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Structural features of the charge/orbital ordering �CO/OO� in single-layered manganites Pr1−xCa1+xMnO4

�0.3�x�0.65� have been investigated systematically by transmission electron microscopy. Analyses of
electron-diffraction patterns as well as dark-field images have revealed that the CO/OO shows a striking
asymmetric behavior as the hole doping x deviates from x=0.5. The modulation wave number linearly de-
creases with increasing x in the over-hole-doped �x�0.5� crystals, while much less dependent on x in the
under-hole-doped �x�0.5� crystals. A temperature-induced incommensurate-commensurate crossover is ob-
served in 0.35�x�0.5 and x=0.65. The correlation length of CO/OO in x=0.3 was proven to become shorter
than that in 0.35�x�0.65
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I. INTRODUCTION

Layered perovskite-type oxides have provided a good
arena to study the quasi-two-dimensional charge dynamics in
strongly correlated electron systems.1–8 In La1−xSr1+xMnO4
�x=0.5�,1,7,8 which has been most frequently studied among
all the single-layered manganites, the charge/orbital ordering
�CO/OO� transition takes place at �220 K. The modulation
wave number � is found to be commensurate with the lattice
periodicity in x=0.5. Research has also been extended to
other La/Sr.9,10 In the overdoped �x�0.5� compounds, the
incommensurate � value depends linearly on the hole doping
x, while the commensurate CO/OO with � of 1/2 is ob-
served for 0.45�x�0.5 at low temperatures. It was also
reported9 that only diffuse scattering exists in x�0.45 due to
the presence of disordered phase. The long-range magnetic
order is limited in a narrow x range near x=0.5, in which the
ferromagnetic zigzag chains in a MnO2 plane are antiferro-
magnetically coupled with each other �so-called CE-type
magnetic structure�. This long-range two-dimensional anti-
ferromagnetic spin ordering is suppressed by random distri-
bution of eg orbitals in x�0.45. Recent experimental works
have revealed the significant effect of quenched disorder on
CO/OO even in the half-doped �x=0.5� single-layered man-
ganites RE0.5Sr1.5MnO4 �RE: rare-earth elements�.8 The
long-range CO/OO is suppressed by the quenched disorder
which arises from the A-site �the trivalent rare-earth RE and
divalent alkaline-earth �AE� ions� randomness. It can be
measured by the variance in A-site ionic radii: �2=�ixiri

2

−rA
2 . Here, xi and ri are the fractional occupancies and the

effective ionic radii of the A-site cation, respectively, and rA

is the average radius of A site. Since the variance in A-site
ionic radii ��2�2�10−7 Å2� for Pr0.5Ca1.5MnO4 is much
smaller than one for La0.5Sr1.5MnO4 ��2�1.7�10−3 Å2�,
the random distribution of eg orbitals due to the quenched
disorder is almost avoidable in Pr1−xCa1+xMnO4 system. As a
result, the stable long-range charge/orbital/spin ordering
phase is expected to be created in this system. To reveal the
detail structural features of the CO/OO in Pr1−xCa1+xMnO4,
we have carried out a systematic study on Pr1−xCa1+xMnO4
�0.3�x�0.65� single crystals by means of transmission
electron microscopy. We show the dependence of the modu-
lation wave number and the microscopic CO/OO domain
structure on the hole doping level including a temperature-
induced incommensurate-commensurate �IC-C� crossover.
The results are keys to explain the asymmetric behavior of
magnetism in Pr1−xCa1+xMnO4.

II. EXPERIMENT

Single crystals of Pr1−xCa1+xMnO4 �0.3�x�0.65� with
various hole doping levels x have been grown by a floating-
zone melt method. The phase purity and cation concentra-
tions of Pr1−xCa1+xMnO4 �0.3�x�0.65� were checked by
powder x-ray diffraction and inductively coupled plasma
atomic emission spectroscopy, respectively. Electron-
transparent thin samples were prepared by mechanical pol-
ishing and subsequent argon-ion thinning with an accelera-
tion voltage of 4 kV at room temperature. Selected-area
electron-diffraction �SAED� patterns and dark-field �DF� im-
ages were obtained by transmission electron microscopes,
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Hitachi HF-3000S and HF-3000L, both equipped with a
cold-field emission gun and a liquid helium cooling holder.
In order to determine the magnetic states and associated
phase-transition temperatures in Pr1−xCa1+xMnO4, ac suscep-
tibility was recorded as a function of temperature and fre-
quency on a superconducting quantum interference device
magnetometer �Quantum Design MPMSXL�, which was
equipped with the ultralow-field option and PPMS6000.11

III. RESULT AND DISCUSSION

A. Charge/orbital ordering in half-doped „x=0.5… crystal

First, we focus on the half-doped �x=0.5� crystal. Figure
1�a� shows the �001�-zone SAED pattern at 20 K. The indi-
ces are based on an orthorhombic cell with a=5.41 Å, b
=5.36 Å, and c=10.73 Å. In addition to the fundamental
spots, the SAED pattern reveals superlattice �SL� spots. It is
well known that such SL spots should be attributed to the
periodic arrangement of orbital stripes characterized by a
modulation wave vector q=�a*. Here, � is the wave number
corresponding to the inverse of the orbital stripe period. The
SL spots vanish above �325 K, which agrees with the
CO/OO transition temperature TCO/OO determined by the
previous resistivity measurements.11 Analyses of the position
of SL spots indicate that � is commensurate ��=1/2� with
the lattice periodicity at all the temperatures below TCO/OO.
Figure 1�b� shows a DF image obtained by using the SL spot
�3/2, 2, 0� at 80 K. Bright areas represent CO/OO domains
of a few hundred nanometers in size. In addition, many an-
tiphase boundaries are observed as curved dark lines. The

schematic of CO/OO in the half-doped sample is shown in
Fig. 1�d�. The eg orbitals d3x2−r2 and d3y2−r2 of the Mn3+ ions
alternately arrange along the orthorhombic a axis to form the
d3x2−r2 /d3y2−r2-type CO/OO or the orbital stripes. When the
d3x2−r2 orbital is replaced by the d3y2−r2 orbital in the local
structure or vice versa, the antiphase boundary for the or-
dered orbital stripes should appear. SL spots indicating the
out-of-plane correlation can be also found at �n+1/2 ,0 ,2m
+1� in the �010�-zone SAED, as shown in Fig. 1�c�, while
they are much weaker than in the �001�-zone SAED. These
spots which are newly observed in this single-layered man-
ganite may be ascribed to the CO/OO with ��, 0, 0� in the
regularly tilted MnO6 octahedra network with a modulation
vector of �1, 0, 1�.12

B. Variations in charge/orbital ordering structure with the
hole doping level

Next, we show the hole doping x dependence of CO/OO
in Pr1−xCa1+xMnO4. Figure 2�a� presents the �001�-zone
SAED patterns for various doping levels x at 20 K. SL spots
indicative of CO/OO appear in all the crystals with 0.3�x
�0.65. The intensity profiles of an h scan presented in Fig.
2�b� clearly show that the modulation wave number � varies
with x: � is larger than 1/2 for x�0.5 and smaller than 1/2
for x�0.5. The peak width � of the SL spot ��, 2, 0� nor-
malized by that of the fundamental spot �0, 2, 0� is plotted
against x in Fig. 2�c�. For x=0.65, � is close to 1.0, indicat-
ing the long-range CO/OO. As x decreases from 0.65 to
0.35, � increases linearly and gradually. The coherent length

FIG. 1. �a� �001�-zone selected-area electron-diffraction �SAED�
patterns at 20 K. The indices are based on the fundamental ortho-
rhombic structure with the lattice parameters a=5.41 Å, b
=5.37 Å, and c=10.73 Å �20 K�. The SL spot �3/2, 2, 0� due to
charge/orbital ordering �CO/OO� is indicated by the white arrow.
�b� Dark-field image obtained using the SL spot �3/2, 2, 0� at 80 K.
The bright areas represent the CO/OO domains which vanish
above the CO/OO transition temperature �TCO/OO�. �c� �010�-zone
SAED patterns at 20 K. The CO/OO SL spot �3/2, 2, 3� is indi-
cated by the white arrow. �d� Schematic of the CO/OO domains in
the in-plane Pr1−xCa1+xMnO4 �x=0.5� below TCO/OO. The solid
lines and dashed line show the CO/OO SL cell and an orbital
antiphase boundary, respectively.

FIG. 2. �a� �001�-zone SAED patterns of Pr1−xCa1+xMnO4 �0.3
�x�0.65� single crystals taken at 20 K. The indices of fundamen-
tal spots are based on the orthorhombic structure with the Pccn
space group. The CO/OO SL spots ��, 2, 0� are indicated by white
triangles. �b� Intensity profiles of the �h, 2, 0� scan for x=0.3, 0.4,
0.55, and 0.65 at 20 K. �c� Hole doping x dependence of the peak
width � for SL spot ��, 2, 0� normalized with that of the fundamen-
tal spot �0, 2, 0�.
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of CO/OO along the a axis in the underdoped case becomes
gradually shorter. For x=0.3, � suddenly increases to 2.0,
indicating the relatively short-range CO/OO correlation in
this crystal.13

Change in the CO/OO domain structures with the hole
doping is more clearly demonstrated by DF images. Figure 3
shows DF images for 0.3�x�0.65 at 80 K obtained by us-
ing the SL spot at ��, 2, 0� in the corresponding SAED pat-
terns shown in the insets. The images for x�0.3 show the
presence of stripe-shape bright/dark domains, the boundaries
of which are found almost parallel to the �100� axis in the
tetragonal setting. These stripe-shape bright/dark domains
were reversed in the DF image when another SL spot at �2, �,
0� was used. Here, one should note that the crystal structure
of Pr1−xCa1+xMnO4 is orthorhombic even above TCO/OO. In
such orthorhombically distorted K2NiF4-type compounds,
stripe-type domains are often induced by twins,8,14 where the
a and b axes alternate with each other. We can therefore
conclude that these stripe-shape domains exhibit the CO/OO
twin with two perpendicular directions, which should origi-
nate from the twin structures of the orthorhombic lattice dis-
tortion. The CO/OO domain size as well as the stripe-shape
domain size decreases with the increase of twin. In the bright
stripe-shape domains, one can also observe the random ar-
rangement of smaller bright areas separated from each other
by black lines �indicated by black arrows in Fig. 3�d��. A
brighter area represents a single CO/OO domain. Black lines
represent antiphase boundaries of the eg orbital ordering
stripes as discussed in the half-doped case �see Fig. 1�b��.
The average size of the single domains associated with the
coherence of CO/OO also decreases with decreasing x. For
the x=0.3 crystal, bright dots and dark areas are observed in
the DF image using the SL spot at ��, 2, 0� �Fig. 3�a��. Each
bright dot indicates the single CO/OO domain of nanometer
size, much smaller than in x=0.65. In agreement with the
SAED results in Fig. 2, the DF images show that the
CO/OO domain size and hence the CO/OO correlation

length decrease with increasing the nominal eg-electron den-
sity �1−x�.

C. Temperature dependences of the charge/orbital ordering
state and the magnetic state

The asymmetric doping behavior of the CO/OO with de-
viation of x from 1/2 as well as the feature of the IC-C
crossover is characterized as the change of the wave number
� with variations of temperature and hole doping level. Fig-
ure 4�a� shows the T dependence of � for various doping
levels, as deduced from the peak position of a SL spot ��, 2,
0� in the same condition. In the underdoped crystals �0.3
�x�0.5�, � is larger than 1/2 and incommensurate with the
lattice periodicity at low temperatures. As increasing T, �
merges to a commensurate value ��=1/2�. The IC-C transi-
tion temperature �TIC-C� is around 80 K for x=0.45 and
around 240 K for x=0.40 and 0.35. Such a temperature-
induced IC-C crossover phenomenon is not observed in
La1−xSr1+xMnO4 system.9,10 In the overdoped crystals �0.5
�x�0.65�, � is incommensurate with the lattice periodicity
and independent of temperature. In x=0.65, � is incommen-
surate ��=0.36� at 20 K, nearly satisfying the relation �=1
−x, and with warming above 200 K changes to a commen-
surate value ��=1/3�. Figure 4�b� represents the hole doping
x dependence of TCO/OO, the Néel transition temperature TN,
and the spin glass phase-transition temperature Tg. TN and Tg
were determined by analyzing the ac-susceptibility curves.11

In the overdoped region, the antiferromagnetic phase as well
as the long-range CO/OO was observed. In the underdoped
region, the TCO/OO decreases with hole doping level x and
only short-range CO/OO, as shown in Fig. 2, was observed
in x�0.35. This short-range structure may originate from the
presence of extra eg electrons which also affects the ex-
change interaction. In fact, a spin glass state is observed in
x�0.5. This glassy short-ranged antiferromagnetic state is
strongly correlated to the collapse of the long-range eg or-
bital ordering.11

D. The difference of charge/orbital ordering structure between
Pr1−xCa1+xMnO4 and Pr1−xCaxMnO3

It is worth comparing the present results in
Pr1−xCa1+xMnO4 with the case of pseudocubic
Pr1−xCaxMnO3.15–23 Figure 5 shows the hole doping x depen-
dence of �. In the underdoped �x�0.5� case, � is dependent
on x at 20 K, while fixed at the commensurate value ��
�1/2� at 240 K. In the half- �x=0.5� and overdoped �x
�0.5� crystals, � conforms to x, obeying the relation that �
=1−x. The inset of Fig. 5 �Refs. 16 and 21–23� shows the
relation between wave number � and hole doping x in
Pr1−xCaxMnO3 at 20 and 240 K. In the underdoped case �x
�0.5�, a prototypical CO/OO pattern with �=1/2 is ob-
served. Extra electrons should occupy Mn4+ chains along the
c axis.20 The virtual hopping of eg electrons on Mn4+ chains
should cause ferromagnetic coupling along the c axis, result-
ing in the canted antiferromagnetism at low temperature. In
the underdoped single-layered compounds, however, Mn4+

sites are isolated and do not form chains along the c axis.

FIG. 3. Dark-field images of Pr1−xCa1+xMnO4 crystals �a� x
=0.3, �b� 0.4, �c� 0.55, and �d� 0.65 at 80 K. These images are
obtained by selecting the SL spot ��, 2, 0� indicated by white tri-
angles. Bright areas denote the CO/OO domains corresponding to
SL spots ��, 2, 0�, which vanish above the CO/OO transition tem-
perature �TCO/OO�. Insets show the corresponding SAED patterns.
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Extra electrons on the Mn4+ sublattices have no such energy
gain due to the hopping along the c axis as in the cubic case.
This should lead to the formation of additional Mn3+ stripes,
and the unbalance between the numbers of Mn3+ and Mn4+

stripes should make the incommensurate CO/OO as ob-
served. The short-range nature of CO/OO in
Pr1−xCa1+xMnO4 with x=0.3 may be also straightforwardly
explained in terms of this scenario. In the half- or overdoped
Pr1−xCaxMnO3 crystals,19,22 � follows the relation that �=1
−x below TN, while the CO/OO with smaller � values was
observed above TN. This implies that part of eg electrons,
which form Mn3+ stripes in the antiferromagnetic state, be-
come itinerant with increasing T. The number of Mn3+

stripes as well as � should hence decrease in the paramag-
netic phase. In the overdoped single-layered compounds with
0.50�x�0.60, the Mn3+ stripes are arranged as far apart
from each other as possible even above TN, which may be
due to the strong localization of eg electrons. This type of
CO/OO has been also observed in La1−xSr1+xMnO4 �Refs. 9
and 10� and Nd1−xCa1+xMnO4 �Ref. 3� systems and explained

by the Wigner-crystal model.24 The localization of eg elec-
trons should become weaker as the doping concentration fur-
ther increases, which may cause the IC-C crossover in x
=0.65 with increasing temperature. The origin of the IC-C
phenomenon may be similar to the hole-doped
La2−xSrxNiO4,25 with x�1/3, which has been interpreted as
the entropy driven electron transfer between the on- and off-
stripe regions.

IV. SUMMARY

In conclusion, structural features of the charge/orbital or-
dering �CO/OO� in Pr1−xCa1+xMnO4 �0.3�x�0.65� single
crystals have been investigated systematically using the
transmission electron microscopy. Compared with another
canonical case of La1−xSr1+xMnO4, the long-range CO/OO
phase exists over a wider range of the hole doping �0.35
�x�0.65�. Being different to the pseudocubic
RE1−xAExMnO3 case, the modulation wave vector is un-
changed between TN and TCO/OO in x=0.5. As the hole dop-
ing x deviates from 0.5, the electron-hole doping asymmetric
behavior of the CO/OO shows up as the variation of the
modulation wave number and the correlation length with the
hole doping x. In the overdoped �x�0.5� case, the CO/OO
wave number depends linearly on x, suggesting the stripe-
type ordering. In the underdoped �x�0.5� crystals, the IC-C
crossover was observed as increasing the temperature. The
real-space images show that large CO/OO domains in x
	0.5 turn into small nanoscale domains characteristic of the
short-range one when x=0.3. This asymmetric CO/OO be-
havior with the doping level x is a key for understanding the
asymmetric magnetic properties in this system.
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FIG. 4. �Color� Temperature dependence of � in
Pr1−xCa1+xMnO4 �0.3�x�0.65�. Dashed lines are the guide to the
eyes. �b� Hole doping level x dependence of TCO/OO �the transition
temperature of CO/OO�, T* �the transition temperature of short-
range CO/OO�, TN �Néel temperature�, and Tg �the transition tem-
perature of spin glass state�.

FIG. 5. �Color� Hole doping level x dependence of � associated
with the CO/OO at 20 and 240 K. The inset as reproduced from
Refs. 16 and 21–23 shows the x dependence of � in Pr1−xCaxMnO3

at 20 and 240 K.
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