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Hopping anisotropies: A candidate for BCS-BEC crossover
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In a two-dimensional 7-J model that includes anisotropy in the hopping frequency of the charge carriers, the
crossover scenario from a BCS superconductor to a condensate of tightly bound bosonic pairs is studied. The
important length scales, such as the mean pair radius and penetration depth, are obtained as a function of the
anisotropy parameter that distinguishes hopping in one direction with respect to the other. The results indicate
a smooth evolution from a picture of highly overlapping Cooper pairs to a condensate of short-range bosonic
pairs with increasing anisotropy. The claim for the crossover phenomena is supported by calculating the
renormalized chemical potential which slips below the band minimum in the extreme anisotropy limit, imply-

ing the onset of a Bose phase.
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I. INTRODUCTION

The crossover phenomenon from a BCS superconductor
to a Bose superfluid'— and the associated physics have gen-
erated enormous attention among researchers in recent times.
It is instructive to look at Refs. 4 and 5 for a comprehensive
review on the subject. The fact that a condensate consisting
of weakly interacting fermionic degrees of freedom evolves
smoothly into one which is characterized by strongly inter-
acting bosons is worth a problem to investigate. A controlled
tuning of strength of the attractive interaction between the
carriers in the presence of a magnetic field for a system of
ultracold fermionic atoms has facilitated the study of the
crossover phenomenon in the cold atom problem in
laboratories.® The excitement is further intensified with the
recent experiments on optical lattices and its associated prac-
tical applications.'®!! Interestingly, the subject relates to both
atomic physicists and the condensed matter community.

The unusual features of the normal state observed in the
context of high-T. superconductors have put a special focus
on the physics governing the crossover. To be more specific,
the appearance of a pseudogap in the form of a depletion of
single-particle spectral weight around the fermi level below a
certain critical temperature 7" in the underdoped regime of
cuprates'>~!8 demonstrates the most comprehensive deviation
from the mean-field (BCS) scenario for superconductors. The
BCS picture may be viewed as a very special case where the
pair formation and the condensation occur simultaneously;
i.e., at the same temperature while at moderate values of the
interaction strength, the pairs form and condense at different
temperatures, as energetics favor pair formation within the
normal phase. Finally, the system comprising of such
bosonic degrees of freedom condenses at a different tempera-
ture, say, 7. (below 7*). The two temperature scales (7, and
T") signal the presence of two different gap parameters, one
of them being the superconducting gap (related to T,) and the
other corresponding to the excitations of the normal state or
pseudogap at temperature 7> T,.. To summarize, the bosonic
excitations in the pseudogap phase smoothly evolve into fer-
mionic ones in the BCS regime, thereby proving the inextri-
cable connection between the crossover phenomenon and the
pseudogap.
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Due to the somewhat controversial nature of the experi-
mental data available on the subject, the origin of the
pseudogap is not clearly understood. However, a large
community'®?! believes that a crossover scenario is best
suited to explain the origin of the pseudogap.

The crossover analysis has mostly concentrated on studies
to explore how the gap in the energy spectrum and the
chemical potential evolve as a function of the interaction
strength between the fermions.!>?? It can be shown that the
chemical potential changing sign can be regarded as the sig-
nature of crossover, at least at low densities. Physically, this
remarkably simple result demarcates the two regions in the
following way. At very weak interaction strengths (or large
particle density), the binding energy of a pair is extremely
small, thus the chemical potential is decided by the Fermi
energy alone and hence corresponds to a regime comprising
of overlapping Cooper pairs. In the other limit of strong in-
terparticle interaction (or low density), the binding energy of
the pair dominates and sets the scale for the chemical poten-
tial. In this way, the system consists of Bose-Einstein (BE)
condensate of bosons and the gap in the quasiparticle spec-
trum is different than that of BCS theory.'>?

In this paper, we study a simple model that incorporates
anisotropy in the hopping frequencies of the charge carriers.
In a two-dimensional ¢-J-U model, this means that the ki-
netic energies are different in the x and y directions (i.e., z,
#1,); however, the charges are allowed to interact via an
isotropic exchange J. The following may be noted about the
on-site Hubbard term U. The limit U— > projects out the
doubly occupied sites and reduces the model to a more fa-
miliar 7-J model.?* Such a model has previously been con-
sidered as a minimal model for stripelike anisotropies, where
it was solved for the binding energy of a two-electron prob-
lem (zero density).>> The calculations were extended later to
finite densities to obtain the superconducting energy gap and
transition temperature at low but finite electron densities.?
The results obtained were remarkable. In the extreme aniso-
tropy limit [i.e., £,>1, (say)], a two-particle pairing is pos-
sible in the presence of an infinitesimal J (and infinite U),
and at finite densities, fingerprints of a more robust super-
conducting condensate (the transition temperature; 7. being
much higher) is found. Here, with a mixed symmetry ansatz
for the gap amplitudes, we solve the BCS gap equation at
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finite temperature and hence evaluate the two important
length scales that characterize the condensate, namely, mean
pair radius &, and the penetration depth A for the aniso-
tropic system. As the hopping frequency in x and y directions
are made progressively different, the mean pair radius de-
creases and, finally, in the limit of strongest anisotropy, be-
comes as small as a few lattice spacings, while the penetra-
tion depth diverges in a direction in which the hopping is
suppressed. If the coherence length is loosely taken as the
radius of the Cooper pair (the difference will be discussed in
Sec. II), the rapid suppression of £, in the limit of large
anisotropy is indicative of a phase consisting of nonoverlap-
ping, albeit tightly bound pairs, a feature that distinguishes a
Bose condensate from a BCS superconductor. In addition,
the divergence of the penetration depth as a function of the
strength of anisotropy implies a small superfluid density,
again pointing toward a Bose-Einstein condensate (BEC)
phase. Thus the claim of a crossover phenomenon occurring
in the presence of strong hopping anisotropies receives sup-
port from the data of §,,, and \.

We organize our paper as follows. Section II deals with
the calculation of &, and \ for the anisotropic model. Sec-
tion III analyzes the results obtained in Sec. II and, based on
those results, discusses the emergence of a crossover from a
BCS superconductor to a Bose superfluid in the presence of
large anisotropies. The crossover scenario is supported by the
chemical potential crossing the band minimum as seen via
solving BCS equations self-consistently. A brief conclusion
is presented in Sec. IV.

II. MEAN PAIR RADIUS AND PENETRATION DEPTH

To understand the nature of the superconducting conden-
sate, it is intuitive to look at the two characteristic lengths,
namely, the coherence length and the penetration depth.
There is another length scale having values very similar to
that of the coherence length for a BCS superconductor, i.e.,
the average size or radius of the Cooper pairs. The similarity
has often led these quantities to be considered
indistinguishable.'”> However, they are different quantities
and the difference is very conspicuous in the BEC regime.
As for a BCS superconductor, the two length scales are very
similar and have values much larger than the interparticle

spacing and close to %, the well-known Pippard result.?” In
the opposite limit of extremely low density, the mean pair
radius is much smaller than the coherence length;?* the latter
being comparable to interparticle spacing. It was emphasized
that the single-particle excitation spectrum (broken Cooper
pairs) with an exponentially small gap is related to the pair
radius, while the energy coherence range is defined by the
coherence length, both being the same in the large density
limit.

The other important quantity, namely, the penetration
depth, signifies the distance over which an applied magnetic
field is exponentially screened from the interior of a super-
conductor. The linear response of the current density to the
magnetic field defines the penetration depth and hence the
superfluid density; the latter having an inverse square depen-
dence on the penetration depth.
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In this paper, we calculate the mean radius of the Cooper
pairs and the penetration depth that describe the nature of the
condensate in the presence of hopping anisotropies.

The mean pair radius is defined by the following
relation:?’

[ 1worprar
flz)air ="~

, (1)
[ e

where f(r) is the wave function for a Cooper pair in real
space. Fourier transforming the above equation, one gets
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where g, is the amplitude of the pair wave function. In BCS
theory, g, at finite temperatures is given by
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with E;=+/(&—u)*+|A[% f(E,) being the Fermi distribution
function, and €=-2t(cos k,+r cos k,), where r(=%=%‘4) is
the anisotropy parameter that distinguishes the carrier’s abil-
ity to move from one direction to another. The gap functions
in k space A; (vanishing of which determines T,) and the
chemical potential p are obtained by solving BCS gap equa-
tions (including the number equation) self-consistently, with
an isotropic exchange for the pair potential at finite
temperature,?%-30
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Subsequently, Eq. (2) is solved for &, and &, The results
are presented in Fig. 1 as a function of the anisotropy param-
eter r. It may be noted that the parameters chosen are, J/t
=1/3 (physical value for cuprates), n=0.15 (low density),
where our starting point, i.e., BCS gap equations, are most
appropriate, and the on-site term U is set to infinity. &,
decreases from a few thousands of lattice spacing (expected
for a BCS superconductor?®) with an increase in anisotropy
and becomes very small (order of one lattice spacing) as r
—0.

Physically, the shrinking of the pair size occurs due to the
constrained hopping of the charge carriers along one direc-
tion as compared to the other. Quantitatively, the pair wave-
function in k space is noted to be enhanced, thereby implying
a decrease in the pair radius in real space with anisotropy.
Thus the system smoothly evolves from a large number of
overlapping Cooper pairs to a condensate of much fewer but
tightly bound pairs carrying the signature of a BCS-BEC
Crossover.
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FIG. 1. The mean pair radii, f;air and &

pair’

are plotted as a
function of anisotropy r. The electron density and the interaction
parameters are chosen as n=0.15, J/t=1/3, and U/t=0%, respec-
tively. The temperature 7T is very small and chosen to be 0.17,, T,
being the superconducting transition temperature. Both &, and &
show similar variation with r and shrinks to a value of the order of

lattice spacing as r—0.

The other length scale, namely, the penetration depth, is
defined through long-wavelength limit (¢—0) of static (w
=0) response kernel in the following manner:?®

1
Jsq) =~ ;TKa(q —0)Asq), J=xy, (5)
where
1
Ks=—1=. (6)
Vg

J and A are the current density and the vector potential,
respectively. J includes both the paramagnetic and diamag-
netic contributions (which tend to cancel each other) and
hence the corresponding response kernels K¥ and K” are
defined by?!
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The total kernel is the sum of these two, which may be
substituted in Eq. (6) to obtain N\. \, and \,, the penetration
depths in the x and y directions, respectively, are plotted as a
function of the anisotropy parameter r. While A, remains
almost constant in the entire interval, )\y diverges as r—0.
Thus there is an efficient screening (Meissner effect) in the x
direction where the carriers move unhindered, while, due to a
severely restricted motion along y, the field penetrates to the
interior of the sample. Since the penetration depth is in-
versely proportional to the square of the superfluid density,
the scenario signals a condensate characterized by a smaller
number of superconducting electrons and hence fewer pairs
in the presence of large anisotropies.2
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Penetration depth, )\

FIG. 2. The penetration depth along x and y axis are plotted vs
r. The parameters chosen are the same as those of Fig. 1. A, shows
a divergence in the limit r— 0, while \ remains constant.

In the spirit of the discussion presented at the beginning
of Sec. II, we loosely consider the mean pair radius as a
characteristic length, indistinguishable from the coherence
length (which is strictly true in the BCS limit), and calculate
the  Ginzburg-Landau  characteristic =~ parameters k.,
(=\.,/ &) along the x and y directions. Both &, and «,
increase by three and six orders of magnitude, respectively,
in the limit — 0 from a very small value corresponding to
the isotropic case (where x, and «, are indistinguishable),
implying the evolution of a very different phase.

III. BCS-BEC CROSSOVER

In the context of the two-electron problem, in the pres-
ence of hopping anisotropy, it was shown earlier that a two-
particle bound state is possible with an infinitesimal attrac-
tive interaction in the limit of extreme anisotropy.> Further,
it was shown that the bound state is distinctly more favorable
for the carriers to be moving across the chains than along the
chains as r—0, and the bound state energy was found to
increase considerably, implying a very stable pair in this
limit. Thus we are provided with a scenario where a two-
dimensional plane of exchange-coupled chains facilitates
bound-state formation in the zero-density limit. Extrapola-
tion of the anisotropic model to finite densities has yielded a
much higher superconducting transition temperature in the
limit of large anisotropy.?® In this paper, we further calculate
two length scales associated with this model. The average
pair radius shrinks remarkably from a few thousands of lat-
tice spacings corresponding to the isotropic case to a few
lattice spacings in the limit r— 0. Thus a large number of
overlapping Cooper pairs evolve smoothly to a system of
tightly bound, much smaller pairs. Further, a large penetra-
tion depth implies an anomalously low superfluid density in
the presence of large anisotropies, thus strengthening the
possibility of breakdown of the standard BCS scenario and
the onset of an unconventional phase bearing fingerprints of
local, short-range pairing in the superconducting
condensate.>

To support the claim for a crossover scenario, we consider
the chemical potential u [obtained by solving Eq. (4)], which
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TABLE 1. BCS-BEC crossover is investigated by computing u
as a function of anisotropy parameter r for a few values of density
n and interaction strength J. The value of r at which u falls below
the lower band edge [=—2#(1+r)] and thus signals a crossover is
denoted by r.. The empty slots represent the absence of a CROSS-
OVER for the corresponding parameter values.

n JIt=1/3 Jit=1 JIt=2
0.02 0.007 0.11 0.57
0.1 0.006 0.08
0.15 0.026
0.2

when it slips below the band minimum as a function of an-
isotropy parameter r (the Leggett condition), the system
evolves into a Bose superfluid. To gain insight on the depen-
dence of crossover on the electronic density, we investigate
the variation of u as a function of r for different values of n
corresponding to a few representative values of J, e.g., J/t
=1/3, 1, and 2. The results obtained are presented in Table I.
It may be noted that there is no crossover for larger values of
n for any J. Physically, at higher densities, the pairs overlap,
thereby resulting in an increase in correlation between the
carriers. To compensate for this, the system organizes itself
with a larger average pair size so as to minimize the total
energy of the system. Thus, at higher densities, the system
bears resemblance to a BCS condensate even for larger val-
ues of J. However, in general, at moderate values of density,
the crossover phenomenon is more robust for stronger ex-
change coupling J.
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The table clearly indicates the absence of a crossover for
the isotropic case (r=1) for J to be as large as 2¢. The hop-
ping anisotropy thus plays a crucial role and drives the sys-
tem from a BCS phase to a Bose regime at lower densities.

IV. CONCLUSIONS

In this paper, we have calculated two important length
scales that characterize the superconducting condensate,
namely, the mean radius of the Cooper pairs and the penetra-
tion depth, for a two-dimensional 7-J model with hopping
anisotropies. It is observed that a BCS superconductor
evolves smoothly into a phase with much shorter and fewer
(although tightly bound) pairs, characteristic of a BE phase
with increasing anisotropy. This crossover picture is sup-
ported by calculating the chemical potential which falls be-
low the band minimum in the extreme anisotropy limit at
low densities.

The emergence of a Bose phase consisting of tightly
bound local pairs from a condensate of overlapping Cooper
pairs has been studied mostly as a function of the interaction
strength between the pairs.333* The weak-coupling limit cor-
responds to a BCS superconductor, while the strong-coupling
limit applies to the BE phase. Experimental signatures of
such crossover with oxygen concentration were observed in
YBa,Cu;0,_53 Also, effects of structural disorder on the
crossover phenomenon have been discussed.*

Thus it leaves a number of relevant and unresolved ques-
tions associated with the crossover phenomena. Which are
the other influencing parameters that drive a system consist-
ing of fermionic excitations to smoothly evolve into one hav-
ing bosonic degrees of freedom, and what is the influence of
interaction and fluctuation effects on the driving parameters,
to name a few. A detailed analysis is required to address
these important issues.
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