�, the �1,5�, the �1,6�, and
the �1,7� combinations at H /Hc2=0.38, 0.42, 0.79, and 0.87,
respectively. From Fig. 8 we know that the magnetic-field
ranges over which these �1,L1� states are stable are much
smaller than for the �0,L1� states. The �1,L1� states only
exist in very narrow magnetic-field regions. From Figs.
11�e�–11�h� we notice that there is one vortex in the center
while L1−1 vortices are situated on a shell around this cen-
tral vortex.

Next, we try to find stable linear combinations of two
giant vortex states with L
1 for R=4�. We find that only
two of these states are stable, i.e., the �2,7� state and the �3,8�
state. The Cooper-pair density of these multivortex states are
shown in Figs. 11�i� and 11�j� at H=1.1Hc2. In both cases,
the multivortex state consists of a giant vortex in the center
surrounded by a shell of several single vortices. For the �2,7�
state, the giant vortex has vorticity L=2, while for the �3,8�
state, the central giant vortex has vorticity L=3. In both
cases, the giant vortex is encircled by a shell of five single
vortices.

With increasing sphere radius, the �L1 ,L2� multivortex
stabilizes for many more values of L1 and L2. For spheres
with radius R=6�, we find that multivortex states up to the

FIG. 10. �Color online� The same as Fig. 9 but now for a sphere
with radius R=6�.

FIG. 11. �Color online� Contour plots of the Cooper-pair density
in the z=0 plane of a sphere with radius R=4� for the �0,3�, �0,4�,
�0,5�, and �0,6� states at H=0.85Hc2 ��a�–�d��; the �1,4�, �1,5�, �1,6�,
and �1,7� states at H /Hc2=0.85, 0.90, 0.95, and 1.05 ��e�–�h��, re-
spectively; and the �2,7� and �3,8� states at H=1.1Hc2 ��i� and �j��.
High �low� Cooper-pair density is given in red �blue and white�.
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combination of L1=9 and L2=15 can be stabilized. As an
example, we show in Figs. 12�a� and 12�b� contour plots of
the �4,9� and �5,11� states in a sphere with radius R=6�. The
�4,9� state consists of a central giant vortex with vorticity
L=4, encircled by five single vortices, and the �5,11� state
consists of a giant vortex with vorticity 5 in the center and
six single vortices on a shell around this vortex.

Up to now, we gave examples of stable multivortex states
at a fixed magnetic field. But what is the influence of the
magnetic field on the position of the vortices? To show this
effect, we plot in Figs. 13�a�–13�d� the �0,4� state in a sphere
with radius R=4� at several values of the applied magnetic
field, i.e., H=0.61Hc2, H=0.73Hc2, H=0.85Hc2, and H
=1.03Hc2, respectively. With increasing magnetic field, the
vortices clearly move in the direction of the center. Note that
in Fig. 13�d� the vortices of the �0,4� state are close to the
center, where we have an almost circular area where ���2 is
very small. When we further increase the applied magnetic
field, the four vortices combine into one big giant vortex
with vorticity L=4, i.e., the �0,4� multivortex state transits
into a L=4 giant vortex state. This transition is continuous,
i.e., of second order.

When encircling a single vortex, the phase of the order
parameter changes with 2�. For giant vortex states, the
phase of the order parameter will change by L�2� when
encircling the giant vortex. Now, we investigate the phase of
the order parameter in case of a multivortex state. In Figs.

14�a�–14�d�, the phase of the order parameter in the z=0
plane is shown for the �0,3�, �1,5�, �2,7�, and �3,8� states in a
sphere with radius R=4� at magnetic fields H /Hc2=0.65,
0.65, 1.15, and 1.27, respectively. Note that these multivor-
tex states are �meta-�stable at the considered magnetic-field
values. Red regions correspond to phases near 2�, while
blue regions correspond to phases near zero. Let us first con-
sider the �0,3� state in Fig. 14�a�. When encircling the sphere
near the boundary, we find that the phase changes three times
with 2�. This means that the total vorticity is 3. When en-
circling the center of the sphere, the phase remains almost
zero �or 2�, which means the same�. So, there is no vortex in
the center. The three vortices are clearly on a shell around the
center of the sphere. When encircling a single vortex, the
phase changes clearly by 2�, which means that the vortex is
singly quantized. From Fig. 14�b� we know that the �1,5�
state has total vorticity 5. It contains one singly quantized
vortex in the center and four single vortices on a shell. The
�2,7� state �Fig. 14�c�� has total vorticity 7, a giant vortex
with vorticity L=2 in the center and five singly quantized
vortices on a shell. Fig. 14�d� shows the �3,8� state, which
consists of a giant vortex with L=3 in the center and five
single vortices on a shell. The total vorticity is 8.

For disks, the stability of the multivortex state was inves-
tigated by Schweigert et al.,2,29 Palacios,3,28 and Yampolskii
and Peeters.27 Above, we adapted this stability criterion to
superconducting spheres. For disks, we know that the coef-
ficients CL are usually complex numbers, but for the two-
component state it was shown that the CL are real numbers,
and the stable states have a positive Hessian matrix. This
criterion also works well for the two-component situation in
spheres. But in this case, the coefficients are complex even in
the two-component situation. However, for the stable states,
we found that the coefficients CL are real and positive. We
checked this for all the vortex states studied in our work.
This result can be used as a more simple criterion to

FIG. 12. �Color online� Contour plots of the Cooper-pair density
in the xy plane of a sphere with radius R=6� for the �4,9� and �5,11�
states.

FIG. 13. �Color online� Contour plots of the Cooper-pair density
in the xy plane of a sphere with radius R=4� for the �0,4� state at
H /Hc2=0.61, 0.73, 0.85, and 1.03.

FIG. 14. �Color online� Contour plots of the phase of the order
parameter in the equator plane of the sphere �R=4�� for the �0,3�,
�1,5�, �2,7�, and �3,8� states at H /Hc2=0.65, 0.65, 1.15, and 1.27,
respectively.
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determine the stability of the multivortex states in mesos-
copic spheres.

Up to now, we focused on the Cooper-pair density and the
order parameter of the multivortex state, i.e.,

���,�,z� = CL1
�L1

��,z�eiL1� + CL2
�L2

��,z�eiL2�, �26�

in the equator plane of the sphere. Due to the boundary of the
sphere, it can be expected that the spatial distribution of the
vortices will change when going away from the equator
plane, i.e., when considering z�0. As an example, we show
in Figs. 15�a�–15�d� the three-dimensional distribution of the
Cooper-pair density in a superconducting sphere with radius
R=6� at H=0.70Hc2 for the �0,3�, �1,5�, �2,7�, and �3,9�
states. Note that the diameters of the vortices in these figures
are different from the vortices in the two-dimensional con-
tour plots above. Here we show the isosurfaces where the
Cooper-pair density has a fixed but low value. Therefore, we
only see the sphere boundary and the “boundaries” of the
vortices. Note that the vortices bend toward the boundary of
the sphere when moving away from the z=0 plane, except
for the �giant� vortex in the center. Figure 15�a� shows the
�0,3� state, where three vortices are on a shell in the z=0
plane. It is shown that all vortices bend toward the outer
boundary with increasing z. Figure 15�b� shows the �1,5�
state, where one vortex is in the center, which is surrounded
by four vortices on a shell. The central vortex stays along the
�=0 axis, while the other vortices bend outward. Thus, for
z�R, only the central vortex is inside the sphere, while the
other vortices left the sphere. Figures 15�c� and 15�d� show
the �2,7� and �3,9� states, where a central giant vortex is
surrounded by single vortices. For z
0, the giant vortex
remains around the z axis, while the other vortices move
toward the outer boundary. From these figures, it is also clear
that the radius of the giant vortex increases with vorticity L.

Note further that the radius of the giant vortex is larger
around z=0 and decreases slightly when we move away from
the equator plane.

To show in more detail the z dependence of the Cooper-
pair density, we plot in Fig. 16 different two-dimensional
cuts of Fig. 15�c� at z /�=0, 1.2, 2.4, 3.6, 4.8, and 5.9, re-
spectively. For z=0, we find a giant vortex with L=2 in the
center surrounded by five vortices. With increasing z, these
five vortices move toward the outer boundary �see Figs.
16�b�–16�d��. Around z=4.8� �see Fig. 16�e��, they leave the
superconducting sphere. When we further increase z, we
only find the central giant vortex �see Fig. 16�f��.

IV. CONCLUSIONS

We studied the possible �meta-�stable vortex states in su-
perconducting spheres with radius R=2, 4, and 6� in the
presence of an external applied magnetic field. First, we lim-
ited our study to the axial symmetric giant vortex states by
treating the first linear Ginzburg-Landau equation as an ei-
genvalue problem. We found that with increasing sphere ra-
dius, more vortex states stabilize, while the superconducting
and/or normal transition field decreases. Also, the number of
�meta-�stable vortex states at a given magnetic field increases
when the radius increases. Although not stable for the con-
sidered spheres, we also investigated higher-energy states,
where ��r�� has a nodal plane.

Second, we took linear combinations of the different giant
vortex states in order to find approximate solutions of the
nonlinear Ginzburg-Landau theory. In this way, we can also
find �meta-�stable multivortex state solutions and determine
the stability regions of the different giant vortex states. With
increasing sphere radius, the number of �meta-�stable multi-
vortex states and their stability region increase. We found
second-order transitions between the �0,L� multivortex and
giant vortex states with vorticity L, while the transitions be-
tween the different multivortex states with the same vorticity

FIG. 15. �Color online� Three-dimensional figures of the �0,3�,
�1,5�, �2,7�, and �3,9� states in a superconducting sphere with radius
R=4�.

FIG. 16. �Color online� Contour plots of the Cooper-pair density
in the xy plane for the configuration corresponding to Fig. 15�c� for
different values of z, i.e., z /�=0, 1.2, 2.4, 3.6, 4.8, and 5.9.
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and transitions between states with different vorticities are of
first order. From the three-dimensional structure of the vor-
tices, we find that the central �giant� vortex stays around the
z axis, when we move away from the equator plane, and the
size of the giant vortex slightly decreases. The single vortices
�situated on a shell around the z axis� move toward the
sphere boundary with increasing �z�.
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