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The modification of the twin boundaries in YBa2Cu3O6+� due to the oxygen ordering below the temperature
of the tetragonal-orthorhombic phase transformation has been studied using mean field theory and spatial
gradient terms for the oxygen concentration variation. The distribution of the oxygen atoms across the twin
boundaries was calculated at various temperatures and oxygen concentration. Based on these calculations, we
deduced the interfacial energy, the equilibrium thickness, and the associated oxygen ordering of the twin
boundaries. Their effects on twinning and tweed morphology are also discussed.
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I. INTRODUCTION

Twinning occurs in a broad class of materials, especially
perovskite oxides that include ferroelectric, ferroelastic, and
superconducting crystals. The existence of the twin domains
and twin boundaries �TBs� often affects the physical proper-
ties of the materials.1,2 Twinning frequently is associated
with a structural phase transformation. For example, stron-
tium titanate3,4 �SrTiO3� and fluoroperovskites5,6 undergo a
ferroelastic phase transition from a high-temperature cubic
structure to a low-temperature tetragonal structure. Several
low-temperature crystallographic variants of equivalent en-
ergy are associated with each phase transition. Adjacent vari-
ants oriented in different crystallographic directions may be
separated from each other by TBs. The most widely used
theoretical approach to understanding such transformations
is the Devonshire-Ginzburg-Landau �DGL� phenomenologi-
cal model and its various adaptations.7–12 In these models,
free energy is expressed as a polynomial function of the crys-
talline strain, the order parameters, and their gradients. Usu-
ally, the phase transformations of ferroelectric or ferroelastic
crystals are diffusionless; therefore, these order parameters
are used to describe spontaneous strain, spontaneous polar-
ization, and displacements of special atomic species.7,8,10–12

However, other typical phase transformations, whose under-
lying structural transformations originate from atomic order-
disorder transition, are diffusion controlled. These include
the cubic to tetragonal phase transformations reflecting the
rearrangement of Fe, Pt and Fe, Pd ordering in FePt and
FePd alloys;13 also, oxygen ordering in YBa2Cu3O6+� super-
conducting materials causes a tetragonal to orthorhombic
structure transformation2,14,15 �Fig. 1�. The structure modifi-
cation of TBs in YBa2Cu3O6+� was experimentally observed
as a function of oxygen content and dopant
concentration.2,16–20 To understand the change of twin
boundaries in this transformation, the process of atomic or-
dering must be considered. Zhu and Welch21 studied the TB
structure using a Landau expansion including up to fourth-
order terms in the oxygen-order parameter; however, their
model was too simple to describe the effect of the material
composition. Curnoe and Jacobs22 considered strains as the
primary order parameters in their discussion of the evolution

of tetragonal-orthorhombic transformation in YBa2Cu3O6+�;
apparently, however, using only strains as the order param-
eters cannot describe the oxygen ordering associated with the
transformation. Furthermore, although Semenovskaya and
Khachaturyan23,24 explored the formation of twin domains in
this material using mean field theory; the structural variation
of TBs was never clarified. In this paper, we focus on our
investigations of the structure changes in TBs with composi-
tion and temperature. We first discuss our theoretical model,
present the free-energy density and the equilibrium condi-
tions in Sec. II and then the solutions for the twin boundaries
in Sec. III. Sections IV and V contain, respectively, the nu-
merical calculations, discussions and our conclusions.

II. THEORETICAL MODEL

A. Free energy

Oxygen ordering in YBa2Cu3O6+� can be described by
the redistribution of oxygen atoms over two sublattices of the
interstitial site located in the basal Cu-O �001� planes �Fig.
1�a��. In the disordered tetragonal T phase, oxygen atoms are
randomly distributed over � and � sites; therefore, the oxy-
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FIG. 1. �Color online� The Cu-O basal plane in YBa2Cu3O6+�.
�a� The basal plane of the tetragonal structure, �b� and �c� the ortho-
rhombic structure when oxygen atoms occupy � sites and � sites,
respectively.
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gen concentrations in these sites are n1�r�=n2�r�=n=� /2.
Oxygen ordering entails changes in the oxygen concentration
at the � and � sites. Oxygen atoms prefer to occupy one of
the sites, and, as they do so, the structure transformation
from the tetragonal to the orthorhombic phase occurs concur-
rently. In the completely ordered state, one of the sites is
fully occupied by oxygen atoms while the other is fully va-
cant, as shown in Figs. 1�b� and 1�c�. Here, we consider a
two-dimension system with A and B atoms occupying, re-
spectively, the � and � sites �A represents oxygen atoms and
B represents vacancies in the basal Cu-O �001� planes of
YBa2Cu3O6+��. n1 and n2 are, respectively, the concentration
of A atoms in � and � sites. Since the � and � sites are
equivalent, Figs. 1�b� and 1�c� are two energetically equiva-
lent variants with different directional orientations. For this
system, we write the free-energy density as

f = f1 + fg = fc + fe + fg. �1�

Here f1= fc+ fe. fc is the configurational free energy density
from A and B atomic distributions with fc=E−ST, where E
is the interaction energy of the atoms; S the configurational
entropy; and, T is the absolute temperature. If the interac-
tions beyond the third nearest neighbors are ignored, using
the mean-field approximation fc can be written as �see Ap-
pendix for details�

fc = 2�EBB + �n1 + n2��EAB − EBB� + n1n2v1�

+ �EBB� + �n1 + n2��EAB� − EBB� � + 1
2 �n1

2 + n2
2�v2�

+ 1
2kBT�n1 ln n1 + �1 − n1�ln�1 − n1� + n2 ln n2

+ �1 − n2�ln�1 − n2�� , �2�

where v1=EAA+EBB−2EAB; v2=EAA� +EBB� −2EAB� ; EAA, EBB,
and EAB are the pair interaction energy of the nearest-
neighbor atoms A-A, B-B, and A-B; and, EAA� , EBB� , and EAB�
are those of the second nearest-neighbor atoms. kB is the
Boltzmann constant and fe is the elastic-energy density. Con-
sidering the symmetry of square-rectangular two-dimension
transformation, we can write fe as

fe = 1
2c11��11

2 + �22
2 � + c12�11�22 + 1

2c44�12
2 , �3�

where c11, c12, and c44 are the elastic constants, and �11, �22,
and �12 are the strains that are a function of the concentration
of A and B atoms in the � and � sites. A simplified approxi-
mation is

�11 = �0�n1 − n� ,

�22 = �0�n2 − n� , �4�

where �0= b−a
b+a �b�a� is a strain constant when the oxygen

concentration is known; and n is the averaged concentration
of A atoms in � and � sites. In our case, �12=0. The gradient
energy, fg, for the composition of spatially inhomogeneous
configurations is

fg = 1
2D11�n1,1

2 + n2,2
2 � + D12n1,1n2,2 + 1

2D44�n1,2 + n2,1�2,

�5�

where D11, D12, and D44 are constants; and ni,j =
�ni

�xj
�i , j

=1,2�.

B. Equilibrium equations

The total free energy of the system can be expressed as
follows:

F =� � f�ni,ni,j�dx1dx2

=� � �f1�ni� + fg�ni,j��dx1dx2 �i, j = 1,2� . �6�

The increase of the free energy arising from a composition
fluctuation in an alloy with average concentration ni0, is then
given by25,26

�F =� � �f�ni,ni,j�dx1dx2

=� � ��f1�ni� + fg�ni,j��dx1dx2, �7�

where

�f1 = f1�ni� − f1�ni0� − �
i
��ni − n�� �f1

�ni
	

ni=ni0


 . �8�

For our case, the average concentration of n1 and n2 is n10
=n20=n. From the variational derivative of the total free en-
ergy, we obtain two static equilibrium differential equations,

�

�xj
� ��f

�ni,j
	 −

��f

�ni
= 0 �i, j = 1,2� . �9�

The two coupled partial differential equations plus boundary
conditions determine the concentration variables n1 and n2.
Next, we offer special solutions that can used to describe
TBs in YBa2Cu3O6+�.

III. TWIN BOUNDARIES

The two-dimensional �2D� TBs we describe here undergo
the square-rectangle transformation that consists of �11�
planes27 separating two variants between A atoms preferen-
tially occupying � sites �Fig. 1�b�� and � sites �Fig. 1�c��.
Considering a �11̄� TB, it is convenient to introduce the co-
ordinate system

�r

s
	 = U�x1

x2
	 , �10�

U =

1
�2

1
�2

−
1
�2

1
�2
� , �11�
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where U represents a rotation of 45° around the axis perpen-
dicular to the x1x2 plane, s lies in the direction of the twin
boundary normal, and r is the direction parallel to the twin
boundary �Fig. 2�. In the new coordinate system, we have

nr =
�2

2
�n1 + n2� ,

ns =
�2

2
�− n1 + n2� . �12�

Based on the symmetry of the twin boundary, for simplicity,
we assume that concentration varies only along the s direc-
tion. In this circumstance, the problem can be treated as be-
ing one dimensional. Thus, from Eq. �9�, we obtain

Drsnr,ss = �2v1 + v2 + �c11 + c12��0
2��nr − �2n�

+
�2kBT

4
ln� �nr − ns��nr + ns�

��2n − ns���2n + ns�

�
��2 − �2n + ns���2 − �2n − ns�

��2 − nr + ns���2 − nr − ns�
	 , �13�

Dssns,ss = �− 2v1 + v2 + �c11 − c12��0
2�ns

+
�2kBT

4
ln�nr + ns

nr − ns
·
�2 − �nr − ns�
�2 − �nr + ns�

	
−

�2kBT

4
�nr − �2n�� 1

�2n + ns

−
1

�2n − ns

+
1

�2 − ��2n + ns�
−

1
�2 − ��2n − ns�

	 , �14�

where Drs= 1
2 �D11−D12� and Dss= 1

2 �D11+D12+2D44�. For
the twin structure, the composition is uniform at far from
twin boundaries, i.e., nr=

�2
2 �n1+n2�=�2n at s→ ±	. There-

fore, Eq. �13� only has a trivial solution of nr=�2n. Then Eq.
�14� becomes

Dssns,ss = �− 2v1 + v2 + �c11 − c12��0
2�ns

+
�2kBT

4
ln��2n + ns

�2n − ns

·
�2�1 − n� + ns

�2�1 − n� − ns
	 . �15�

Although simplifications have been made in Eq. �15�, it does
not have an analytic solution. We give approximate solutions
as follows.

A. The solution near T c
−

At a temperature slightly lower than the critical tempera-
ture of order-disorder transition, T c

−, the concentrations of A
atoms in the � and � sites deviate only marginally from the
average value, i.e., ns is a small quantity compared with n.
Taylor expansion, including up to fifth-order terms, was ap-
plied to the second item of the right-hand side of Eq. �15�.
Then, Eq. �15� can be rewritten as

Dssns,ss = Ans + Bns
3 + Cns

5, �16�

where

A = − 2v1 + v2 + �c11 − c12��0
2 +

1

2

kBT

n�1 − n�
, �17a�

B =
kBT

12
� 1

n3 +
1

�1 − n�3	 , �17b�

C =
kBT

40
� 1

n5 +
1

�1 − n�5	 . �17c�

Several authors12,28–30 employed Eq. �16� to study diffusion-
less transformations, such as martensitic,29,30 ferroelastic,12

and ferroelectric transformation.28 Usually, they assumed
that the coefficient A is a linear function of temperature, and
that B and C are constants. For YBa2Cu3O6+�, they represent
functions of oxygen concentration and of temperature, as
shown in Eqs. �17�. From Eq. �17b�, we know that B�0.
Therefore, Eq. �16� describes a second-order square-
rectangular transition.30 The square state �ns=0� is stable
when A�0; the rectangular state ns= ±ns0 is stable when A

0, where

ns0 = ± �− B + �B2 − 4AC

2C
	1/2

. �18�

The critical temperature, Tc, is determined for A=0,

Tc = −
2n�1 − n��− 2v1 + v2 + �c11 − c12��0

2�
kB

. �19�

Below the critical temperature, there is a rectangular-
rectangular soliton solution of Eq. �16�,

ns =
ns0 sinh��s�

�cosh2��s� + ��1/2 , �20�

where

� =
2�A + Bns0

2 �
4A + Bns0

2 , �21a�

� = �−
2A + Bns0

2

2Dss
	1/2

. �21b�

hence, the values of � and �, depending on the concentra-
tion, n, and temperature, T, determine the thickness and
shape of a twin boundary between two rectangular phases.

(a)
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FIG. 2. �a� Two coordinate systems in square parent phase. �b�
�11̄� twin boundary at s=0 separate two variants of rectangle phase
which transform from a square parent phase.
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B. Solution for an arbitrary temperature below Tc

For a system with uniform composition at an arbitrary
temperature below the critical temperature, Tc, we need to
solve Eq. �15� to determine the distribution of oxygen con-
centration. Usually only numerical solutions can be obtained
from Eq. �15�. First, we determine the boundary condition of
Eq. �15� by assuming that the composition of the system is
homogeneous in regions far away from the twin boundary.
That is

lim
s→±	

dns

ds
= 0. �22�

Equation �15� then becomes

�− 2v1 + v2 + �c11 − c12��0
2�ns

+
�2kBT

4
ln��2n + ns

�2n − ns

·
�2�1 − n� + ns

�2�1 − n� − ns
	 = 0. �23�

This equation is the same as that derived from the mean-field
theory. The equilibrium value, ns, i.e., ns0, can be calculated
from Eq. �23� at s→ ±	. In this case, solving Eq. �15� be-
comes a two-point boundary value problem in ordinary dif-
ferential equations. However, unlike the initial value problem
of an ordinary differential equation, a two-point boundary
value problem may not have a solution, or may have a finite
number, or even an infinite number of solutions. To derive
reasonable solutions from Eq. �15�, a trial resolution for the
solution desired should be provided. Equation �20� is used
for the trial solution, after substituting the ns0 in Eq. �20� by
the result calculated from Eq. �23�.

IV. CALCULATED RESULTS AND DISCUSSION

Using the elastic constants of YBa2Cu3O7 �Ref. 31� c11
=3.9�1012 dyn/cm2; c22=1.36�1012 dyn/cm2, strain �0
=0.009, unit-cell volume V=173 Å3, and the oxygen inter-
action data given by Semenovskaya and Khachaturyan’s
23,24, we obtain v1=1758kB K, and v2=1668kB K. The critical
temperature Tc can be determined from Eq. �19� with Tc
=794 K for n=0.5 �YBa2Cu3O7�, and Tc=323 K for n
=0.115 �YBa2Cu3O6.23�. The gradient coefficient Dss is con-
sidered as a constant; its value is estimated by the thickness
of the TB.32 Previous reports suggest that the TB’s
thickness33–35 in YBa2Cu3O6+� and its alloys,
YBa2�Cu0.98M0.02�O6+�, is about 0.7–2.6 nm at room tem-
perature. Consistent with the Zhu et al. experimental
results,33,34 we assume Dss=100kB �K nm2� in our calcula-
tions, a value that will give rise to a reasonably thick twin
boundary. From Eq. �12�, we know that �2ns=n2−n1, which
represents the order degree of the system. For example, with
�2ns=1 for n=0.5, then, it means that n2=1, i.e., all oxygen
atoms occupy the � sites shown in Fig. 1�c�, and vice versa
at �2ns=−1, n1=1, that is, all oxygen atoms occupy the �
sites shown in Fig. 1�b�. Figure 3 depicts the distribution of
oxygen concentration across the TB with various average
oxygen concentrations and temperatures. From Eqs. �4�,
�10�, and �11�, we obtain the normal strain

�ss = �rr = 1
2 ��11 + �22� = 0, �24�

and the shear strain

�sr =
1

2
�− �11 + �22� =

1

2
�0�− n1 + n2� =

�2

2
�0ns, �25�

i.e., the shear strain �sr has a linear relationship with ns.
Using Cahn and Hilliard’s method,25 the thickness of the

TB can be calculated by

d =
2ns0

�dns

ds
	

x=0

. �26�

The TB’s energy density also can be calculated by


 = 2�
−	

	

Dss�dns

ds
	2

ds . �27�

Figure 4 shows the calculated results for n=0.5. Other con-
centrations give similar results. Figure 3 and Fig. 4 clearly
demonstrate that the thickness of TBs under a constant oxy-
gen concentration will rapidly decrease, i.e., they will be-
come sharper and sharper with a decrease in temperature, but
their energy will correspondingly increase.

An associated microstructure, the so-called tweed struc-
ture, which often is related to structural disorder and transi-
tion, has been observed in a wide variety of
materials.16–20,35–40 Usually, it is argued that the tweed pat-
tern is a precursor phenomenon to a structural transforma-
tion, and arises in direct response to statistically significant
compositional fluctuations.41,42 In YBa2Cu3O6+�, tweed is
often considered as microtwins. In oxygen deficient
YBa2Cu3O6.23 �Ref. 16� and alloyed YBa2Cu3O6+� �Refs.
16–20, 35, and 40� �substituting Cu with transition-metal el-
ements, such as Fe and Co�, the tweed structures appear at
room temperature. The structure of tweed also involves a

small shear strain in the �1 1 0� plane along the �1̄10� direc-
tion, that is strain �sr; the interfacial width between two do-
mains of a tweedy structure is large. From electron micros-
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-0.5
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0.5

1.0
sn2

s(nm)

FIG. 3. The distribution of oxygen concentration across TB.
Solid line is for n=0.5, T=300 K; dashed—dotted line is for n
=0.5, T=774 K; and dashed line is for n=0.115, T=300 K.
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copy contrast analysis, it was suggested20 that the strain from
one domain to another across a TB is large and abrupt, but
that across the tweed is small and gradual, i.e., a TB across
two twin variants in YBa2Cu3O6+� is sharper and narrower
than the tweed boundary across two tweed variants. Figure 5
is a schematic drawing of twin and tweed structures. Our
theoretical calculations in Fig. 3 indicate that the TB struc-
ture gently changes from one side to the other side when the
temperature is slightly below Tc, such as depicted by the
dashed-dotted line shown at 774 K in n=0.5 �YBa2Cu3O7�
with Tc=794 K, and the dashed line at 300 K for n=0.115
�YBa2Cu3O6.23� with Tc=323 K; in contrast, the solid line
representing the TB at 300 K for n=0.5, is much sharper
when the temperature is significantly below Tc. The TB
structures depicted by the dashed-dotted and dashed lines in
Fig. 3 match the experimental observations for the tweed
structure. Therefore, we conclude that tweed structure can
form at temperatures slightly below Tc, and that twins form
at significantly below Tc.

Semenovskaya et al.23,24,43 and Parlinski et al.44,45 consid-
ered that the tweed structure is not an equilibrium phase but
rather a nonequilibrium or metastable configuration. Com-
puter simulations by Semenovskaya et al. showed that the
tweed structure is an intermediate one as the distribution of
oxygen gradually evolves through an ordering process. Par-
linski et al. reported that the recognizable embryos of the
tweed structure result from thermal fluctuations above the
transition temperature. They thought that the reason for the
appearance of a metastable tweed pattern at room tempera-
ture is that the dopant atoms prevent coarsening of order
domain and the ability of oxygen to diffuse is low at room
temperature. Our theoretical analysis indicates that the tweed
structure may be a stable configuration in YBa2Cu3O6+�.
Several experiments16–20,46–50 support our conclusion;
Poberaj et al.46 and Veal et al.47–49 measured observable oxy-
gen diffusion in YBa2Cu3O6+� at room temperature and the
tweed structure observed by Zhu et al.16 in YBa2Cu3O6.23 at
room temperature and by Schwarz et al.50 in YBa2Cu3O6.68
at 723 K. Both the tweed structure may be equilibrium and
stable.

The equilibrium TB spacing can be estimated by 51,52

D � � g�

M�2	1/2

, �28�

where M is the elastic modulus, g is the length of the crystal
grain along the twin boundary, � is the boundary energy, and
� is the transformation strain,52 i.e.,

� = �22 − �11 = �2�0ns0. �29�

Equation �25� is used to deduce Eq. �29�. Some authors21,53,54

considered that � is a constant. However, in our analysis, �
exhibits similar changes as ns0 with oxygen concentration
and temperature. Using Eqs. �28� and �29�, we can estimate
the ratios of TB spacing between YBa2Cu3O7 and
YBa2Cu3O6.23 at 300 K �ignoring changes in M and g with
oxygen composition�. � is 405kB �K·nm� in YBa2Cu3O7 and
1.26kB�K·nm� in YBa2Cu3O6.23; ns0 is 0.6997 in YBa2Cu3O7

and 0.0775 in YBa2Cu3O6.23 at 300 K. We obtain D1 /D2
�2. D1 is the TB spacing in YBa2Cu3O7; and D2 is that in
YBa2Cu3O6.23. Based on experimental observations,2 the TB
spacing is about 80–260 nm in YBa2Cu3O7 �n=0.5� at room
temperature. Therefore, we estimated “TB” �tweed� spacing
in YBa2Cu3O6.23 at 300 K is about 40–130 nm. The tweed
spacing from experimental observation2,16 in YBa2Cu3O6.23
at 300 K is about 25 nm, which is in agreement with our
theoretical estimation.

The present work was aimed at elucidating the twin
boundary structure in the high-temperature superconductor
YBa2Cu3O6+�. The relationship between twin boundaries
and superconducting critical temperature is not well under-
stood. Fang et al.55 discussed the possibility that the twin
boundary region is an area of higher superconducting critical
temperature than the matrix, while Deutscher and Müller56

proposed that the twin boundary layer is weakly supercon-
ducting. Based on our results, �ns� in a twin boundary is less
than its value far from a twin boundary, i.e., the degree of
oxygen order in twin boundaries is lower than that in a crys-
tal matrix. The superconductivity of YBa2Cu3O6+� depends
on the degree of oxygen order, and the material can change
from a superconductor to an insulator with the reduction of
the order. The reduction of the degree of order of oxygen
atoms at TBs results in a reduction of the oxygen-hole
concentration,21 thus resulting in the reduction of local su-
perconductivity in comparison to the matrix. Hence, we ex-
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FIG. 4. TB energy density �solid line� and thickness �dashed
line� vs temperature for n=0.5.

FIG. 5. Schematics of tweed and twin structure.
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pect that, depending on the degree of disorder at TBs �or the
sharpness of the TB�, in YBa2Cu3O6+�, especially in fully
oxidized samples, TBs can play a significant role in deter-
mining local superconductivity. For instance, they can act as
either a pinning center, or a channel for superconducting vor-
tices, depending on whether the vortices move perpendicular,
or parallel, to the TBs. Several experiments57–59 are consis-
tent with our results.

V. CONCLUSIONS

We have presented a theoretical model for the twin
boundary �TB� structural modification during square-
rectangular structural transformations arising from oxygen
ordering in YBa2Cu3O6+�. The changes of TB structures as-
sociated with oxygen concentration and temperature were
studied. At temperatures slightly below the phase transition
Tc, we found a solitary wave solution to describe the struc-
tural evolution of TB. For an arbitrary temperature below the
oxygen-ordering temperature, we used the solitary wave so-
lution as a trial solution to calculate numerically the TB
structure, including its thickness and energy. Our findings
indicate that the thickness of the TB decrease rapidly, while
their energy increases with a decrease of temperature when
the oxygen concentration remains constant. We also found
that the degree of oxygen ordering at TB is lower than that in
the crystal matrix. Based on our analysis, the TB related
tweed structure may be explained as being a thermodynami-
cally stable structure in pure and doped YBa2Cu3O6+� sys-
tems.
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APPENDIX: THE CONFIGURATIONAL FREE
ENERGY DENSITY

The nearest-neighbor interactions are those of an atomic
pair on �-� sites. From Fig. 1, the A-A, B-B, and A-B atomic
pair numbers of the nearest neighborhood are, respectively,

NAA = 1
2n1N� · 4n2 + 1

2n2N� · 4n1 = 4n1n2N , �A1�

NBB = 4�1 − n1��1 − n2�N , �A2�

NAB = 4�n1 + n2 − 2n1n2�N , �A3�

where N� and N� correspond to the number of � and �
lattice sites. In the case of Fig. 1, N�=N�=N. The nearest-
neighbor interaction energy is

E1 = 4N�EBB + �n1 + n2��EAB − EBB� + n1n2v1� . �A4�

The second nearest-neighbor interactions are those of the
four atomic pairs of �-� sites �Fig. 1�. There are two pairs
across a middle atom and two without a middle atom. The
A-A, B-B, and A-B atomic-pairs’ interaction energy of the
nearest neighborhood are, respectively,

VAA� = �n1
2 + n2

2�N�vAA
1 + vAA

2 � = �n1
2 + n2

2�NEAA� , �A5�

VBB� = �2 + 2�n1 + n2� + n1
2 + n2

2�NEBB� , �A6�

VAB� = 2�n1 + n2 − n1
2 − n2

2�NEAB� , �A7�

where EAA� =vAA
1 +vAA

2 and vAA
1 is the interaction energy of the

A-A atomic pair across a middle atom; vAA
2 is that without a

middle atom. EBB� and EAB� are similar. The second nearest-
neighbor interaction energy is

E2 = 2N�EBB� + �n1 + n2��EAB� − EBB� � + 1
2 �n1

2 + n2
2�v2� .

�A8�

The configurational entropy is

S = kB ln� N!

�n1N�!��1 − n1�N�!
·

N!

�n2N�!��1 − n2�N�!	 .

�A9�

Using Stirling’s approximation, the configurational entropy
is rewritten

S = − kBN�n1 ln n1 + �1 − n1�ln�1 − n1� + n2 ln n2

+ �1 − n2�ln�1 − n2�� . �A10�

Combined with �A4�, �A8�, and �A10�, we obtain

fc =
Fc

2N
= 2�EBB + �n1 + n2��EAB − EBB� + n1n2v1� + �EBB�

+ �n1 + n2��EAB� − EBB� � +
1

2
�n1

2 + n2
2�v2	 +

1

2
kBT�n1 ln n1

+ �1 − n1�ln�1 − n1� + n2 ln n2 + �1 − n2�ln�1 − n2�� .

�A11�
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