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The anisotropic Kondo necklace model in two and three dimensions is treated as a genuine model for
magnetic to Kondo singlet quantum phase transitions in the heavy fermion compounds. The variation of the
quantum critical point with anisotropy parameters has been investigated previously in the zero-field case. Here,
we extend the treatment to finite fields using a generalized bond operator representation including all triplet
states. The variation of critical tc with magnetic field and the associated phase diagram is derived. The
influence of anisotropies and the different g factors for localized and itinerant spins on the field dependence of
tc is also investigated. It is found that three different types of behavior may appear: �i� destruction of antifer-
romangetism and appearance of a singlet state above a critical field, �ii� the inverse behavior, namely, field-
induced antiferromagnetism out of the Kondo singlet phase, and �iii� reentrance behavior of the Kondo singlet
phase as a function of field strength.
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I. INTRODUCTION

Kondo-necklace- �KN-� type models are useful to discuss
the quantum phase transitions between Kondo singlet and
antiferromagnetically ordered states such as found in heavy
fermion compounds.1–5 They were originally proposed by
Doniach6 for the one-dimensional case as a simplified ver-
sion of the itinerant Kondo lattice �KL� models.7 Thereby,
the kinetic energy of conduction electrons is replaced by an
intersite exchange term. For a pure xy-type intersite ex-
change, this may be obtained by a Jordan-Wigner transfor-
mation. However, at higher D the replacement cannot be
justified easily. The intuitive argument is that at low tempera-
tures the charge fluctuations in the Kondo lattice model are
frozen out and the remaining spin fluctuation spectrum can
be simulated by an antiferromagnetic intersite interaction
term of immobile � spins coupled by a Kondo interaction to
the local noninteracting spins S. Recent exact-
diagonalization studies of finite clusters for both Kondo lat-
tice and Kondo necklace models have indeed found that the
competitions between on-site Kondo singlet formation and
antiferromagnetic �AF� intersite correlations are very similar
in both models.8,9 A more formal way to get rid of charge
fluctuations in the KL model is an inclusion of a Hubbard
term for conduction electrons �KLU model� which leads to
the isotropic KN model in the large-U limit at half filling.

Nevertheless, one should consider the Kondo necklace
model for D�2 as a model in its own right which is suitable
for studying quantum phase transitions between a Kondo sin-
glet �KS� and an AF phase. In its original form the local
Kondo exchange is isotropic while the intersite exchange is
of xy type. This model has U�1� symmetry. Later, more gen-
eral models with arbitrary anisotropy of Kondo as well as
intersite exchange terms have been considered.10 Indeed,
compounds which exhibit the KS to AF quantum phase tran-
sition have mostly uniaxial symmetries. A full account of the
influence of uniaxial anisotropies of both terms in the Kondo
necklace Hamiltonian on the quantum critical point has been
given in Ref. 11. The D=2 KN model without any aniso-

tropy may also be understood as a special case of a bilayer
Heisenberg model12,13 where the intersite bonds are cut in
one of the layers. A reintroduction of holes in this case leads
to the KNtJ model which is related to the KLU model away
from half filling.13,14

In the general anisotropic KN model, the quantum phase
transition is achieved by varying the ratio of “hopping”
t—i.e., the intersite interactions of � spins to the on-site
Kondo interaction J. In practice this is achieved by varying
pressure �hydrostatic or chemical�. An alternative way to ar-
rive at the QCP is to apply an external magnetic field which
breaks the local Kondo singlets and leads to a field depen-
dence of the critical tc. Starting from a noncritical or above
critical t at zero field, the system may then be tuned to the
QCP by varying the field strength. This is indeed a practical
method frequently applied.15 To investigate field-induced
quantum phase transitions from a Kondo-singlet to AF-
ordered state or vice versa we have extended our previous
work to include the effect of the magnetic field within the
Kondo necklace model. However, this introduces an addi-
tional parameter: namely, the ratio of effective g factors for
the local Kondo spins and the interacting spins. They can be
different due to the different strength of spin-orbit coupling
and crystalline electric field effects involved in the formation
of the � and S �pseudo�spins. A mainly numerical study of
the itinerant isotropic KL model in a magnetic field has been
given previously.16

In Sec. II we define the anisotropic KN model in a mag-
netic field and in Sec. III briefly discuss the local state space
of the Kondo term in an external field. In Sec. IV, we per-
form the transformation from spin to bosonic variables and
in Sec. V derive the self-consistent equations for the mean-
field boson condensate amplitudes in the singlet and antifer-
romagnetic phases. The influence of higher-order terms in
the Hamiltonian is discussed in Sec. VI. In Sec. VII, we
investigate the numerical solutions and discuss the resulting
quantum critical t-h phase diagram. A discussion is provided
in Sec. VIII, and Sec. IX finally gives the conclusions.
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II. ANISOTROPIC KONDO NECKLACE MODEL
IN AN EXTERNAL FIELD

To investigate field-induced quantum critical behavior, we
start from the anisotropic KN model with U�1� symmetry11

where the field is applied along the anisotropy �z� direction:

H = Ht + HJ + HZ = t �
�n,m�

��n
x�m

x + �n
y�m

y + ��n
z�m

z �

+ J�
n

��n
xSn

x + �n
ySn

y + ��n
zSn

z� + ��
i

Sn
z + ���

i

�n
z . �1�

Here, the summation over nearest neighbors �NN� is indi-
cated by brackets and �n

� is the � component ��=x ,y ,z� of
the “itinerant” electron spin at site n, whereas Sn

� is the �
component of localized spins at position n. For the exchange
coupling between the itinerant and localized spins, we gen-
erally use Jx�J as reference energy scale in all figures ex-
cept when stated otherwise. The local anisotropy parameter
� is defined by the relation Jz=�Jx between the z-axis and
in-plane �xy� local exchange. The hopping parameter of the
itinerant electrons is proportional to t with the anisotropy in
the z direction given by �. The present model has three con-
trol parameters: t /Jx and the anisotropy parameters �� ,��. In
the Zeeman term, we defined �=−gsh and ��=−g�h with h
=�BH where H is the strength of the applied field. Further-
more, gs and g� are the gyromagnetic ratios for localized �Sn

��
and itinerant ��n

�� spins, respectively. They are determined by
the combined effect of spin-orbit coupling and crystalline
electric fields which depends on the degree of localization or
itineracy of electrons. Therefore gs and g� in general need not
be equal. We shall consider two extreme cases: namely,
�gs ,g��= �2,0� and �gs ,g��= �2,2�. The former is more real-
istic, since in real heavy fermion compounds most of the
magnetic response is due to the localized electrons with
pseudospin S. As in previous work,11,17 the present study of
field-induced quantum phase transitions in the anisotropic
KN model is based on the bond operator formulation. Its
Hilbert space is spanned by local singlet-triplet states of
�Sn ,�n� spin dimers represented by bosonic degrees of free-
dom. In applying this technique to the finite-field case, we
will largely use the same or similar notations as in the pre-
vious zero-field case11 for consistency.

III. LOCAL LEVELS AND ZEEMAN SPLITTING

Before we perform the transformation to bosonic vari-
ables, it is useful to have a clear understanding of the local
singlet-“triplet” level scheme as a function of anisotropy and
magnetic field because certain tendencies of the quantum
critical behavior are correlated with the splitting of the
ground state and the first excited state of a local bond. There-
fore, we first diagonalize the local Hamiltonian HL=HJ
+HZ. This leads to eigenvalues �i=Ei / �Jx /4��i=1–4� given
by

�1,2 = � ± �̂+,

�3,4 = ± �4 + �̂−
2�1/2 − � ,

�̂± = −
h

�Jx/4�
1

2
�gs ± g�� �

�±

�Jx/4�
, �2�

with �±= 1
2 ��±���=−g±h and g±= 1

2 �gs±g��. Defining Sz
t =�z

+Sz, then �1,2 are the energies of the triplet states �↑↑�, �↓↓�
with Sz

t = ±1, respectively, which exhibit the linear Zeeman
effect. Furthermore, �3,4 correspond to the triplet Sz

t =0 state
1
�2

��↑ ↓ �+ �↓ ↑ �� and singlet state 1
�2

��↑ ↓ �− �↓ ↑ ��, respec-
tively. They show level repulsion in a magnetic field, except
for gs=g� when the total Sz

t component is conserved and
commutes with HL. It is obvious that the spectrum of eigen-
states in Eq. �2� is invariant under the transformation
�gs ,g��→ �g� ,gs�. The variation of zero-field energy levels
with � is shown in Fig. 1 �top� from the xy-U�1� limit ��
=0� via the Heisenberg SU�2� point ��=1� to the Ising Z2

limit ��=	�. The field dependence for a few selected � val-
ues and g factors �gs ,g��= �2,0� is shown in Fig. 1 �bottom�.
For �gs ,g��= �2,2� �not shown in Fig. 1� the ground-state and
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FIG. 1. Top: dependence of local energy levels after Eq. �2� on
the local anisotropy � �xy side� or ��=1−1/� �Ising side� at zero
field. Numbers in parentheses denote the degeneracy of each level.
Bottom: field dependence �h=�BH� of local energy level for three
extreme cases. Note that in the xy case the excitation energy from
ground state to first excited state vanishes asymptotically �h
Jx�,
whereas in the other cases it reaches a constant �HAF� or is equal to
a constant �Ising�. Here, we used �gs ,g��= �2,0�.
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first excited-state levels cross at hcr /Jx=0.25,0.50 for
�� ,��= �0,0� and �1,1�, respectively. In such a case one may
expect that the quantum critical tc�hcr� for the transition from
the Kondo singlet to AF phase vanishes.

IV. DERIVATION OF EFFECTIVE BOSONIC MODEL

We apply the transformation from spin variables �S� ,���
to bond variables �s , t�� ��=x ,y ,z� to the Hamiltonian in Eq.
�1�. It is given by18

Sn,� =
1

2
�sn

†tn,� + tn,�
† sn − i����tn,�

† tn,�� ,

�n,� =
1

2
�− sn

†tn,� − tn,�
† sn − i����tn,�

† tn,�� , �3�

where ���� is the fully antisymmetric tensor. By construc-
tion, the singlet �s� and triplet �t�� operators generate the
local eigenstates of HL for zero field and no anisotropy:19

s†�0� =
1
�2

��↑↓� − �↓↑��, tx
†�0� = −

1
�2

��↑↑� − �↓↓�� ,

tz
†�0� =

1
�2

��↑↓� + �↓↑��, ty
†�0� =

i
�2

��↑↑� + �↓↓�� . �4�

Here, the first and second arrows indicate the z component of
� and S spins, respectively. The singlet and triplet operators
satisfy the usual bosonic commutation relations according to

	sn,sn
†
 = 1, 	tn,�,tn,�

† 
 = ��,�, 	sn,tn,�
† 
 = 0. �5�

All other commutators vanish. The physical states have to
satisfy the local constraint sn

†sn+��tn,�
† tn,�=1. This transfor-

mation leads to an effective Hamiltonian in terms of singlet
�s� and triplet �t�� bosons. It has been argued in Refs. 11 and
17 that one may restrict oneself to the terms which are bilin-
ear in the triplet bosons and we will later in Sec. VI discuss
to what extent this is justified. For the moment we restrict
ourselves to the bilinear contribution. It can be written as the
sum of a local term HL and an intersite interaction term H1.
Here

HL = HJ + HZ =
Jx

4 �
n

	− �2 + ��sn
†sn + �2 − ��tn,z

† tn,z

+ ��tn,x
† tn,x + tn,y

† tn,y�
 + �−�
n

�sn
†tnz + tnz

† sn�

− i�+�
n

�tnx
† tny − tny

† tnx� , �6�

contains the on-site Kondo interaction �HJ� and the Zeeman
term �HZ�. The bilinear interaction term is given by

H1
�2� =

t

4 �
�n,m�

�
�=x,y

	sn
†tn,��sm

† tm,� + tm,�
† sm� + H.c.


+
t�

4 �
�n,m�

	sn
†tn,z�sm

† tm,z + tm,z
† sm� + H.c.
 . �7�

The physical constraint on the local Hilbert space is enforced

by adding a Lagrange term at each site with an associated
chemical potential �n, leading to

H = HL + �
n

�n�sn
†sn + �

�=x,y,z
tn,�
† tn,� − 1� + H1

�2�

� H0 + H1
�2�. �8�

This Hamiltonian is diagonalized within a mean-field ap-
proximation for the bond-operator singlet and triplet bosons.
We assume that in general there are three independent
bosonic amplitudes which characterize the phases in the
�t ,h� plane: singlet s̄= �sn� denoting the strength of local sin-
glet formation, staggered triplet t̄= ± �tn,x� which determines
the AF order parameter �polarized along x�, and homoge-
neous triplet t0= �tn,z� which determines the magnetization
caused by the external field along the z direction. For tech-
nical reasons, it is advantageous to transform to circularly
polarized transverse triplet coordinates �un ,dn� with respect
to the field direction �z axis�. The transformation and its in-
verse are given by

un = −
1
�2

�tnx − itny�, tnx = −
1
�2

�un − dn� ,

dn =
1
�2

�tnx + itny�, tny = −
i

�2
�un + dn� . �9�

In circular triplet coordinates, the Hamiltonian may then be
written as

H0 = �
n
�−

Jx

4
�2 + �� + �n�sn

†sn + � Jx

4
�2 − �� + �n�tnz

† tnz

+ � Jx

4
� + �+ + �n�un

†un + � Jx

4
� − �+ + �n�dn

†dn

+ �−�sn
†tnz + tnz

† sn� − �n� �10�

and

H1
�2� = −

t

4 �
�n,m�

�	sn
†sm

† �undm + dnum� + H.c.


− 	sn
†sm�unum

† + dndm
† � + H.c.
�

+
�t

4 �
�n,m�

	�sn
†sm

† tnztmz + H.c.� + �sn
†smtnztmz

† + H.c.�
 .

�11�

Separating the mean values and the corresponding fluctua-
tions the Fourier components of singlet and triplet operators
are then given by

sk = �Ns̄ ,

uk = �Nū�k,Q + ûk,

dk = �Nd̄�k,Q + d̂k,
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tk,z = �Nt̄0�k,0 + t̂k,z. �12�

Here we assumed that if AF order appears, it will be of the
in-plane type ��ẑ ,H�. Therefore, the case of AF order will
only be considered for ��1. Instead of t̄0, it will later be
convenient to use �̄0 which is defined by the relation t̄0
= s̄�̄0. In the paramagnetic phase at zero field, only s̄ will be
different from zero with a value close to 1 �Ref. 11�. As the
field increases, s̄ will decrease and simultaneously the triplet
amplitude t̄0 associated with the uniform induced moment
increases. If an AF transition occurs, s̄ will further decrease
and u ,d will increase accordingly with the field. The con-

straint s̄2+ t̄0
2+ ��ū�2+ �d̄�2��1 is always respected for any field

strength. In the limit h /Jx
1, the amplitudes s̄ and t̄0 be-
come asymptotically equal. On the mean-field level, this sig-
nifies that the ground state of the local level scheme becomes
an equal amplitude mixture of the two states with Sz

t =0
which show the level repulsion in Fig. 1. Therefore, it is
possible to use the zero-field singlet-triplet bosons in Eq. �3�
as a basis even in the present finite-field problem. On the
mean-field level, the physical constraint automatically takes
care of the change in the local ground-state wave function.
Inserting the above expressions into the Hamiltonian of Eqs.
�10� and �11�, one obtains a bilinear form in the triplet fluc-

tuation operators �ûk , d̂k , t̂kz� which may be diagonalized with
two separate Bogoliubov transformations given for the z po-
larization by

ak = cosh�k,z�t̂k,z + sinh�k,z�t̂−k,z
† ,

a−k
† = sinh�k,z�t̂k,z + cosh�k,z�t̂−k,z

† �13�

and for the two circular polarized triplets by

Ak = cosh�k,��ûk + sinh�k,��d̂−k
† ,

B−k
† = sinh�k,��ûk + cosh�k,��d̂−k

† ,

Bk = cosh�k,��d̂k + sinh�k,��û−k
† ,

A−k
† = sinh�k,��d̂k + cosh�k,��û−k

† . �14�

The transformation angles k,z and k,� are obtained from the
diagonalization conditions

tanh 2k,z =
2fz�k�
dz�k�

, tanh 2k,� = −
2f��k�
d��k�

, �15�

where the longitudinal auxiliary functions fz and dz are de-
fined by

fz�k� =
ts̄2

4
���k�, dz�k� = � +

2Jx − Jz

4
+

ts̄2

2
���k� ,

�16�

and for the in-plane case the auxiliary functions f� and d�

are given by

f��k� =
ts̄2

4
��k�, du,d�k� = � +

Jz

4
+

ts̄2

2
��k� ± �+,

d��k� =
1

2
�du + dd� = � +

Jz

4
+

ts̄2

2
��k� . �17�

Here, ��k�=�i=1
D cos�ki� with ��0�= z

2 denotes the NN struc-
ture factor in dimension D= z

2 �z=coordination number of the
simple cubic lattice�. It should not be confused with the Zee-
man energies �± defined in Sec. III. The Bogoliubov trans-
formations in Eqs. �13� and �14� yield the diagonalized bi-
linear Hamiltonian

Hmf = E0 + �
k

	�A�k�A†�k�A�k� + �B�k�B†�k�B�k�

+ �z�k�ak
†ak
 , �18�

where the triplet-mode frequencies ���k� ��=A ,B ,z� in the
mean-field Hamiltonian are given by

�A�k� = �A�k� + �+,

�B�k� = �B�k� − �+,

�z�k� = �z�k� ,

�A�k� = �B�k� = 	d��k�2 − 4f��k�2
1/2 � ���k� ,

�z�k� = 	dz�k�2 − 4fz�k�2
1/2. �19�

The excitation energies ���k� depend on the field, both ex-
plicitly through �+ �for �=A ,B� and implicitly via ���k�
which is determined by the field-dependent singlet and triplet

amplitudes. In the nonmagnetic phase �ū , d̄ , t̄0=0�, the
singlet-triplet excitation gap is given by the minimum exci-
tation energy at the incipient ordering wave vector. For D
=2, this is at Q= �� ,��—explicitly, Eg=min����Q� ,�
=A ,B ,z�. In the approach from the nonmagnetic side, the
quantum critical line tc�h� is then defined by the vanishing of
Eg.

The ground-state energy E0 is a function of three control
parameters �t /Jx ,� ,��, four singlet-triplet expectation values

�s̄ , t̄0 , ū , d̄�, and the chemical potential �. Writing the trans-
verse mean values explicitly in terms of amplitudes and
phases according to

ū = u exp�i�u�, d̄ = d exp�i�d� , �20�

the ground-state energy can be written as

E0� t

Jx
,�,�; s̄, ū, d̄, t̄0� = N−

1

4
�2Jx + Jz�s̄2 + �s̄2 − �

+ � Jz

4
+ � −

1

4
zts̄2��u2 + d2�

+ �+�u2 − d2� +
z

2
ts̄2ud cos��u + �d�

+ �1

4
�2Jx − Jz� + � +

1

2
z�ts̄2� t̄0

2

+ 2�−s̄t̄0� +
1

2�
k�

��k
� − d�� . �21�
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As a first step, we determine the triplet condensate phases
��u ,�d� by minimization. Since only one term depends on
the phases, we obtain the extremal condition sin��u+�d�
=0. The minimum must also satisfy cos��u+�d��0. This is
achieved for �u+�d=n� with n an odd integer; i.e., the sum
is only determined modulo 2�. Since there is no condition
for the difference of phases, one of them is arbitrary. We then
choose ��u ,�d�= �0,��. The remaining continuous degen-
eracy with respect to the phase difference is a signature of
the Goldstone mode which is present throughout the AF
phase.

V. SELF-CONSISTENT EQUATIONS FOR SINGLET AND
TRIPLET AMPLITUDES AND MAGNETIZATION

The minimization of the ground-state energy E0 in Eq.
�21� leads to self-consistent coupled equations for the con-

densate amplitudes s̄ , ū , d̄ , t̄0 and the chemical potential �.
Their structure is slightly different in the nonmagnetic �t̄
=0� and magnetic �t̄�0� cases; therefore, we write them
explicitly for both. For a convenient expression of the self-
consistency equations, we define the quantity �̄0 by the rela-
tion t̄0� �̄0s̄. Furthermore, we introduce the Brillouin zone
integrals F� and G� ��=A ,B ,z� given by

F� =
1

N
�

k

d��k�
�k�

,

G� =
t

N
�

k

d��k� − 2f��k�
�k�

�k
�, �22�

which appear in the extremal conditions when differentiating
the last term in E0 with respect to � or s̄, respectively. Here,
we have defined �k

���k
A,B=�k and �k

z =��k. Note that even
in the case of finite field ��±�0�, it is the frequency �k� and
not the mode frequency �k� which appears in the expres-
sions for F� and G�.

A. Nonmagnetic Kondo spin-singlet phase in an external field

In this case the transverse triplet amplitudes vanish—i.e.,
u=d=0—and the minimization of E0 with respect to �s̄, t̄0
� s̄�̄0, �� leads to the self-consistent set of equations

s̄2 =

1

2�5 − �
�

F��
1 + �̄0

2 ,

�̄0 = −
2�−

2� +
1

2
�2Jx − Jz� + z�ts̄2

,

� =
1

2�Jx +
1

2
Jz� −

1

2�
�

G� − 2�−�̄0 − z�ts̄2�̄0
2� . �23�

Here, s̄ and � are found by iteration which determines �̄0 and
hence t̄0 completely via the second equation above. For zero

field—i.e., �−=0—the induced �̄0 vanishes and then Eq. �23�
reduces to the paramagnetic case of Ref. 11.

B. Antiferromagnetic phase in an external field

The additional minimization with respect to u and d am-
plitudes leads to a direct relation for the chemical potential �
in terms of the singlet amplitude s̄ which is a generalized
version of the zero-field AF case:11

��h� =
1

4
zts̄2 −

Jz

4
+ �1

4
zts̄2�2

+ �+
2�1/2

. �24�

At this stage, it is convenient to introduce an auxiliary pa-
rameter � which controls the effect of the external field on
the boson amplitudes; it is defined by

��h� = �1 + � �+

z

4
ts̄2�

2

�
1/2

+
�+

z

4
ts̄2

. �25�

Obviously, ��0�=1 and ��h��1 since �+�0. Using the ex-
pression for the zero-field chemical potential �0=��0�, we
may also write

��h� = �0 +
z

4
ts̄2 �� − 1�2

2�
,

�0 =
z

2
ts̄2 −

1

4
Jz. �26�

We define a total transverse triplet amplitude t̄ by t̄2= 1
2 �u

+d�2 which should not be confused with the hopping matrix
element t of the Hamiltonian. The minimization with respect
to u ,d leads to a relation between the two amplitudes from
which we obtain

u2 + d2 = 2t̄2 1 + �2

�1 + ��2 , u2 − d2 = 2t̄2�1 − �

1 + �
� �27�

or, equivalently,

u2 =
2t̄2

�1 + ��2 , d2 =
2t̄2�2

�1 + ��2 = �2u2. �28�

The remaining set of singlet and triplet amplitudes �s̄, t̄, t̄0
= s̄�̄0� is again determined by the solution of three coupled
equations

s̄2 =

1

2�5 − �
�

F�� − �u2 + d2�

1 + �̄0
2 ,

�̄0 = −
2�−

2� +
1

2
�2Jx − Jz� + z�ts̄2

� − 2�−�̂0,
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t̄2 =
1

zt2� −
1

2
�2Jx + Jz� + 2�−�̄0 +

1

2�
�

G�� + �s̄2�̄0
2.

�29�

These amplitudes are related to the spin expectation values
by

�Sz� = s̄t̄0 +
1

2
�u2 − d2� ,

��z� = − s̄t̄0 +
1

2
�u2 − d2� . �30�

For zero field ��̄0=0�, the system of equations �29� may be
shown to reduce to the one already discussed in Ref. 11. In
this case, �=1 and u=d—i.e., circularly polarized triplet
modes with equal amplitudes.

Finally, we discuss the uniform magnetization M0 and the
staggered magnetization Ms=MB=−MA associated with AF
order. By definition

M0 = gs�Sz� + g���z� ,

Ms = gs�Sx
B� + g���x

B� . �31�

Here, the staggered moment is assumed to be polarized along
x. Using the expressions in Eq. �30� for �Sz�, ��z�, and similar
ones for �Sx� and ��x�, we obtain with the help of Eqs. �25�
and �27�

M0 = s̄t̄02g− + 2g+�� t̄2

s̄t̄0
�� � 2g−s̄t̄0 � 2g−m0,

Ms = s̄t̄2g− − 2g+�� t̄0

s̄
�� � 2g−s̄t̄ � 2g−ms. �32�

Here, we used g±= 1
2 �gs±g�� and defined

� =
1 − �

1 + �
. �33�

When both staggered and uniform component are nonzero,
the total magnetic moment is canted. The canting angle �,
counted from the xy plane is then given by

tan � = � t̄0

t̄
�g− + g+�� t̄2

t̄0s̄
�

g− − g+�� t̄0

s̄
� . �34�

The terms �� are higher-order corrections—e.g., ��h /Jx�2

for Ms. For moderate fields, they may be neglected. In Sec.
VII �Fig. 4�, we only show the main contribution ms� s̄t̄ in
accordance with Ref. 11. In Eq. �34� a similar small field
approximation may be employed for the canting angle lead-
ing to �� tan−1�t̄0 / t̄�. For equal g factors gs=g� �g−=0 and
t̄0=0�, one has a special case Ms=0 due to moment compen-
sation of local and itinerant spins, although this is still a
phase with an AF order parameter ms= s̄t̄. The uniform mo-

ment M0 is now given by M0=2g+�t̄2, oriented parallel to
the external field ��=� /2�.

C. Ground-state energy: Condensation versus fluctuation

It is instructive to rewrite the ground-state energy in a
different way which renders a clearer interpretation of its
individual contributions. The total mean-field Hamiltonian in
Eq. �18� may be rewritten as

Hmf = Ẽ0 + �
�=z,A,B

�
k

���k��n� +
1

2
� , �35�

where n� is the occupation number of bosons for each mode.
The total ground-state energy is then given by

E0 = Ẽ0 +
1

2�
k�

���k� , �36�

where Ẽ0�h� consists of three parts according to

Ẽ0/N = − 1

4
�2Jx + Jz��s̄2 +

1

2
� + ��5

2
− s̄2��

+
z

2
t�� − 1�2s̄2t̄2 + �1

4
�2Jx − Jz� + � +

z

2
�ts̄2� t̄0

2

+ 2�−s̄t̄0. �37�

Here, the first part �Ẽ0� in Eq. �36� is the condensate contri-
bution. The second always positive term is due to triplet

quantum fluctuations. According to Eq. �37�, Ẽ0 is composed
of three parts: The first �negative� contribution is due to the
singlet formation. The second �positive� part is due to the
field-induced triplet polarisation. The last term is the Zeeman
energy contribution. For zero field only, the first term in Eq.
�37� is present.11 The ground state with E0�0 will be deter-
mined by the competition of these terms. For example, when
h=0 the quantum critical point where AF order appears will
be determined by the balance of two terms: The negative
singlet formation energy and the positive energy of triplet
quantum fluctuations.

VI. INFLUENCE OF HIGHER-ORDER TERMS

The transformation of the Hamiltonian in Eq. �1� to bond
operator variables also creates third- and fourth-order terms
in the triplet operators. They have been neglected in the pre-
vious analysis based on Eqs. �6� and �7�. In fact, it was
argued in Ref. 11 that third-order terms do not contribute to
the ground-state energy and fourth-order terms are quantita-
tively negligible. The latter was also found for the related
bilayer Heisenberg model.22 Hence, higher-order terms have
no influence on the zero-field quantum critical properties. In
this section, we investigate to what extent this is still justified
in the presence of an external field. Indeed, in the mean-field
approximation used here, the higher-order terms lead to
field-induced effective bilinear triplet terms which have to be
added to the genuine bilinear term in Eq. �11� which is
present already at zero field. The quantitative influence of
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higher-order terms on tc�h� or hc�t� is controlled by the ratio
�t̄0 / s̄� at the critical field hc where t̄0�hc� is the field-induced
triplet amplitude. If it is still moderate compared to the sin-
glet amplitude s̄�hc�, then higher-order terms have negligible
influence. The field dependence of these amplitudes as ob-
tained from Eqs. �23� and �29� is shown in Fig. 2 for a
typical case.

The contribution of third order in tn� �n=site, �=x ,y ,z�
to the interaction term is given by11

H1
�3� =

it

4 �
�n,m�

	�sn
†tnx + tnx

† sn��tmy
† tmz − tmz

† tmy� + �sn
†tny + tny

† sn�

��tmz
† tmx − tmx

† tmz� + ��sn
†tn,z + tn,z

† sn��tm,x
† tm,y − tm,y

† tm,x�
 ,

�38�

which has to be added to Eq. �8�. We are only interested in
the influence of this term on the quantum critical lines hc�t�
or tc�h� to be discussed in Sec. VII. As explained there, this
may be achieved both from the paramagnetic �KS� and AF
side of the critical line. Here, we consider only the former for
reasons explained at the end of the section. In this case the

circular triplet amplitudes ū= d̄�0. The mean-field approxi-
mation to H1

�3� then contains only terms proportional to t0,
and no constant contribution to E0 appears. Transforming
these terms into circular triplet coordinates, one finally ob-
tains another bilinear contribution with

H1mf
�3� = −

t

4
z�s̄t̄0�

n

�un
†un − dn

†dn� +
t

2
s̄t̄0 �

�nm�
�un

†um − dn
†dm� .

�39�

This contribution is field induced since for small fields
t̄0�h��h. The first single site term in Eq. �39� has the same
structure as the �+ part of the Zeeman term and may be

accommodated by a simple �nonlinear� rescaling of the ap-
plied field such that �+ is replaced by �̃+ according to

�̃+�h� = − g+hfs�h�, fs�h� = 1 +
z

4
�t

s̄�h�t̄0�h�
h

. �40�

Here, fs�h� is the rescaling function for the applied field.
Note that for �=0 one has fs�h��1; i.e., no rescaling will
occur in this case. The second contribution in Eq. �39� is an
interaction to which the same �transverse� Bogoliubov trans-
formation as before may be applied. These terms then have a
simple effect: In Eq. �17� one has to replace du,d�k�
→du,d�k�± �t /2�s̄t̄0��k�. However, only the average d��k�
= 	du�k�+dd�k�
 /2 of the auxiliary functions, which is un-
changed, enters the expression for �A,B�k� in Eq. �19�. There-
fore �A,B�k� is also unchanged by the third-order contribu-
tion. As a result the total energy E0 in Eq. �21� will be
exactly the same as before. Also the self-consistent equations
�23� will be unchanged. Note that in these equations �− is not
rescaled. The only effect of the third-order terms is therefore
the above rescaling of the external field in the �+ Zeeman
term leading to the modified transverse-mode frequencies

�̃A,B�k� = �A,B�k� ± �̃+. �41�

Therefore the critical field hc of the quantum phase transition
which is defined as the field where one of the above modes

	�̃+�k� for h�0
 vanishes at the AF wave vector Q= �� ,��
will be changed by the scaling factor fs�hc�. If hc

0 is the
critical field without third-order terms, then approximately
hc=hc

0 / fs�hc
0� is the critical field with the effect of third-order

terms included. This is only a quantitative modification
which we will discuss in Sec. VII in connection with Fig. 5.
The qualitative topology of the phase diagram will not be
changed by the third-order term. We note again that in the
special case �� ,��= �� ,0�, the third-order term does not
have any effect at all because fs�1. Furthermore, for all
cases gs=g�, there is no field-induced triplet amplitude—i.e.,
t̄0�0 according to Eq. �23�, leading again to fs�1. We con-
clude that the influence of third-order terms is not important
for the field-induced quantum critical behavior.

Now, we discuss the effect of terms which are of fourth
order in the triplet operators. They are given by11

H1
�4� =

− t

4 �
�n,m�

	�tny
† tnz − tnz

† tny��tmy
† tmz − tmz

† tmy� + �tnx
† tnz − tnz

† tnx�

��tmx
† tmz − tmz

† tmx� + ��tnx
† tny − tny

† tnx��tmx
† tmy − tmy

† tmx�
 .

�42�

The mean-field approximation to H�4� for the nonmagnetic

case �ū= d̄=0� does not produce a constant term but leads to
an effective bilinear contribution in circular triplet coordi-
nates:

0 0.5 1 1.5 2
h/h

c
(δ,∆)

0

0.2

0.4

0.6

0.8

1

KS AF

m
0

s

t
0

t m
s

(δ,∆)=(1,1)
_

_

_

FIG. 2. Singlet �s̄� and triplet �t̄0 , t̄� amplitudes and their asso-
ciated uniform �m0= s̄t̄0� and staggered �ms= s̄t̄� moments as a func-
tion of field strength normalized to the critical field in the KS and
AF regions. Here, hc�� ,�� /Jx=0.55. At the critical field �t̄0 / s̄�
=0.25. This case with t / tc�� ,��=0.6 �t /Jx=0.517� corresponds to
the upper curve of Fig. 4 �top�. Here �gs ,g��= �2.0�.
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H1mf
�4� =

t

2
t̄0
2 �

�nm�
�un

†um + dn
†dm

+
1

2
�undn + dnum + un

†dm
† + dn

†um
† �� . �43�

Again, this is a field-induced bilinear contribution with

t̄0�h��h2 for small fields. Due to ū, d̄=0, it has no longitu-
dinal part. It may be diagonalized by the same transverse
Bogoliubov transformation in Eq. �14� as before. The new
mode frequencies including fourth-order contributions are

simply obtained by the replacement d̃�=d�+ �t /2�t̄0
2��k� and

f̃�= f�− �t /4�t̄0
2��k� in Eq. �17�. This will lead to the modi-

fied transverse frequency

�̃A,B�k�2 = �A,B�k�2�1 + t̄0
2 t��k�
d� − 2f�

� �44�

and new mode frequencies �̃A,B�k�= �̃A,B�k�±�+ At the

quantum critical point where �̃A�Q�=0, this may be approxi-
mately written as

�̃A,B�k� � �A,B�k�1 +
1

z
� t̄0

s̄
�

c

2

��k�� , �45�

where the index c denotes the values of singlet and triplet
amplitudes at the QCP. From Fig. 2, we can estimate that the

prefactor in Eq. �45� is of the order 1
z
� t̄0

s̄
�2

�10−2 since at the
QCP the triplet amplitude is still quite small and the singlet
amplitude basically unchanged from the zero-field value.
Therefore, the fourth-order terms lead to corrections of the
order 1% in the frequencies �A,B�k� which determine the last
term in the ground-state energy of Eq. �21�. Indeed, the cor-
rection to E0 is even smaller since the momentum summation
over �A,B�k� in the last term of Eq. �21� leads to a large
amount of cancellation because ��k� is positive in one-half of
the Brillouin zone and negative in the other half. Therefore,
the self-consistent equations for s̄ and t̄0 are nearly un-
changed and we can conclude that the field-induced quantum
critical behavior is not influenced by the inclusion of fourth-
order terms. Our analysis shows that the quantum critical
lines hc�t� are only marginally influenced by the presence of
higher-order terms in one example and have no effect in
other cases. However, for fields with h
hc one would expect
that the higher-order terms should lead to non-negligible cor-
rections, at least in the case of third-order contributions.
From Fig. 2, one can see that for h /hc�2, the ratio �t̄0 / s̄�
approaches 0.5 and the bilinear approximation might become
inadequate. In fact, by its very construction the bond-
operator method is a strong coupling theory which assumes
the dominance of the singlet state. It cannot be expected to
be quantitatively correct for high fields when saturation of
moments is approached—i.e., when singlet and triplet ampli-
tudes become equal. In this limit, it is more appropriate to
start from the polarized canted state and perform a conven-
tional spin-wave expansion for the two types of spins.

As a consequence of the above analysis, we will only
consider the genuine bilinear Hamiltonian, Eq. �11�, as used
in the previous sections for the following numerical calcula-
tions. This restriction has an additional reason: Although the
critical hc�t� or tc�h� may be calculated by searching for the
vanishing of the excitation gap Eg from the nonmagnetic
singlet side, it is more satisfactory to search also from the AF
magnetic side for the vanishing of the staggered magnetiza-
tion ms and confirm the agreement. This cannot be done eas-
ily when third- and fourth-order terms are included. On the
AF side, the latter lead, to a mixing of the longitudinal and
transverse modes and a closed analytic form of the Bogoliu-
bov transformation cannot be found. Therefore, it is better to
include only the bilinear terms and be aware of the trivial
effect of field rescaling by the third-order terms and the tiny
effect of fourth-order terms. This standpoint will be adopted
for the following numerical analysis.

VII. NUMERICAL SOLUTION FOR EXCITATION GAP
AND AF ORDER PARAMETER, CRITICAL FIELD

CURVES, AND THE H-T PHASE DIAGRAM

We shall now discuss the numerical solutions of the self-
consistent equations �23� and �29� which describe the AF-KS
quantum phase transitions—i.e., the field dependence of the
Kondo singlet gap Eg and the field dependence of the stag-
gered magnetization ms. The former was defined below Eq.
�19� and the latter in Eq. �32�. We shall only discuss the
results for D=2 and ��1—i.e., the easy xy-plane situation
with ms�c. In this case, �A,B�k���z�k�. As shown before,
the qualitative behavior of D=3 is similar to D=2 �Ref. 11�.
The main purpose is to study the dependence of the quantum
critical point �QCP� tc�h� on the external field or, equiva-
lently, the dependence of the quantum critical field hc�t� on
the hopping strength t. To check consistency, the QCP has
been obtained both by variation of t and of h and both from
the paramagnetic �Eg=0� as well as the antiferromagnetic
�ms=0� side of the QCP. As mentioned in the previous sec-
tion, this requires restriction to the genuine bilinear Hamil-
tonian terms.

Before discussing the field dependent results, we show the
behavior of the quantum critical tc�� ,�� as function of the
anisotropies in the zero-field case as a starting point of our
analysis. The calculation of tc�� ,�� has been described in
Ref. 11. Here, we present the results for the full range of
anisotropies �Fig. 3� from the U�1�-xy case via Heisenberg-
SU�2� to Ising-Z2 symmetry. Note the two different scales on
the left �Jx� and right �Jz� half of each part of Fig. 3. The
quantum critical tc for the KS-AF transition reaches a singu-
lar maximum for the Heisenberg case and generally vanishes
for the Ising case, except for �=0. This may be understood
by comparing with Fig. 1. For �→	 �i.e., ��→1�, the two
singlets with Sz

t =0 become degenerate and an arbitrary small
interaction t leads to the AF state. However, for �=0 the Sz

t

=0 states are not connected by a matrix element of H1
�2� and,

hence, AF can occur only via matrix elements between the
singlet ground state and the excited doublet which requires a
finite tc /Jx=0.35 for AF order to occur.

P. THALMEIER AND A. LANGARI PHYSICAL REVIEW B 75, 174426 �2007�

174426-8



The effect of the external field for �gs ,g��= �2,0� is shown
in Fig. 4 �top�, for the two cases �� ,��= �0,0� ��� and �1,1�
���. Their corresponding tc values may be taken from Fig. 3.
In Fig. 4 �top� we choose a subcritical value t / tc�� ,��=0.6,
meaning a nonmagnetic singlet phase with finite Eg exists for
zero field. When the field is increased, the gap is gradually
reduced until it is closed at tc�hc�. For the �normalized� t
value of 0.6, obviously, the difference in critical fields hc is
not significant. However, the qualitative behavior of the spin
gap Eg in the two cases for h�hc is different with a much

smaller slope of Eg in the xy case as compared to the Heisen-
berg case. In both cases for h�hc a field-induced easy-plane
AF order parameter appears—i.e., a phase sequence KS-AF
for increasing field. The opposite behavior is observed in the
genuine KN case �� ,��= �1,0� with �gs ,g��= �2,0� in Fig. 4
�bottom�. For an above-critical value t / tc�0,1�=1.1�t /Jx

=0.77� the AF order parameter is gradually suppressed until
it vanishes at hc /Jx=1.23 and the Kondo singlet phase ap-
pears; i.e., the opposite phase sequence AF-KS is realized.
Finally, for slightly subcritical t / tc�0,1�=0.94 �t /Jx=0.658�
an interesting reentrance sequence KS-AF-KS of phases as
function of field is observed. It exists only in a narrow range
of subcritical values 0.91� t / tc�1.0. As discussed in Sec.
VI, this behavior is robust because third-order triplet contri-
butions are exactly zero for �=0.

We may collect the data of quantum critical fields hc from
numerous calculations such as presented in Fig. 4 and similar
ones for quantum critical tc at fixed h in an h-t phase dia-
gram. It is shown in the form of tc�h� curves in Fig. 5 for two
choices of the g factors. For �gs ,g��= �2,0� and the cases
�� ,��= �0,0� , �1,1�, the scaled tc�h� is identical close to the
zero-field QCP; i.e., the slope does not depend on the aniso-
tropy �� ,��. For larger fields, one observes the plateau for-
mation in the case �� ,��= �1,1� and the further monotonic
decrease for �� ,��= �0,0�. This behavior may qualitatively
be understood from the field dependence of the local energy
levels of HJ shown in Fig. 1. For increasing h, the gap be-
tween the ground state and first excited state decreases and
hence a smaller tc is necessary to achieve the softening of the
triplet excitation at Q. For �=1, this effect eventually levels
off because the splitting of the two lowest local levels be-
comes constant at large field and approaches 2�Jx so that
tc�h� reaches a plateau at large fields for nonzero �. On the
other hand, for �=0 the two lowest levels become asymp-
totically degenerate and hence tc�h� should approach zero for
large fields. As already noted in the discussion of Fig. 4, the
intermediate case �� ,��= �1,0� and �gs ,g��= �2,0� behaves
quite differently. After an initial but much weaker decrease
of tc�h�, it reaches a minimum at �h /Jx , t /Jx�
= �0.275,0.638� and then starts to increase again. The region
of the nonmonotonic behavior with slightly subcritical
t / tc�0,1� corresponds to the region where reentrance behav-
ior KS-AF-KS is observed in Fig. 4. For above-critical
t / tc�0,1�, once tc�h�� t the initial AF phase is suppressed
and we obtain the sequence AF-KS—i.e., a field-induced KS
phase corresponding to Fig. 4 �bottom�. In all three cases
with �gs ,g��= �2,0� one has a finite tc�h� for finite fields.

This is different if we chose equal g factors �gs ,g��
= �2,2�. For this choice the lowest two local levels cross at
h=0.25 ��=0� and at h=0.5 ��=1� �not shown in Fig. 1�.
This is due to the fact that Sz

t commutes with the Hamiltonian
and hence there is no level repulsion of the two Sz

t =0 states.
Consequently, at this point, the quantum critical tc�h� van-
ishes in all three cases of �� ,��. It decreases essentially lin-
early from its maximum value at h=0. The phase diagram in
Fig. 5 shows a collection of the critical tc�h� curves for the
six cases considered. The corresponding gapped KS- and
AF-ordered phases are below and above each curve, respec-
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FIG. 3. Critical hopping strength tc�� ,�� for quantum phase
transition between Kondo singlet �t� tc� and antiferromagnetic
�t� tc� phases at zero field. For �� ,��= �0,�� or �� ,1�, tc is ob-
tained from a closed analytical expression 	Eq. �25� in Ref. 11

�solid lines�; for the other cases, it is calculated from the zero-field
version of Eq. �23� �dashed lines�. Top: tc dependence on anisotropy
� of local spins. In the Ising case ���→1�, tc for �=0 does not
vanish because the AF order is due to the mixing with the doublet
separated by a finite excitation gap. Bottom: tc dependence on an-
isotropy � of interacting spins. The value tc�0,1� /Jx=0.7 agrees
with results from Monte Carlo simulatons for the genuine Kondo
lattice model in two dimensions �Refs. 20 and 21�.
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tively. We comment again on the influence of third-order
terms discussed in Sec. VI on the phase diagram of Fig. 5.
Remembering that all cases with �=0 or gs=g� are unaf-
fected by the third-order contributions, only one of the criti-
cal field curves in Fig. 5 	� �gs ,g��= �2,0�
 may be influ-
enced. In this case, third-order terms lead to an almost field-
independent and moderate rescaling of hc by a factor �1.2
according to Eq. �40� and Fig. 2.

Finally, in Fig. 6 we show the dependence of the tilting
angle of the total moment out of the xy plane for two pos-
sible cases with AF order. It is calculated from Eq. �34�
�solid line� and a simplified �low-field� expression given in
the caption. Close to the quantum critical field the staggered
moment vanishes and the total moment is then aligned with
the external field ��z�, meaning �=� /2.

VIII. DISCUSSION

As we have mentioned in the Introduction, the interest in
the Kondo necklace model stems from two facts: �i� it is

thought to be a simplified version of the original Kondo lat-
tice model with itinerant electrons and �ii� it is expected to
describe some basic features of the observed quantum phase
transitions in real Kondo materials. Although there is no
mapping or exact equivalence of the two models, the agree-
ment of their qualitative features by simply identifying the
intersite interaction �KN� and hopping �KL� energies �both
given by t� is generally quite good. As discussed in Refs. 11
and 17, the 1D Kondo necklace model does not exhibit quan-
tum critical behavior; this agrees with earlier numerical work
on the KL model23 where the disordered spin-gapped state
always prevails.7

We discussed the more interesting 2D case where quan-
tum phase transitions in the KN model are possible.11,17 One
can compare the values of the quantum critical tc /J �we set
J=Jx in this section to comply with literature conventions�
obtained for the KN model from Fig. 3 with those for the KL
model obtained in Monte Carlo �MC� simulations obtained
previously.20,21,24 In the spirit of Doniach’s replacement in
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FIG. 4. In these figures three
possible cases for quantum phase
transitons between Kondo singlet
KS �Eg=singlet gap� and antifer-
romagnetic AF �ms=staggered
moment� phases as a function of
increasing field strength h are
shown: �i� Field-induced AF with
sequence KS-AF. �ii� Destruction
of AF and field-induced gap open-
ing corresponding to the sequence
KS-AF. �iii� Reentrant behavior
corresponding to KS-AF-KS. Top:
singlet-triplet excitation gap Eg

and AF order parameter ms as a
function of external field for the
two cases �� ,��= �0,0� �circles�
and �� ,��= �1,1� �diamonds� as a
function of the external field. A
subcritical scaled value t / tc�� ,��
=0.6 is used in both cases
	tc�0,0� /Jx=0.350, tc�1,1� /Jx

=0.862
. Here, �gs ,g��= �2,0� is
used. This plot corresponds to the
field-induced AF case �i�. Bottom:
similar plot for �� ,��= �0,1� and
an above critical t / tc�� ,��=1.1
�t /Jx=0.77� and subcritical
t / tc�� ,��=0.94 �t /Jx=0.658�. In
the former case �ii�, one has the
sequence AF-KS of phases ���
and in the latter �iii� a reentrant
situation with KS-AF-KS se-
quence is observed ���.
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1D we should compare with the KN model for xy-type
interactions—i.e., with the �� ,��= �0,1� case in Fig. 3 which
has a tc /J=0.7. The MC simulations for the 2D SU�2� fer-
mionic KL model lead to quantum critical parameters �aver-
age values� tc /J=0.71,20 0.69,21,24 and 0.68,16 very close to
the appropriate value in Fig. 3 �upper panel, center of solid

line; lower panel, left corner of solid line�. Note that the
critical tc’s corresponding to solid lines in Fig. 3 are obtained
from a simple analytical formula within the bond-operator
mean-field approach.11 Further support for this scenario
comes from exact-diagonalization �ED� results for the KL
model on small clusters25 using open boundary conditions.
The total average local moment ��loc

2 �= ���i+Si�2� calculated
as function of J / t shows a reduction to half of the free mo-
ment size due to Kondo singlet formation in the lattice for
the value tc /J=0.67. If it is interpreted as the critical value in
the thermodynamic limit, this is again close to the above
results. This near equality of analytical KN and numerical
KL results seems to suggest that even in 2D the SU�2� KL
model is better described by the U�1� xy-type KN model
with �� ,��= �0,1� since the SU�2� KN model with �� ,��
= �1,1� has a considerably larger critical value tc /J=0.862.

The fermionic KL model is obtained from the periodic
Anderson model �PAM� by a Schrieffer-Wolff transformation
which eliminates charge fluctuations of f electrons. The re-
sulting Kondo coupling J is then given in terms of the Ander-
son model parameters by J=−UV /� f�� f +U� where � f �0 is
the f-level position with respect to the Fermi level at zero
energy, U is the on-site f-electron repulsion, and V is their
hybridization strength with conduction electrons. The peri-
odic Anderson model may be studied with the dynamical
mean-field theory �DMFT�.26 This method has been used
more recently to investigate its quantum critical properties27

which should be related to those of the Kondo lattice and
hence also KN models. The method is formally a D=	 ap-
proximation but has nevertheless been used for studying
electron correlations in finite-dimensional lattices such as the
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3D PAM in Ref. 27. Using the value of J from the Schrieffer-
Wolff transformation the extrapolated T=0 phase diagram
suggests that the critical hopping strength at the QCP is
given by tc /J�0.43. This is again in reasonable agreement
with the mean-field bond-operator result for the 3D KN
model which predicts tc /J=0.38.11

While the quantum critical behavior as function of control
parameter t /J is well presented, there are few microscopic
investigations concerning the field-induced quantum critical
behavior of KL- and KN-type models such as provided here.
The fermionic 2D KL model in an external field with equal g
factors corresponding to �gs ,g��= �2,2� was studied in Ref.
16 by using variational and MC methods. The numerical
results for J / t=3 suggest that the transition between Kondo-
and AF-ordered regime takes place in a field region �B�2h
in notation of Ref. 16� between Bc

− / t=1.0 and Bc
+ / t=2.25. In

this regime, both Kondo-like features and transverse mag-
netic order coexist. From the present calculations of the 2D
KN model again with �� ,��= �0,1�, g factors as above and
using the data shown in Figs. 3 and 5 one obtains Bc / t
=1.86 �Bc /J=0.62� which is close to the average 1.63 of the
above Bc

± / t values. This value for the critical field was also
confirmed by ED results for the KL model on small clusters25

where the breaking up of on-site singlet formation was ob-
served above the value Bc /J�0.5. We conclude that KL and
KN models also seem to exhibit similar field-induced quan-
tum critical behavior. Another matter is the scaling behavior
of singlet gap and staggered magnetization around the criti-
cal field. The present mean-field-type theory does not give
sufficient insight into that issue. It has so far been treated
within continuum field theories involving order parameter
fluctuations around the critical field.28

The present bond-operator mean-field results for the KN
model are apparently consistent with known numerical re-
sults for the fermionic Kondo lattice models. It is less clear
whether they are useful for the interpretation of experimental
results, especially for the field-induced quantum phase tran-
sitions. Since charge degrees of freedoms are eliminated in
the KN model, it is, strictly speaking, more appropriate for
the Kondo-insulator compounds which have a hybridization
gap due to half-filled conduction bands. However, we ignore
this subtlety in the following and also apply it to the magne-
tism of metallic Kondo compounds. The zero-field quantum
critical behavior as a function of the control parameter t /J
can experimentally be mimicked by applying hydrostatic or
chemical pressure �by substitution of elements�. This
changes mostly the hybridization and hence the Kondo cou-
pling J. In the accessible pressure regime, one may assume
that t /J varies linearly with pressure. In this manner, it is
feasible to drive AF-ordered heavy fermion systems to the
quantum critical point where they become nonmagnetic
heavy Fermi liquids. Since hydrostatic �positive� pressure
generally increases J, it tends to suppress the AF phase while
with suitable substitution of elements �negative� chemical
pressure may decrease J which favors AF order. Thus the AF
QCP may be approached from both sides. There are many
examples to be found especially among Ce compounds; for a
review, see Ref. 29. In most cases of Ce compounds, how-
ever, the AF QCP may not be reached directly because it is
enveloped by a “dome” of the superconducting phase and the

critical pressure has to be obtained from extrapolation to T
=0. While the KL- and KN-type models discussed above
naturally suggest the AF QCP, there is no direct way of ex-
perimental determination of the critical �t /J�c since its rela-
tion to the experimentally accessible critical pressure pc �or
critical concentration of substituent� is unknown. In fact,
most of the interest on pressure-induced QCPs focuses more
on the scaling exponents of various quantities with respect to
the distance �p− pc� to the QCP. This is extensively discussed
in the reviews cited in the Introduction.

For the field-induced quantum phase transition, much less
experimental results are available. A review of materials in-
vestigated is given in Ref. 30. A recent example of a field-
induced destruction of AF order is the tetragonal YbRh2Si2
compound.31 At ambient pressure and zero field, it has an AF
order which is indeed of the easy-plane �xy�-interaction type
��=0�. The AF order is destroyed at 0.66 T for field along
the hard c axis and a nonmagnetic Fermi liquid state appears
above the critical field. If one assumes that the local Kondo
interaction which results from the Schrieffer-Wolff mecha-
nism is more of the isotropic nature ��=1�, it qualitatively
corresponds to the AF-KS scenario shown in the lower panel
of Fig. 4. As mentioned before the reentrant scenario shown
also in this figure exists only in a narrow parameter range
and it is perhaps understandable that no such example is
known. What is really surprising is the following observa-
tion: Most of the parameter cases in Fig. 5 would predict the
KS-AF sequence—i.e., the field-induced AF order out of the
Kondo phase. This is a natural consequence that in most
cases a field reduces the singlet-triplet gap and supports the
onset of magnetic order as shown in the upper panel of Fig.
4. We would like to stress that this is also the only phase
sequence found in the fermionic KL model.16 However,
field-induced AF magnetic order is not easily found in heavy
fermion compounds. For example, CeNi2Ge2 at ambient
pressure and zero field is in the Kondo singlet phase and
rather close to the AF quantum phase transition which may
be achieved by appropriate substitution of Ni. Thus, it is a
complementary case to YbRh2Si2. However, in an external
field, there is no field-induced transition to transverse AF
order as one might naively expect from the model discus-
sion; rather, it is driven further away from the AF QCP as
specific heat and resistivity measurements suggest.31 There
is, however, one known example of a heavy fermion system
which exhibits field-induced AF order, though complicated
by the appearance of superconductivity. The compound
CeRhIn5 is already an AF at ambient pressure.32 Application
of hydrostatic pressure moves it to the nonmagnetic �KS�
side where it also becomes superconducting. Additional ap-
plication of a magnetic field destroys the superconductivity
and leads to the reestablishment of a field-induced AF order
in a wide range of pressure from 1.4 to 2.4 GPa.32 This is
indeed the KS-AF sequence of phases corresponding to Fig.
4 �top� which appears in the majority of cases studied here.
Experimentally, however, it seems to be the one most rarely
encountered.

These examples suggest that while the Kondo-lattice- or
necklace-type models have some qualitative and instructive
properties which are relevant for magnetic quantum phase
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transitions, they may not be able to explain some experimen-
tal observations in heavy fermion compounds. It is well pos-
sible that the complete elimination of charge degrees of free-
dom is too radical by suppressing hybridization effects of
moments with conduction electrons and thus favoring the
magnetic phases. Therefore, the more fundamental PAM
model, including appropriate local and conduction electron
Zeeman terms, may be a more promising starting point for
future investigations of field-induced quantum phase transi-
tions in heavy fermion compounds.

IX. CONCLUSION AND OUTLOOK

In this work, we have investigated the general anisotropic
Kondo necklace model and its quantum phase transition
from paramagnetic singlet phase to AF phase and vice versa
in an external field. We have derived a bosonic Hamiltonian
using the bond-operator representation of local and interact-
ing spins and diagonalized the bilinear part by a generalized
Bogoliubov transformation to circular polarized modes to in-
clude the effect of the external field. Higher-order parts of
the Hamiltonian were found to be insignificant for the quan-
tum critical behavior. In the mean-field approximation, one
obtains a total ground-state energy that depends on the sin-
glet amplitude s̄, staggered and uniform triplet amplitudes
t̄ , t̄0, and the chemical potential. Minimization leads to two
sets of self-consistent equations for Kondo singlet and AF
phases, respectively.

From their numerical solution, we find that in most inves-
tigated cases the tc value of the quantum critical point de-
creases monotonously with field strength leading to the

KN-AF phase sequence for increasing field. In the case of
unequal g factors and �� ,��= �1,1�, it levels off at a plateau
value tc�h� / tc�� ,���0.4 while for �� ,��= �0,0�, it contin-
ues to decrease at larger field. However, for the genuine KN
case with �� ,��= �1,0� the tc�h� curve is nonmonotonic with
a minimum at h /Jx�0.275 at small fields and continues to
increase for larger fields. Depending on the size of t, this
implies two possibilities: For above critical t a suppression of
AF and the opening of a spin excitation gap for h�hc
�AF-KN sequence� or the reentrance behavior �KN-AF-KN
sequence� of the gapped singlet phase for slightly subcritical
t 	as compared to tc�0�
. For equal g factors, a crossing of
local levels occurs due to a conserved Sz

t and the critical tc
reaches zero already at relatively small fields for all investi-
gated cases of �� ,��. Since our treatment is of mean-field
type, we will get mean-field exponents for the spin gap Eg
and magnetization ms at the field-induced QCP. This is ap-
parent from Fig. 4 and has not been discussed further. Im-
provement for the critical exponents will require a self-
consistent renormalization theory for the triplet excitations
close to the quantum critical point.
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