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We derive a lattice � function for the two-dimensional antiferromagnetic Heisenberg model, which allows
the lattice interaction couplings of the nonperturbative quantum Monte Carlo vacuum to be related directly to
the zero-temperature fixed points of the nonlinear sigma model in the presence of strong interplanar and spin
anisotropies. In addition to the usual renormalization of the gapful disordered state in the vicinity of the
quantum critical point, we show that this leads to a chiral doubling of the spectra of excited states.
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I. INTRODUCTION

The two-dimensional �2D� antiferromagnetic Heisenberg
model is a well studied system that has two renormalization-
group �RG� fixed points that have been identified at zero
temperature through various applications of the 2D nonlinear
sigma model.1,2 Depending on the relative anisotropy of the
exchange coupling J between the two spatial directions of
the system, the ground state of the 2D antiferromagnetic
ground state is found to be either Néel ordered and gapless or
a gapful quantum disordered state. Varying the anisotropy
drives dynamical fluctuations causing a zero-temperature
phase transition between the two ground states,3 whereby the
system effectively crosses over from two dimensions to three
dimensions.4 Without the inclusion of a � term, the 2D non-
linear sigma model is used to give an effectively classical
description of the Néel ordered ground state, and the quan-
tum nature of the disordered state arises in some nontrivial
way through the dynamical scale evolution of the system. It
has been questioned whether the inclusion of an explicit
source term for quantum fluctuations would be of relevance
in the Néel phase5,6 in order to understand the mechanism of
symmetry breaking, but the inclusion of such a � term pro-
vides an irrelevant perturbation. However, if no source term
for quantum fluctuations is included, the renormalization
scale of the system can only be defined through phenomeno-
logical input. This picture has been successfully verified in
detail by comparing nonlinear sigma model predictions for
the scaling of the correlation length in the Néel and quantum
disordered regimes, with numerics obtained from quantum
Monte Carlo �QMC� studies.7,8

Recently, a treatment of the reverse picture has been given
via a conformal analysis of quantum spin chains.9 Impor-
tantly, this identifies the effect of dynamical fluctuations on
the � term. In principle, this effect should simply be to res-
cale the couplings of the underlying sine-Gordon model by a
dynamical factor. However, we have recently pointed out
that the convergence of the perturbative deformation is not
guaranteed and a nonperturbative renormalization prescrip-
tion is required.10 In this work, we extend this nonperturba-
tive renormalization picture to give a description of the role
of quantum effects in the dynamical fluctuations of the 2D
antiferromagnetic Heisenberg model. Whether or not a �
term is relevant in the Néel phase,11 the O�3� spin operators

of the nonperturbative QMC method12 have already been ob-
tained through a form of topological dimensional reduction.
Consequently, there are IR cutoff effects associated with the
finite lattice system dynamics, and it is difficult to disen-
tangle these effects from genuine mechanisms of symmetry
breaking. Recent treatments based around the 2D O�3� model
have included the effect of a marginally irrelevant topologi-
cal term possessing a U�1� symmetry.6 Our nonperturbative
approach extends this picture by considering the effect of a
finite IR lattice cutoff within the couplings of these terms.

We focus on the nonperturbative properties of the
continuous-time QMC method. This scheme has the same
basic transfer-matrix structure that is defined for the density-
matrix renormalization-group �DMRG� method,13,14 but the
numerical basis of the lattice partition function for the
continuous-time QMC method is defined through the appli-
cation of classical loop-cluster methods. There are a number
of closely related QMC schemes that can also be used to
generate this lattice partition function, and these are dis-
cussed in detail in the review in Ref. 15. However, we are
singling out the continuous-time scheme because the loop-
cluster Monte Carlo updating process is slightly different.
The closed loops in this scheme, which represent the trace of
the lattice partition function, are generated through a se-
quence of successive local Monte Carlo updating decisions,
and this is in contrast with other QMC schemes, closer to the
original classical loop-cluster method, where the Monte
Carlo updating decision is made by comparing the probabi-
listic weights of closed loops. All of the QMC schemes
which use the DMRG form of the transfer matrix in Refs. 13
and 14 can be given the same interpretation as systems of
O�3� spin vectors, but the continuous-time method has the
additional feature that the lattice partition function is defined
to be analytically continuous in Euclidean time over some
finite interval. The reason why this is important is because,
unlike the dynamical scaling relations of classical spin
systems,16 the dynamical critical exponent for the QMC
Euclidean-time direction only relates to a topologically com-
plete system in the large lattice volume and stochastic prob-
ability distribution limits of the QMC method.17 Therefore, a
complete understanding of numerical correction effects and a
direct comparison with the couplings of the 2D nonlinear
sigma model are difficult with the generic method because
finite-size lattice systems only asymptotically approach these
limits. Using the special continuous analytic property of the
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continuous-time methods, we are now able to define this lim-
iting process in another way. The nonperturbative lattice
renormalization-group equation for the 2D antiferromagnetic
Heisenberg model that we now propose is useful as it can
save computational effort in numerical studies by interpola-
tion of the dynamical scaling.

II. QUANTUM MONTE CARLO METHOD

In order to understand the renormalization-group flow of
the lattice couplings in the QMC method that are defined
using the transfer matrices in Refs. 13 and 14 and how these
relate to the 2D nonlinear sigma model, it is important to
understand why these methods do not, in general, yield Lor-
entz invariant systems. This particular form of the QMC
method has a deceptively simple overlap with the 2D O�3�
model. Numerical loop evolution generates the lattice path
integrals and partition functions in the generic approach.
This loop evolution proceeds over both the spatial and
Euclidean-time extents of the lattice on an equal footing
through the evaluation of local Monte Carlo decisions. The
three component O�3� quantum spin operators are repre-
sented by their Sz component as a discrete spin defined on
the spatial lattice sites, and the Sx and Sy components of the
spin operators are defined through the projection of the prob-
ability distribution of the loop evolution defined for the
Euclidean-time extent.18 Thus, we arrive at a very similar
picture to the continuum 2D O�3� model with a � term, but
the crucial difference is that the topological term has a finite
IR cutoff. Although for sufficiently large lattice volumes the
distributions of the projections of the operators onto the spa-
tial and Euclidean-time lattice directions do converge, these
distributions are not constrained to be identical in the lattice
ensemble through the definitions of the loop evolution.19 Al-
though the transfer matrix is isotropic in space and Euclidean
time, the individual loops that are realized through probabi-
listic decisions are not. Spatial and Euclidean-time isotropies
are only realized in the stochastic limit of the lattice en-
semble. In practice, a model defined with isotropic interac-
tion couplings can be realized as being locally anisotropic
through the dynamics.

Our aim in this paper is to attempt to quantify the effect of
this local anisotropy. In general, if we focus just on the spa-
tial properties of the lattice ensemble, then the critical behav-
ior, measured via the probability distribution of the Sz com-
ponent of spin, can be defined as a function of the lattice
interaction coupling J. This follows from the usual finite-size
scaling �FSS� picture, which consists of asymptotic expan-
sion about renormalization-group fixed points.20 However,
since the generic QMC spin operators are also defined
through a form of topological dimensional reduction, this
implies that the fixed point can also be approached smoothly
in � �the inverse temperature and cutoff scale for Euclidean
time�. If this equivalence property is realized, the dynamical
critical exponent is necessarily unity and the system is Lor-
entz invariant. However, in general, this scaling picture is
disrupted by IR cutoff effects, and, consequently, the numeri-
cally realized system cannot be Wick rotated. Therefore, by
defining an exact basis of dynamical fluctuations, the equiva-

lence with the O�3� spin vectors is broken in the generic
QMC method that is defined through the transfer matrix in
Refs. 13 and 14.

What we will now therefore do is simply change the em-
phasis of the analysis. We will start with a Wick-rotated defi-
nition of the loop operators of the QMC method to make the
O�3� equivalence exact and then consider the IR cutoff ef-
fects that arise in finite-size lattice system in this choice of
basis. This will enable us to quantify the breakdown of Lor-
entz invariance through the emergence of dynamical scale
effects and to quantify the effect of dynamical fluctuations on
the irrelevant quantum perturbations of the 2D antiferromag-
netic Heisenberg model through nonperturbative renormal-
ization. We do this for the continuous-time QMC method in
Ref. 12, because the lattice partition function is analytically
continuous in Euclidean-time up to some finite scale.

III. WICK ROTATION

The approach we take is to identify an analytic analog of
the QMC partition function, which is Wick rotated. We ex-
press the O�3� spin operators using a formalism developed to
treat the probabilistic dynamics of lattice systems
analytically.21 This gives an exact description of the lattice
ensemble vacuum in the vicinity of the large volume stochas-
tic limit, i.e., in the UV. We then expand this description
toward the IR. The asymptotic freedom of the 2D O�3�
model has been known for some time.22 It is also known that
the IR fixed point associated with the Berry phase can be
treated via perturbative deformations.23 What we treat here is
the most general form of deformation of the irrelevant Berry
term, via couplings which are modified by the dynamical
fluctuations, where the convergence of the perturbative ex-
pansion would not then be guaranteed.

In general, a nonperturbative lattice ensemble is only
known through the expectation of its numerical matrix ele-
ments �. These matrix elements can be defined in terms of
the generalized spin vectors n that describe the state of the
spins on the lattice. For the QMC method, these matrix ele-
ments are defined in terms of both Sz components, defined on
the spatial lattice sites, and also Sx and Sy components, de-
fined through the projection of the probability distribution
onto the Euclidean-time extent of the lattice. In the stochastic
limit, we expect the system to be Lorentz invariant; there-
fore, we can define the Wick rotation of the lattice system
through the analytic continuation J� i�. The spin vectors
defined on the spatial lattice sites will then represent the
orientation of the Sx and Sy components of spin, and the spin
vectors defined on the Euclidean-time direction will repre-
sent the projection of the probability distribution defined for
the Sz component of the spins. The reason for doing this is
that in the continuous-time QMC method,12 the number of
lattice sites in the Euclidean-time direction is variable.
Therefore, if we Wick rotate the definitions, we are able to
consider the FSS of the topological terms and the IR cutoff
effects in quantifiable lattice units.

The transfer matrix of the 2D antiferromagnets is an
8�8 matrix,24 and so we define the lattice matrix elements
through three projection indices: onto the Euclidean-time di-
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rection and onto the two separate spatial directions. The im-
plicit isotropy between the Sx and Sy components of spin
defines a locally conserved current � associated with each
spatial lattice site. We therefore define two separate matrix
elements for the two different spatial directions on the lattice,

A�n� � �
�s,s�,s��

T��1��2

�
��G

�ss�s���n�
�n � 1s� � 1s�� � 1s����1�

�n��1�
,

�1�

B�n� � �
�s,s�,s��

T��1��2

�
��G

�ss�s���n�
�n � 1s� � 1s�� � 1s����2�

�n��2�
,

�2�

where G is the discrete Z�2� algebra of the Sz spins, � is an
element of G, �1, �2�L, and T is the Trotter number of the
Euclidean-time extent of the lattice. The partition function
for the 2D antiferromagnetic Heisenberg model is then given
in terms of these matrix elements as a path integral over
these two conserved currents,

Z =� d	�1
d	�2
exp��
0

�

A�ns�i�1 + B�ns�i�2 − V�ns�ds� ,

�3�

where V comprises the off-diagonal contributions to the spin
operator basis, which is simply a general matrix element on
the T � �1 � �2 lattice with no special symmetries,

V�n� � �
�s,s�,s��

T��1��2

�
��G

�ss�s���n�
�n � 1s� � 1s�� � 1s���n�

�n�n�
.

�4�

Instead of a single compact Berry phase term, in this non-
perturbatively motivated operator formalism, we have two
separate source terms in �, one for each of the two aniso-
tropic spatial directions. There is also an implicit cross term
in �1 � �2, which comes from V. From this latter term, we are
able to generate local states such as the plaquette ordered
ground states considered in Ref. 25 because of the fourfold
symmetry coming from the relative signs of �1 and �2. How-
ever, we can also consider what happens if we are unable to
continue either �1 or �2 through 2� because of the finite IR
cutoff. There will still be an equal number of instantons and
anti-instantons within the vacuum, conserving the total topo-
logical charge, but if the rotational symmetry about the Sx
and Sy spin component plane is lost, then the fourfold parity
symmetry is broken. This symmetry is broken down to a
twofold symmetry such that the instantons are no longer
symmetric under reflection about the Sz component of spin
and their chirality is lost. In the 2D O�3� model, the Néel
phase is defined by having a larger correlation length than
that of the dynamical fluctuations. The same is true for the
ground state realized by the generic QMC method, but at
finite Trotter number, the same is not necessarily true for

correlations in the 4� rotational symmetry of the instantons
away from the limit in which the lattice ensemble is Lorentz
invariant.

To simplify the cross term of �1 � �2, we can define the
projection of the �1 component of V,

C�n� � �n�V2�ns���n�

= �
�s,s�,s��

T��1��2

�
��G

�ss�s���n��1�s��n� �
�s,s�,s��

T��1��2

�
��G

�ss�s���n�

��n � 1s� � 1s�� � 1�s��ns�� . �5�

Substituting, this then yields the partition function

Z =� d	�1
d	�2
exp��
0

�

A�ns�i�1 + C�ns�i�1

+ B�ns�i�2 − V��ns�ds� , �6�

where V��ns��V�ns�−C�ns�.

IV. LATTICE SPACING

Our motivation for making a Wick rotation is to quantify
the effect of dynamical fluctuations on the irrelevant Berry
term in the 2D antiferromagnetic Heisenberg model. In the
above Wick-rotated operator definitions, �1 and �2 are non-
compact Abelian variables, and the Euclidean-time extent is
used to represent the multiplicity of these phases. Conse-
quently, each of the discrete intervals of the Euclidean-time
extent now corresponds to a different � vacuum. To relate
this formalism to the usual compact definition of topological
charge 	given for the 2D O�3� model
, we must somehow
select one of these � vacua over the others to be our refer-
ence compact sector. Conveniently, this choice of � vacuum
naturally arises from the nonperturbative dynamics in the
form of the numerical expectation value that is realized by
the projection of the probability distribution defined for Eu-
clidean time.10 Stating this simply, each spin site on the T
� �1 � �2 lattice has an associated matrix element �, and the
Euclidean-time projection of � has a larger value in one of
the discrete intervals of the Euclidean-time extent than in the
others. This is, however, a spatial site-specific result. In prin-
ciple, each spatial site can have the maxima of this projection
arise in a different Euclidean-time interval. Different local
sites can, therefore, correspond to different � vacua, which
presents a source of nonintegrable singularity in analytically
continuing the lattice interaction coupling J.26 These singu-
larities, though, are precisely the form of dynamical
fluctuation-induced IR cutoff effect that we are aiming to
quantify.

To quantify these properties, we introduce local measures
of lattice spacing a and b defined in units of � and �, respec-
tively. These are given as the difference between the projec-
tion of the matrix element realized on a given lattice site and
the expectation of the projection averaged over the corre-
sponding lattice extent,

�1as� � A�ns�� − �A�ns����1
,
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�as � A�ns� − �A�ns��T,

�2bs� � B�ns�� − �B�ns����2
,

�bs � B�ns� − �B�ns��T. �7�

Practically, A�ns� and B�ns� can be found directly as they
correspond to the diagonal entries of the numerical transfer
matrix of the continuous-time QMC method. Similarly, the
two operator projections A�ns�� and B�ns�� can be calculated
by summing the local continuous-time QMC transfer-matrix
entries over the spatial sites rather than Euclidean time.
Thus, in a formal mathematical sense, these lattice spacing
definitions define the support of the matrix elements found
by integrating the local T � �1 � �2 matrix elements over a
given lattice direction.

A related quantity is the parallel transport between neigh-
boring lattice sites for which we can define the following
local derivative operators:

�sA�ns� � A�ns+1� − A�ns� = i�1A�ns� ,

�sB�ns� � B�ns+1� − B�ns� = i�2B�ns� . �8�

V. LATTICE � FUNCTION

To identify another nonperturbative lattice � function, we
define an effective action for the partition function of Eq. �6�,
which is given as an expansion in the self-energy terms of
the dynamical basis. A general loop generated by the Monte
Carlo process is of the form T � �1 � �2 and is given by the
action of V�n� operators on the vacuum. Similarly, the action
of the A�n� operators generates loops of the form T � �1, and
the B�n� operators generate loops of the form T � �2. Thus,
the self-energy terms of the Wick-rotated dynamical basis we
have defined, which describe the projection of the A and B
operators onto V, are of the form �1 and �2 and correspond
to the �-symmetry breaking component of the vacuum. The
effective action is of the form

S = S1 + S2 + S12, �9�

where

S1 = �
0

�

ds�sA�ns� − �s	V��ns�A�ns�
 − V��ns� ,

S2 = �
0

�

ds�sB�ns� − �s	V��ns�B�ns�
 − V��ns� ,

S12 = �
0

�

ds�s
C�ns� − �s	V��ns�C�ns�
 + V��ns� . �10�

The terms of the effective action are of the same form as
the undeformed action in Eq. �3�. These terms are defined
through a form of topological dimensional reduction where
an explicit integration is performed over � to project out the
Euclidean-time dependence. Next, we integrate out the effec-

tive action terms in a second topological dimensional reduc-
tion step by integrating out the expansion over the compact
sectors that define each lattice matrix element. The purpose
of this second step is to make the effective action compact,
which then allows us to make a direct comparison between
our new RG flow and that of the 2D nonlinear sigma model.
To do this, we introduce two variables; x which is a general
position index on T � �1 and y which is a general position
index on T � �2.

Our aim, following Ref. 9, is to treat the effect of irrel-
evant quantum fluctuations on the relevant dynamical fluc-
tuations of the 2D nonlinear sigma model, given in Ref. 1.
Our operator formalism is defined to be exact in the basis of
these dynamical fluctuations from the properties of the
continuous-time QMC method. In practice, the numerics suf-
fer from IR cutoff effects but we have Wick rotated the op-
erator definitions in order to quantify this effect on the topol-
ogy of the O�3� spin vectors. In principle, the IR cutoff
implies that the 2�-rotational symmetry of the Sx and Sy
plane components is broken. However, we have the freedom,
from the renormalization-group properties of the relevant dy-
namical fluctuations, to simply rescale the couplings of the
operators such that the 2�-rotational symmetry is present.
There is then a singularity that sits on the lattice vertices,
which appears essentially by modifying a finite number of
the poles of the lattice system to branch points.

The second topological dimensional reduction step is
straightforward to evaluate for the first two terms in Eq. �9�
using the local lattice spacing definitions given in Eq. �7�,

S1 = �
0

� �
−�

�

d2xas��x
2A�n� − as�x

2V��n� − as ∧ as�, �11�

S2 = �
0

� �
−�

�

d2ybs��y
2B�n� − bs�y

2V��n� − bs ∧ bs�. �12�

These isotropic terms are of the form of the corresponding
sine-Gordon model description of quantum spin chains. This
is expected since the interaction between the two spatial lat-
tice directions is ignored. These terms imply, following Ref.
9, that the effect of quantum fluctuations can be simply res-
caled the into the existing couplings, which describe the dy-
namical fluctuations. The cross term, which links the two
spatial lattice directions, is slightly more involved, however,
since it involves a choice of branch,

S12 = �
0

� �
−�

�

d2x − 	1 − �C�ns���1

�x

2V��n�

+ �1 + bs ∧ bs��	1 − �V��ns���1

�x

2	C�n�


− �x�C�ns���1
�x�V��ns���1

= �
0

� �
−�

�

d2xas� ∧ �1 + bs ∧ bs���x
2	C�n�


− as ∧ �bs ∧ bs���x
2V��n� − �as ∧ as�� ∧ �bs ∧ bs�� .

�13�
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The cross-term contribution to the effective action, within
the contour between � and −�, is of the same form as Eq.
�11�, but the contribution from the branch point on the
boundary leads to an additional phase contribution to the
action.17 By comparing Eqs. �11� and �13�, we find that the
cross-term contribution is implicitly anisotropic and, there-
fore, is of the form of the double sine-Gordon model not the
sine-Gordon model.9 This means that although the effect of
quantum fluctuations on the dynamical fluctuations is irrel-
evant �amounting simply to a change in the renormalization
scale of the vacuum�, the effect of quantum fluctuations is
relevant for the Lorentz covariance scale of the dynamical
fluctuations. The effect of having a branch point associated
with parity in the cross term is that the parity of the vacuum
�that allows an exact symmetry between the instantons and
anti-instantons� can be explicitly broken via quantum fluc-
tuations. It is only in the limit when bs∧bs�=1 that the ef-
fective action term in Eq. �13� is Lorentz invariant and this
effect is vanishing.

What we should therefore find is that the spectrum of
excited states exhibits a doubling due to the degeneracy of
the broken chirality of the instanton–anti-instanton pairs,
when we are in the region of the classical dimensional cross-
over of the 2D quantum antiferromagnet with the presence of
strong anisotropies due to these quantum fluctuation effects.

The sine-Gordon renormalization-group equations for
Eqs. �11� and �12� are then trivially modified in the presence
of anisotropy.28 However, this leads to the emergence of an
unstable fixed point and finite renormalized region in the
vicinity of the second- order quantum critical point,

das

dl
= −

1

2
as

2�as� − bs ∧ bs�

�
�2

,

das�

dl
= �as� − bs ∧ bs���2 − 2as� . �14�

The axis crossing in the usual hyperboloid scaling picture
of the �as ,as�� phase plane is simply shifted by the inclusion
of branch singularities. This leads to a very simple analytic
rescaling of the relevant couplings of the gap state, but it is
one which is not easily quantified perturbatively in terms of
a global cross term �as in Ref. 1� because of the local site
dependence of the branch.17 It was argued in Ref. 27 that
such a contribution should be responsible for the appearance
of deconfined spinons at a finite energy gap above the or-
dered ground state. What we should, therefore, find is that
the spectrum of excited states exhibits a doubling due to the

degeneracy of the broken chirality of the instanton–anti-
instanton pairs when we are in the region of the classical
dimensional crossover of the 2D quantum antiferromagnet
through the Lorentz covariance of the irrelevant quantum
fluctuations.

VI. SUMMARY

From early spin-wave analyses of the 2D quantum anti-
ferromagnet, it was concluded that the role of quantum fluc-
tuations is irrelevant to the stability of the Néel ordered
ground state.29 Subsequent refinement of these arguments
has suggested that the crucial analytic property of the analy-
sis, which enables this stability, is the continuity of general-
ized spin operators that describe the vacuum.5,30 In this pa-
per, we have now considered the role of dynamical cutoff
effects on these quantum fluctuations in an exact basis of
dynamical fluctuations following the nonlinear sigma model
treatment given in Ref. 1. The crucial difference from previ-
ous studies is that we have now considered the role of aniso-
tropy on modifying the renormalization cutoff scale on the
phenomenological couplings of the ordered state. While it is
known to high accuracy that the Néel ordered ground state
closely follows spin-wave theory predictions,31 considerably
less is known about relevant renormalization of the dynami-
cal couplings by quantum fluctuations when the Lorentz
symmetry of the system is broken. This nonperturbative scal-
ing treatment forms a more realistic picture of the numerical
scaling of the dynamical basis defined by the generic QMC
method, which is only truly Lorentz invariant asymptotically
close to the stochastic limit. Similarly, the nonperturbative
renormalization-group formalism provides a loop expansion
formalism which is suitable for rigorously probing the con-
formal correspondence of experimental high-temperature su-
perconductivity data at strong interaction couplings. Our
main result from this analysis is that the effect of the branch
points that describe the chirality of the instantons can be
spontaneously broken through quantum fluctuations through
the Lorentz covariance of the couplings. We have argued,
following Ref. 27, that this should then lead to a doubling of
the spectrum of excited states in the vicinity of the quantum
critical point of the 2D quantum antiferromagnet when the
dynamical couplings are strong.
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