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It is common knowledge that the direction of the easy axis in a finite-size ferromagnetic sample is controlled
by its shape. In the present paper we show that a similar phenomenon should be observed in compensated
antiferromagnets with strong magnetoelastic coupling. The destressing energy which originates from the long-
range magnetoelastic forces is analogous to the demagnetization energy in ferromagnetic materials and is
responsible for the formation of the equilibrium domain structure and the anisotropy of macroscopic magnetic
properties. In particular, the crystal shape may be a source of additional uniaxial magnetic anisotropy which
removes the degeneracy of the antiferromagnetic vector or the artificial fourth-order anisotropy in the case of
a square cross-section sample. In the special case of antiferromagnetic nanopillars, shape-induced anisotropy
can be substantially enhanced due to lattice mismatch with the substrate. These effects can be detected by
magnetic rotational torque and antiferromagnetic resonance measurements.
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I. INTRODUCTION

The fact that antiferromagnetic crystals break up into re-
gions with different orientations of the antiferromagnetic
vectors below the Néel temperature was predicted theoreti-
cally by Néel1 and then proved experimentally �see, e.g.,
Refs. 2–7 and many others�.

Domain structures observed in different antiferromagnets
have some common features that we summarize below.

�i� Magnetic domains with different orientations of the
antiferromagnetic vector are characterized by different ten-
sors of spontaneous strain and so can be treated as deforma-
tion twins.

�ii� The morphology of antiferromagnetic domains is
similar to the morphology of deformation twins in marten-
sites. In contrast to ferromagnets, the domain structure in
antiferromagnets is regular and periodic and consists of al-
ternating stripes with different deformation.

�iii� Unlike those of ferromagnets, domain walls separat-
ing domains with nonparallel antiferromagnetic vectors are
planelike and are parallel to low-index atomic planes.

�iv� The deformation does not map the orientation of the
antiferromagnetic vector locally �e.g., inside the domain
wall, the orientation of the antiferromagnetic vector is deter-
mined by competition between the exchange interaction and
deformation-induced anisotropy�.

�v� Antiferromagnetic domains spontaneously appear be-
low the Néel temperature. The domain patterns observed dur-
ing heating-cooling cycles through the Néel point may be
either identical or similar to each other.

�vi� The domain structure may be reversibly changed by
external magnetic field or stress.

The properties �i�–�iv� show that magnetoelastic coupling
plays the leading role in the formation of domain structure in
antiferromagnets. It follows from �v� and �vi� that the do-
main structure may be considered as thermodynamically
equilibrium, notwithstanding the fact that formation of the
domain walls is associated with a positive contribution to the
free energy of the whole sample. Regularity of the domain
structure �properties �ii� and �iii�� excludes the entropy of
domain disorder as a factor leading to a decrease of free
energy of a sample and favoring formation of an inhomoge-

neous state.8 The properties �iv�–�vi� may be explained by
the presence of elastic defects9 �dislocations, disclinations,
etc.� that produce an inhomogeneous stress field in a sample.
This “frozen-in” extraneous �with respect to an ideal crystal�
field stabilizes the inhomogeneous distribution of antiferro-
magnetic vectors via magnetoelastic interactions and ensures
reconstruction of the domain structure during heating-
cooling cycles.

Another model10 consistent with all the above mentioned
properties is based on the assumption that antiferromagnetic
ordering is accompanied by the appearance of so-called qua-
siplastic stresses11 coupled with orientation of the antiferro-
magnetic vector. We assume that these intrinsic stresses are
caused by virtual forces that represent the change of free
energy of the system with displacement of an atom bearing a
magnetic moment. The self-consistent distribution of the in-
ternal stress field depends upon the shape of the sample and
is generally inhomogeneous. The equilibrium distribution of
the antiferromagnetic vectors maps the stress field and thus is
also inhomogeneous and sensitive to application of an exter-
nal field and temperature variation.

Both the defect-based and defectless models exploiting
the magnetoelastic mechanism predict similar dependence of
the macroscopic characteristics of a sample vs external mag-
netic and stress field, but lead to different results when ap-
plied to a set of different samples. Namely, in the framework
of the defect-based model, the domain distribution, domain
size, and some other quantitative characteristics may vary
depending on technological conditions and prehistory of a
sample. On the contrary, the defectless model predicts varia-
tion of the macroscopic properties of antiferromagnetic crys-
tals with variation of their shape.

Below we predict shape-related phenomena in antiferro-
magnets that can be experimentally tested. In the framework
of the defectless model we calculate the effective shape-
induced anisotropy, which can be determined by torque mea-
surements, and the frequency of the lowest spin-wave
branch, detectable by the antiferromagnetic resonance tech-
nique. We consider the case of an easy-plane antiferromag-
net, a typical example of which is given by NiO, CoCl2, or
KCoF3.
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II. DESTRESSING ENERGY

According to our main assumption, an antiferromagnetic
vector L�r� may be treated as a quasidefect that produces an
intrinsic stress field �̂�in��r�. Thus, the thermodynamic poten-
tial of the finite-size antiferromagnet can be represented as
�see, e.g., Ref. 10�

��L�r�� = �
V
� fmag�L�r�� −

1

2
�̂�in��L�r��:ĉ−1:�̂�in��L�r���dr

+ �dest. �1�

Here fmag is the “bare” magnetic energy, the second term is
the self-energy of a quasidefect, ĉ−1 is a fourth-rank tensor of
elastic stiffness, and �dest is the destressing energy,10 which
describes the interaction between quasidefects localized at
different points. The notation is used to denote an inner prod-
uct between second-rank tensors.

The explicit expression for the destressing energy is ob-
tained from the requirement for mechanical equilibrium with
due account of the boundary conditions at the sample sur-
face. The main nonnegative contribution arises from the av-
eraged �over the sample volume V� internal stress ��̂in	 and
can be represented as

�dest =
V

2
�� jl

in	� jklm��km
in 	, � jklm 


�2

�rk�rm
�

V

Gjl�r − r��dr�,

�2�

where Gkm�r−r�� is a three-dimensional Green’s function of
elasticity �with zero nonsingular part� and the fourth-rank

symmetrical destressing tensor �̂
ˆ

depends upon the sample
shape.

The functional dependence between the intrinsic stress
tensor and antiferromagnetic vector is given by a constitutive
relation which should satisfy the principles of locality, mate-
rial objectivity and material symmetry. The simplest form of
such a relation, which assumes isotropy of magnetoelastic
properties of the medium, is

� jk
in =

�v

3
L2� jk + ���LjLk −

L2

3
� jk� , �3�

where the coefficients �v and �� define the principal stresses
of magnetoelastic nature.

Substituting �2� and �3� into �1�, one comes to a closed
expression for the thermodynamic potential, minimization of
which gives the equilibrium distribution of L throughout the
sample.

The two terms of magnetoelastic origin in �1� have one
principal distinction. The structure of the local energy con-
tribution �second term� is defined by crystal symmetry, while
the structure of �dest depends upon the sample shape. In the
framework of the phenomenological approach, the local en-
ergy contributes to the effective anisotropy constant only,
while the destressing energy is responsible for the domain
structure formation and may be a source of artificial fourth-
order anisotropy as will be shown below.

III. APPLICATION TO AN EASY-PLANE
ANTIFERROMAGNET

To understand the role of the destressing energy in shape-
induced phenomena, we consider the simplest case of an
easy-plane antiferromagnet �the point symmetry group of the
crystal includes third-, fourth-, or sixth-order rotations
around the Z axis� cut in the form of an elliptic cylinder with
a and b semiaxes �parallel to the X and Y axes, respectively�
and generatrix parallel to Z. The elastic properties of the
medium are supposed to be isotropic �c11−c12=2c44�. In this
case, the nontrivial contribution to the destressing energy
takes the form

�dest =
V

2
�K2

elas�LY
2 − LX

2� + Kis
elas��LX

2 − LY
2	2 + 4�LXLY	2�

− K4an
elas��LX

2 − LY
2	2 − 4�LXLY	2�� , �4�

where the effective shape-induced anisotropy constants are

K2
elas =

a − b

a + b

����2�2 − 3�� + �v��

4c44�1 − ��
,

Kis
elas =

����2�3 − 4��
8c44�1 − ��

, K4an
elas = �a − b

a + b
�2 ����2

6c44�1 − ��
, �5�

and �=c12/ �c11+c12� is the Poisson ratio.
The magnetic energy density of such an antiferromagnet

in an external magnetic field H �low compared with the spin-
flip value� may be written as

fmag =
1

2
K2

magLZ
2 + f in plane

mag −
1

2
��H � L�2, �6�

where � is the magnetic susceptibility, the out-of-plane an-
isotropy constant K2

mag	K2
elas is large enough to keep the

antiferromagnetic vector in the XY plane, and the explicit
form of the in-plane magnetic anisotropy f in plane

mag is specified
by the crystal symmetry.

For a typical easy-plane antiferromagnet, f in plane
mag is much

less than the effective constants �5� of magnetoelastic nature
�see Table I�. So in such a crystal destressing effects may
stimulate the formation of domain structure and change the
equilibrium orientation of the antiferromagnetic vector.

It should also be stressed that the three different shape-
induced anisotropy constants �5� depend on the aspect ratio
a /b in different ways. This opens the possibility of control-
ling macroscopic properties of the sample by varying its
shape.

TABLE I. Shape-induced Kis
elas and magnetic f in plane

mag anisotropy
�in erg/cm3�, and critical aspect ratio for typical easy-plane antifer-
romagnets �details of calculation in Ref. 12�.

Crystal Kis
elas f in plane

mag �a /b�cr

NiO 0.8�104 288 1.1

CoCl2 5.6�105 
3�104 3.4

KCoF3 3�106 5�105 1.5
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IV. FORMATION OF THE EQUILIBRIUM DOMAIN
STRUCTURE

If the in-plane magnetic anisotropy is small but not van-
ishing, then the destressing energy favors formation of do-
main structure. For example, in the case of an isotropic
sample �a=b� the only nontrivial term with Kis

elas in Eq. �4� is
nonnegative. In the absence of an external field it can only be
diminished by zeroing the average values of �Lx

2−Ly
2	 and

�LxLy	, i.e., by the appearance of equiprobable distribution of
domains with different orientations of the antiferromagnetic
vector.

The external magnetic field causes rotation of the antifer-
romagnetic vector and removes the degeneracy of various
domains. Due to the long-range character of elastic forces,
the field-induced ponderomotive force that acts on the do-
main wall is compensated by the destressing, restoring force.
Competition of these two factors determines the equilibrium
proportion of different domains. If, for example, the external
field is applied parallel to an easy direction in the XY plane
�say, the X axis�, then the volume fraction � of energetically
preferable Y-type domains �in which L�H� increases qua-
dratically with field, �=0.5�1+ �H /HMD�2�, up to the mon-
odomainization field HMD=�Kis

elas /���� /��c44.
The domain structure may also be observed in samples

with small but nonzero eccentricity �a�b� providing that the
in-plane magnetic anisotropy is large enough to keep two
different equilibrium �stable and metastable� L orientations:
K2

elas f in plane
mag . In this case it is the shape factor that removes

the degeneracy and hence the equiprobability of the domains.
In the above example, the fraction of X-type domains �L X�
depends on the aspect ratio as follows:

� −
1

2
=

K2
elas

K4an
elas �

b − a

b + a
, �7�

and the domain structure reproduces the orthorhombic sym-
metry of the sample.

The critical values of the aspect ratio �a /b�cr �obtained
from the condition K2

elas= f in plane
mag � at which the equilibrium

domain structure is still thermodynamically favorable are
given in the last column of Table I.

V. TORQUE EFFECT

If the aspect ratio a /b of the sample noticeably differs
from 1, then all the effective anisotropy constants in �4� have
the same order of magnitude and are much greater than the
in-plane anisotropy, Kis

elas	 f in plane
mag �see Table I�. So the

sample has shape-induced uniaxial anisotropy regardless of
its crystallographic symmetry.

An appropriate tool for measuring anisotropy constants is
the rotational torque of an untwinned crystal in a magnetic
field. If the rotational axis is perpendicular to the easy plane
XY and the magnetic field makes an angle � with the X axis
�see the inset in Fig. 1�, then the rotational torque can be
calculated as −�� /��, where the free energy potential � is
given by Eq. �1�. With account of Eqs. �4�–�6�, the rotational
torque per unit volume is represented as

T��� = K2
elas sin 2���� + 2K4an

elas sin 4���� , �8�

where � is the angle between the antiferromagnetic vector
and the X axis, which unambiguously determines the equi-
librium orientation of L and is calculated from the condition
for the minimum of the potential �1�:

K2
elas sin 2� + 2K4an

elas sin 4� −
1

2
�H2 sin 2�� − �� = 0. �9�

Analysis of Eqs. �8� and �9� shows that �i� the effective an-
isotropy is determined by shape-dependent �via the a /b ra-
tio� constants K2

elas, K4an
elas; �ii� the shape-induced anisotropy

removes the multiaxial degeneracy of equilibrium orienta-
tions of the antiferromagnetic vector and thus excludes for-
mation of domain structure; �iii� in the absence of field the
preferred orientation of the antiferromagnetic vector coin-
cides with the longer ellipse axis �K2

elas�0, a�b�; �iv� an
external magnetic field applied along the longer ellipse axis
may induce a spin-flop transition at H=HSF, where the spin-
flop field

HSF =�1

�
�K2

elas − 4K4an
elas� �

��
��c44

�a − b

a + b
�10�

is governed by the sample shape and is independent of crys-
talline anisotropy.

An interesting result is obtained for a sample having a
square cross section. In this case, the equilibrium distribution
of the antiferromagnetic vector is in principle inhomoge-
neous but on average can still be described by Eq. �9� with

K2
elas = 0, K4an

elas =
ln 2����2

�c44�1 − ��
� 0. �11�

It is obvious that such a sample shows fourth-order effective
anisotropy with easy axes directed along the square diago-
nals �45° angle with respect to the X axis, as results from the
condition K4an

elas�0�.
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FIG. 1. Rotational torque of untwinned NiO crystal at room
temperature �RT� in H=4.8 kOe for �111� rotational axis. Triangles,
experimental data �Ref. 13�; solid line, theoretical approximation
according to Eqs. �8� and �9�; dashed line, approximation of infinite
crystal �no shape effect�.
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The rotational torque calculated from Eqs. �8� and �9� for
a typical antiferromagnet NiO is shown in Figs. 1 and 2. In
calculations we use the experimental results13 for the rota-
tional torque around the �111� axis taken at room temperature
for H=4.8 kOe �triangles in Fig. 1�. Since the experiment
shows strong hysteresis in clockwise and counterclockwise
rotations, the data in Fig. 1 are initially averaged over a
clockwise-counterclockwise cycle. The theoretical curve

�solid line� includes some nonzero average torque that may
result from inhomogeneity of the sample, and the adjusted
parameters are �=4.35�10−4 emu/cm3, K2

elas=900 erg/cm3,
K4an

elas=450 erg/cm3, a /b=20.
The four curves in Fig. 2 demonstrate possible variations

of the rotational torque with the crystal shape. For a large
aspect ratio �curve a�, contributions from both second- and
fourth-order anisotropy terms are equally important �K2

elas

�K4an
elas�; the torque curve is composed of sin 2� and sin 4�

components. At lower aspect ratio �curves b and c�, the
fourth-order component becomes less pronounced and the
amplitude of the torque also diminishes. A circular cylinder
�a=b� will show no shape effect in a single-domain state, but
a sample with a square cross section should possess fourth-
order anisotropy �as seen from curve d�, regardless of crys-
talline symmetry.

Evidently, shape dependence of the magnetic rotational
torque for a NiO crystal was observed in Ref. 13. The au-
thors notice that “a nearly pure sin 4� curve is obtained when
the �111� cross section is square.” For an arbitrary shaped
section the experimental curve �Fig. 1, triangles� is satisfac-
torily fitted with a combination of sin 2� and sin 4� compo-
nents �solid line�. The dashed line in Fig. 1 shows the theo-
retical curve with f in plane

mag =220 cos 6� erg/cm3, which could
be expected in neglecting shape-induced effects. The pres-
ence of the sin 4� component in the rotational torque makes
it possible to exclude the effect of L “freezing” by magne-
toelastic strain, which may be expected in a relatively small
magnetic field. Additional anisotropy induced by the frozen
lattice is uniaxial and should be insensible to the variation of
crystal shape.

VI. ANTIFERROMAGNETIC RESONANCE

The effect of shape-induced anisotropy may also be de-
tected by measuring the frequency of the lowest branch of
the spin-wave spectrum. The antiferromagnetic resonance
�AFMR� frequency calculated within a standard Lagrangian
technique in the long-wave approximation is given by the
expression

�AFMR = g�2

�
�Kis

elas + K2
elas cos 2� + 4K4an

elas cos 4� − �H2 cos 2�� − ��� , �12�

where g is the gyromagnetic ratio and the equilibrium value
of � may be calculated from �9�. The polar diagram of
�AFMR��� calculated from �12� for NiO �g=2,5� for a differ-
ent crystal shape is shown in Fig. 3. For aspect ratio close to
1 �dotted line� the shape effect is negligible and the magne-
toelastic gap in the AFMR spectrum is almost isotropic. For
elongated �dash-dotted and dashed lines� or square-shaped
�solid line� samples, the AFMR gap should show strong two-
or four-fold anisotropy.

VII. SHAPE EFFECT IN ANTIFERROMAGNETIC
NANOPILLARS

Taking into account recent interest in multilayered struc-
tures based on antiferromagnetic materials, we consider pos-
sible shape effects in the antiferromagnetic nanopillar that
can be a constitutive part of spin-valve structure �see, e.g.,
Ref. 14�. The typical nanopillar has the form of a very thin
elliptic cylinder �thickness c�3–10 nm� with a pronounced
in-plane aspect ratio �with a�120 nm and b�50 nm�.
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FIG. 2. Rotational torque �calculated� of untwinned NiO crystal
at RT in H=5 kOe for �111� rotational axis for samples with differ-
ent shapes. For ellipse-section samples the aspect ratio is a /b=20
�a�, 3 �b�, and 1.2 �c�. �d� Square-section sample.
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In this case �c�a ,b� the constants of shape-induced an-
isotropy may be expressed through the parameter k2=1
−b2 /a2 which depends on the aspect ratio b /a1, namely,

K2
elas =

c

b

�����2�2 − 3�� + �v���J2�k�
4c44�1 − ��

, K4an
elas =

c

b

2����2J4�k�
3c44�1 − ��

,

�13�

where we have introduced the dimensionless shape factors
J2,4 as follows:

J2�k� = �
0

�/2 �sin2 � + cos 2�/k2�d�

�1 − k2 sin2 �
,

J4�k� = �
0

�/2 �1 − 8 cos 2� − k2 sin2 � + 8 cos 2�/k2�d�

�1 − k2 sin2 �
.

�14�

Dependence of the shape factors J2,4 vs aspect ratio cal-
culated according to Eq. �14� is given in Fig. 4. It can be
easily understood that both shape-induced constants �13�
vanish for an isotropic sample �b=a�. For all values of the
aspect ratio the second-order term is greater than that of
fourth order, J2�J4. In the experimentally accessible range
of values b�0.5a J2=0.52 and J4=0.3. Thus, the character-
istic value of the shape-induced anisotropy in a stress-free
thin film can be of the order of the magnetoelastic energy,
Kis

elas� ����2 /c44, multiplied by a small factor c /b that varies
within the range 0.05–0.3 depending on the film thickness.

Substantial enhancement of the second-order shape-
induced anisotropy K2

elas should be expected in the case of
mismatch between the antiferromagnet and substrate lattices.
Lattice misfit is a source of rather strong �usually isotropic�
in-plane stresses �xx

mf=�yy
mf=�mf that should be added to the

intrinsic stresses �3�. The corresponding �and principal� con-

tribution to the effective second-order anisotropy constant
takes the form

K2
elas =

c

b

�mf��J2�k�
4c44�1 − ��

. �15�

If umf is the lattice mismatch and uspon��� /c44 is an observ-
able spontaneous strain that occurs at the Néel point, then we
can estimate �mf�c44u

mf �with the assumption that the elas-
tic moduli of substrate and antiferromagnet are of the same
order of magnitude�, Kis

elas� ����2 /c44, and hence

K2
elas �

c

b

umf

usponKis
elas.

Substituting typical values of small lattice misfit umf=0.005
and large spontaneous striction uspon=10−4, we see that, even
for very thin nanopillars with c /b=0.05, the shape-induced
anisotropy may be as large as K2

elas=2.5Kis
elas, and thus much

greater than the bare in-plane magnetic anisotropy of antifer-
romagnet �see Table I�.

The nontrivial relation �15� between the shape of the
sample and the external stress produced by the substrate may
reveal itself in switching of the shape-induced direction of
the easy axis for different substrates. Really, if K2

elas�0, then
the equilibrium orientation of L in a monodomain sample is
parallel to the ellipse’s long axis a �X direction�, as can be
seen from �4� and the inset in Fig. 1. According to Eq. �15�,
the sign of K2

elas depends upon the relation between intrinsic
��� ,uspon� and extrinsic ��mf,umf� stresses �or strains�. In the
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case when both substrate and eigen magnetoelastic forces of
the antiferromagnet “work” in the same direction, trying to
extend �compress� the crystal lattice, the product �mf�� will
be positive �in accordance with the Le Chatelier principle�
and K2

elas�0. If we use another substrate which produces a
misfit of opposite sign, K2

elas
0, and the equilibrium orien-
tation of L will be parallel to the short axis b �Y direction�.

Control of spin orientation by substrate-induced strain
was recently observed15 in the antiferromagnet CoO. In bulk
samples CoO is compressed in the L direction. When grown
on a Mg�100� substrate, the CoO lattice is expanded in plane,
and experiment shows that the Co spins go out of plane. And,
in contrast, in-plane ordering is observed for a Ag�100� sub-
strate, which produces a slight contraction in the film plane.
From our point of view, analogous experiments with nano-
pillars would be very instructive in further study of shape-
induced effect in antiferromagnetic crystals.

VIII. CONCLUSIONS

In summary, we propose a model that describes an anti-
ferromagnet with pronounced magnetoelastic coupling. The
model is based on the assumption that antiferromagnetic or-
dering is accompanied by the appearance of elastic dipoles.
Due to the long-range nature of elastic forces, the energy of
the dipole-dipole interaction �destressing energy� in a finite-

size sample depends on the crystal shape and is proportional
to its volume.

In easy-plane antiferromagnets with degenerate orienta-
tion of the easy axis, the destressing effects may stimulate
formation of domain structure and redistribution of the do-
mains in the presence of an external magnetic field.

The model predicts the existence of shape-induced mag-
netic anisotropy which corresponds to the macroscopic sym-
metry of the sample and can be detected by magnetic rota-
tional torque and AFMR measurements.

The crystal shape may be a source of additional magnetic
uniaxial anisotropy which produces different effects depend-
ing on the aspect ratio. Below some critical value of a /b,
shape-induced anisotropy favors the formation of domain
structure even in the absence of any external field. For large
aspect ratio �above the critical value�, shape-induced aniso-
tropy removes the degeneracy of the easy axis in a single-
domain sample. The energy difference between the easy and
hard directions thus induced depends upon a /b. A square
cross-section sample should acquire fourth-order anisotropy
�irrespective of the crystal symmetry in the easy plane�. This
opens the possibility of controlling macroscopic properties of
the sample by varying its shape.

The shape of antiferromagnetic nanopillars embedded into
structures with lattice mismatch may be a principal source of
magnetic anisotropy. This fact should be taken into account
in engineering spin-valve devices.
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