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We investigate the effect of �weak� dipolar interactions on the field behavior of the temperature at the
maximum of the zero-field-cooled magnetization of a polydisperse assembly of nanoparticles. For this purpose,
we extend the Gittleman-Abeles-Bozowski model for the zero-field-cooled magnetization by computing the
contribution of dipolar interactions to the longitudinal relaxation time. We show, in good qualitative agreement
with many experimental observations, that the temperature at the maximum of the zero-field-cooled magneti-
zation as a function of the applied field changes from a bell-like to a monotonically decreasing curve when the
intensity of the dipolar interactions, or equivalently the sample concentration, increases.
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I. INTRODUCTION

One of the direct technological applications of magnetic
nanoparticles is magnetic recording. The storage capacity of
the media can be considerably increased by devising denser
assemblies of smaller and smaller particles. However, this
brings a dilemma because small particles become superpara-
magnetic, i.e., thermally unstable, well below the room tem-
perature. Moreover, high density in assemblies entails strong
dipole-dipole interactions �DDI� between the particles, and
in technological applications such as magnetic recording,
this is an issue of special importance since DDIs have been
widely recognized as being responsible for the deterioration
of the signal-to-noise ratio �see, e.g., Refs. 1 and 2 and ref-
erences therein�. As such, an optimal material, with appro-
priate anisotropy and other physical parameters, has still to
be devised. On the other hand, the study of nanoparticle
assemblies brings new hurdles to theorists, at least, since one
is faced with tremendous difficulties related with DDI be-
tween particles, together with the distributions of volume and
anisotropy axes. In spite of that, DDI in nanoparticle assem-
blies have triggered much interest due to many new phenom-
ena that emerge from the collective behavior of the particles
and also because these interactions have always constituted a
challenging issue in many areas of physics.

To analyze and eventually understand experiments on the
dynamics of interacting nanoparticle assemblies and, in par-
ticular, to understand the dynamical response, such as the ac
susceptibility and zero-field-cooled �ZFC� and field-cooled
�FC� magnetizations, one needs to know how DDI affect the
switching process and the relaxation time of the nanopar-
ticles. While a fair understanding of the mechanisms under-
lying the ZFC-FC magnetization process and ac susceptibil-
ity has been achieved in the case of noninteracting
assemblies, many experimental results on interacting assem-
blies remain unexplained. Obviously, this is mainly due to
the long range of DDI and also to the complexities of the
very calculation of the relaxation time itself. Recently,
Jönsson and Garcia-Palacios3 �see also Ref. 4� obtained an
approximate expression for the relaxation rate of a weakly
interacting monodisperse assembly of macropins with tex-
tured or randomly distributed anisotropy. The macrospin ap-

proximation here means that a particle is represented by a
macroscopic magnetic moment, i.e., ignoring its internal
structure. This picture of the particle will henceforth be re-
ferred to as the one-spin problem �OSP�. In the literature,
this is also known as the coherent-rotation limit. Then, using
the simple Debye relaxation model they investigated the ef-
fect of DDI on the ac susceptibility and, in particular, the
displacement of the maximum of its real and imaginary com-
ponents. In their explanation of this effect, they emphasized
the important role played by damping in the relaxation pro-
cesses in the presence of a transverse field in addition to the
effect of the change in the energy barriers, which was com-
monly believed to play the major role. The role of a trans-
verse field is played here by the transverse component of the
dipolar field.

Experimental results obtained for ferrofluids5 and later for
�-Fe2O3 nanoparticles6 indicated that for dilute samples
�weak DDI�, the temperature Tmax at the maximum of the
ZFC magnetization first increases with increasing field, at-
tains a maximum, and then decreases. More experiments per-
formed on the �-Fe2O3 particles dispersed in a polymer7,8

matrix confirmed the previous results for dilute samples and
showed that, on the contrary, for concentrated samples
�strong DDI� Tmax is a monotonically decreasing function of
the magnetic field. The shift of this maximum was also stud-
ied with different techniques in various types of nanopar-
ticles �see, for instance Refs. 9 and 10�. In Ref. 8, it was
shown that the bell-like shape of Tmax�H� is not very sensi-
tive to the intrinsic properties of the particles, of course, in
the OSP approximation. Exact numerical calculations11–13 of
the smallest eigenvalue of the Fokker-Planck operator invari-
ably led to a monotonic decrease in the blocking tempera-
ture, and thereby in the temperature Tmax as a function of the
magnetic field. Indeed, it was shown that the expression of
the single-particle relaxation time does not play a crucial role
and that even the �relatively� simple Néel-Brown expression
for the relaxation time in a longitudinal field leads to a maxi-
mum in Tmax�H�. What seemed to play a crucial role is the
fact that the magnetization, formulated within the Gittleman-
Abeles-Bozowski �GAB� model,14 has a superparamagnetic
contribution that is a nonlinear function �such as Langevin’s�
of the magnetic field. The magnetocrystalline anisotropy and

PHYSICAL REVIEW B 75, 174410 �2007�

1098-0121/2007/75�17�/174410�9� ©2007 The American Physical Society174410-1

http://dx.doi.org/10.1103/PhysRevB.75.174410


the volume-distribution width also have strong influence.
The issue of the effect of DDI on Tmax�H�, namely, the dis-
appearance of the maximum when the intensity of interac-
tions increases, was left open in Ref. 8. In the present work,
we revisit this issue after generalizing the work of Ref. 3 to
include the static magnetic field and magnetic-moment dis-
tribution �polydisperse assembly� of nanoparticles in the
OSP approximation. We then investigate the effect of �weak�
DDI on the ZFC magnetization and, in particular, on
Tmax�H�.

The present work is organized as follows. After fixing the
notation and defining the model Hamiltonian, we explain our
formalism for computing the ZFC magnetization within the
GAB model: we compute the contribution of DDI to the
longitudinal relaxation rate, and then show how the GAB
model is accordingly extended. Next, we discuss the effect of
DDI on Tmax�H� of a given assembly and compare the results
for two materials, namely, maghemite and cobalt.

II. NOTATION AND BASIC FORMULAS

We consider an assembly of magnetic moments mi=misi,
i=1, . . . ,N of magnitude mi and direction si, with �si � =1.
The magnitude of the magnetic moment mi is given in terms
of the Bohr magneton �B, i.e., mi=ni�B, and the numbers ni
are log-normal distributed. Each magnetic moment is as-
signed a uniaxial easy axis ei, and for the assembly these
axes are randomly distributed. The energy of a magnetic mo-
ment mi with uniaxial anisotropy axis ei, interacting with all
the others via DDI, in the magnetic field H=Heh, reads �after
multiplying by −�=−1/kBT�,

Ei = xi�si · eh� + �i�si · ei�2 + �d�
j�i

ninjsi · Dij · s j , �1�

where xi=xni and �i=�0ni with

x =
�BH

kBT
, �0 =

�BK

MskBT
, �d = � �0

4�
��B

2/a3

kBT
�2�

being the dimensionless energy parameters. Note that �i
=KVi / �kBT� �or simply � for a monodisperse assembly� is
the commonly used notation for the reduced anisotropy-
energy barrier height of the particle i. D is the DDI tensor
defined as

Dij �
1

rij
3 �3eijeij − 1� , �3�

where rij =ri−r j, with eij =rij /rij, is the vector joining the
sites i and j and whose magnitude is measured in units of a,
a characteristic distance on the matrix in which the particles
are embedded. More precisely, the parameter a is taken as a
real number times the mean diameter Dm of the assembly,
i.e., a=k	Dm. Thus, large values of k correspond to an iso-
tropically inflated lattice with large distances between the
magnetic moments and thereby weak DDI.

III. ZERO-FIELD-COOLED MAGNETIZATION AND
EFFECTS OF DIPOLAR INTERACTIONS

A. Zero-field-cooled magnetization

The dynamic response of the OSP assembly is given by
the ac susceptibility. For a given particle with an arbitrary
angle 
 between its anisotropy easy axis and the field direc-
tion, the effective susceptibility may be written as

���� = �� cos2 
 + �� sin2 
 .

Shliomis and Stepanov15 proposed a simple Debye form for
����, which can be generalized to describe the effect of a
longitudinal bias field by writing

�SHS =
���T,H�
1 + i��

cos2 
 +
���T,H�
1 + i��

sin2 
 , �4�

where � and � are the appropriate longitudinal �interwell�
and transverse �intrawell� relaxation times; ���T ,H� and
���T ,H� are, respectively, the longitudinal and transverse
components of the equilibrium susceptibility.

In the limit of a high anisotropy-energy barrier, i.e., �
�1 and h=x / �2���1, approximate expressions were found
in Ref. 16 for the longitudinal and transverse components of
the equilibrium susceptibility. If one sets in Eq. �4� �=0
�instantaneous intrawell transverse response� and uses the
high-barrier approximation, one arrives at the GAB model,14

generalized to H�0 and an arbitrary anisotropy-axis orien-
tation. More precisely, upon evaluating the high-barrier ex-
pressions for H=0, inserting the result in Eq. �4�, setting
�=0, and averaging over an assembly with randomly dis-
tributed anisotropy axes, one arrives at the expression pro-
posed in Ref. 14,

�GAB 	 �0

1 +
i��

�

1 + i��

	
�0

1 + i��

. �5�

The real and imaginary components then read

�� =
�0 + �1��2�

2�
1 + �2�

2 , �� =
����1 − �0�

1 + �2�
2 , �6�

where

�0 =
Ms

2�T�V
3kBT

, �1 =
Ms

2�T�V
3KV

, �7�

are, respectively, the susceptibility at thermodynamic equi-
librium and the initial susceptibility of particles in the
blocked state �see Ref. 17 and references therein�. Accord-
ingly, starting from Eq. �6�, the application of an alternating
field yields �a� ��=�0 if ��1 �at high temperature, the
magnetic moments orient themselves on a great number of
occasions during the time of a measurement, and thus, the
susceptibility is the superparamagnetic susceptibility �0� and
�b� ��=�1 if ��1 �at low temperature, the energy supplied
by the field is insufficient to reverse the magnetic moments
during the time of a measurement�. Then, the susceptibility is
the static susceptibility �1. Between these two extrema, there
exists a maximum at the temperature Tmax. �� can be calcu-
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lated from Eq. �6� using the formula for the relaxation time 
appropriate to the anisotropy symmetry, and considering a
particular volume V, one can determine the temperature Tmax.
Expression �6� of the dynamic susceptibility obtained for in-
stantaneous transverse response is particularly suitable for
the calculation of the ZFC magnetization and Tmax. Indeed,
Eq. �6� was used in Ref. 8 to study the effect of anisotropy
and volume distribution on Tmax�H�. The formalism used can
be summarized as follows. In an assembly of particles with a
volume distribution, �� can be calculated by postulating that
at a given temperature and given measuring time, certain
particles are in the superparamagnetic state, and that the oth-
ers are in the blocked state. The susceptibility is then given
by the sum of two contributions14

���T,�� = 

0

Vc

DV�0�T,V,�� + 

Vc

�

DV�1�T,V,�� , �8�

where DV is the measure of the log-normal volume distribu-
tion with parameters V0 and �,

DV =
1

��2�
exp�−

log2� V

V0
�

2�2 dV

V
. �9�

Vc=Vc�T ,H� is the “critical volume” defined as the volume
for which �

−1=�m, where �m is the measuring frequency. Vc
is the critical volume that discriminates between the domi-
nating populations of superparamagnetic particles of volume
V�Vc and blocked particles with V�Vc, and is experiment
dependent.

Equation �8� can be rewritten for the ZFC magnetization
as follows:

Mzfc�H,T,
� = 

0

Vc

DVMsp�H,T,V,
�

+ 

Vc

�

DVMb�H,T,V,
� , �10�

where Msp=H�0 and Mb=H�1 are the contributions to the
magnetization from the superparamagnetic and blocked par-
ticles, respectively.

In the present work, we extend this formalism to include
�weak� DDI and to investigate their effect on Tmax. For this
purpose, it is necessary, in principle, to compute the contri-
butions of DDI to both the equilibrium susceptibility in the
numerator of Eq. �5� and to the relaxation time � in the
denominator. For the first calculation, we can differentiate
with respect to the applied field the expression obtained in
Ref. 18 for the longitudinal magnetization taking account of
DDI and anisotropy. We can also derive an expression for the
transverse equilibrium susceptibility as a response to a trans-
verse magnetic field.19 For the second calculation, we gener-
alize the expression obtained in Ref. 16 for the relaxation
time �including DDI� to include the volume distribution and
the static magnetic field. This is done in the next section.
While the outcome of the first calculation is an insignificant
quantitative modification of Tmax, the DDI contribution to the
relaxation time yields a dramatic qualitative and quantitative

effect since Tmax changes from a bell-like to a monotonically
decreasing function. Indeed, with regard to Eq. �10�, we will
show that the change in the relaxation rate due to DDI in-
duces a change in the critical volume Vc and thereby a
change in the dominating population of blocked or super-
paramagnetic particles.

B. Effect of DDI on the relaxation rate

The idea is to introduce the �local� dipolar field �i �note
that Dii=0 and see notation in Sec. II�,

�i
DDI = �dni�

j

njDijs j . �11�

The relaxation rate of a magnetic moment that experiences
this field can be computed using perturbation theory assum-
ing that ��i��1.3,4 Accordingly, in Ref. 20 an estimation of
DDI was given for two samples of cobalt nanoparticles
which indicates that the DDI field is of the order of 300 Oe,
which in reduced units, obtained after dividing by the corre-
sponding anisotropy field of the order of 0.3 T, is �� /Ha�
�4	10−3–10−2. This is, of course, very small, which in-
deed suggests that in typical �relatively dilute� samples the
above condition on the DDI field is often satisfied. On the
other hand, the magnetic field at which Tmax�H� has a maxi-
mum is approximately 100 Oe �see Fig. 1 of Ref. 8 for
maghemite particles�, corresponding to a reduced field h
=H /Ha	3	10−2. This shows that even though � is small, it
may still have a strong effect on Tmax�H� because it is of the
same order as the applied field in the relevant range.

The relaxation rate of a weakly DDI-interacting nanomag-
net obtained in Ref. 3 is then written as

�i 	 �i
�0��1 +

1

2
�i,�

2 +
1

4
Fi�i,�

2 � , �12�

where �i
�0� is the relaxation rate of the nanomagnet at site i in

the absence of the DDI field �i
DDI and is given by the

�intermediate-to-high damping� Néel-Brown expression,

�i
�0� =

�i
1/2

s
��

�1 − h2���1 + h�e−�i�1 + h�2
+ �1 − h�e−�i�1 − h�2

�

�
2�i

1/2

s
��

	���i,h� , �13�

with s= ���Ha�−1. In the high-energy barrier approximation,
��1 and h=x /2��1, the function Fi reads21

Fi 	 1 −
5

4�2

1

�i
, �14�

where � is the Landau-Lifshitz damping parameter.
One should note that the relaxation rate in Eq. �13� ap-

plies to the case of a magnetic field applied along the aniso-
tropy easy axis and can then be rigorously used only for a
textured assembly, i.e., with all anisotropy axes parallel to
the applied field. For an assembly with randomly distributed
easy axes, one should use the �cumbersome� expression of
the relaxation rate in an oblique field.12,22 In the present cal-
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culation, we ignore this effect and use expression �13� for all
moments in the assembly and then average over the direction
of the anisotropy axes �see discussion in Sec. IV�. The same
approximation was used in Ref. 20, while the calculations of
Ref. 3 of the ac susceptibility did not require a finite field,
and hence, expression �13� was used at h=0.

The next step consists in substituting for �i in Eq. �12� the
expression given by Eq. �11� averaged over the spin and
anisotropy orientations. Averaging over the spin orientations
yields �see Appendix A�

��i,�
2 �0 =

��dni�2

3
�i,

��i,�
2 �0 =

��dni�2

3
�i, �15�

where �see Eq. �A7� et seq.�

�i � �
j

nj
2��1 − Sj2��ei · Dij · Dij · ei� + 3Sj2�ij

2 � ,

�i � �
j

nj
2� 6

rij
6 +

3

rij
3 Sj2�ij� − �i,

�ij � ei · Dij · e j .

Therefore, the relaxation rate of a weakly interacting par-
ticle containing ni Bohr magnetons, embedded in a polydis-
perse assembly, can be written as

�i 	 �i
�0��1 + �i� , �16�

where we have collected the DDI contributions in

�i =
��dni�2

3

1

2
��i +

Fi

2
�i� . �17�

In the case of randomly distributed anisotropy easy axes,
one obtains �see Appendix B�

ei · Dij · Dij · ei =
2

rij
6 , �i = �

j

2nj
2

rij
6 ,

�ij = 0, �ij
2 =

2

3

1

rij
6 ,

and

�i =
��dni�2

3

1 + Fi

2
�i. �18�

Now that we have the expression for the relaxation rate
that includes the DDI contribution, we may study the effect
of the latter on the critical volume Vc, or the corresponding
number nc of Bohr magnetons, which is defined by the equa-
tion �see Eq. �8� et seq.�

�m = ��nc� , �19�

where �m is the measuring frequency. The problem then is to
determine how nc �or Vc� changes in the presence of DDI,

recalling that it is a function of temperature, field, and other
experimental conditions such as �m. For this, we combine
Eqs. �13�, �16�, and �19� to obtain

��s�m

2
	 �����,h��1 + �̄� .

Now, using �i=�0ni �see Eq. �2�� and dropping the index i,
we rewrite this equation as

1

2
ln n + ln ���0,n,h� 	 ln���s�m

2��0
� − �̄��0,n� . �20�

Since this equation has been derived in the case of weak
DDI, we may seek its solution nc as an expansion in terms of
the DDI coefficient �d �see discussion of the validity of this
perturbation in Sec. IV�. Indeed, inserting nc	nc,0+�nc in
Eq. �20� and expanding around nc,0, which is the solution of

Eq. �20� without the DDI term �̄, we obtain the following
expression for �nc:

�nc = −
nc,0�̄0

1
2 − �0nc,0���c,h� + nc,0�̄0�

, �21�

where �c=�0nc,0 and

���c,h� �
�3��c,h�
�1��c,h�

,

with

�n��c,h� = �1 + h�ne−�c�1 + h�2
+ �1 − h�ne−�c�1 − h�2

,

�̄0 � �̄�nc,0� = �̄0
��dnc,0�2

3
�1 −

5

8�2

1

�0nc,0
� ,

�̄0� � �̄��nc,0� = 2�̄0
�d

2

3
nc,0�1 −

5

16�2

1

�0nc,0
� ,

and

�̄0 = nm
2 �

j

2

rij
6 � nm

2 R , �22�

where � is the standard deviation of the volume distribution
and nm=n0e�

2
the mean number of Bohr magnetons corre-

sponding to the mean volume of the assembly, n0 being the
number of Bohr magnetons contained in the volume V0 �see
Eq. �9��. R�16.8 �Ref. 3 and 16� for a simple cubic lattice
�see discussion in Sec. IV�.

The function ���c ,h� decreases monotonically from 1 to
0 when h varies from 0 and tends to 1 and is nearly indepen-
dent of � especially for large h. This implies that when the
applied field increases, �nc increases �in absolute value�, and
thereby the effect of DDI is enhanced �see further discussion
in the next section�.

IV. RESULTS AND DISCUSSION

In Fig. 1 we plot �nc as a function of the dimensionless
parameter k=a /Dm with varying damping parameter �. We
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see that for the relatively small values of �, �nc becomes
negative and decreases with the increasing intensity of DDI
�or decreasing k�. This means that the critical volume, sepa-
rating the dominating populations of blocked and superpara-
magnetic particles, decreases in the presence of DDI. This
can also be seen from Eq. �14� upon noting that the function
F, and thereby the contribution of the transverse component
of the DDI field in Eq. �12�, changes sign upon varying the
damping parameter. A similar behavior was observed in Ref.
23 �see Fig. 2 therein� where the energy barrier distribution
for coupled Co particles was computed �using a different
approach� as a function of their concentration. It was shown
that the DDIs induce an increment of the amount of small
barriers, responsible for faster decay. In our case, this is
equivalent to the decrease of Vc under the effect of DDI.

Obviously, all the curves �for different �� tend to zero for
large k �absence of DDI�. The limit between the negative and
positive �nc is given by the equation �limit=�5/ �8�0nc,0�,
which implies that this limiting damping depends directly on

temperature and on all other parameters via nc,0.
Using the volume Vc corresponding to nc	nc,0+�nc, with

nc,0 being the solution of Eq. �20� without the DDI term �̄
and �nc given by Eq. �21�, we compute the ZFC magnetiza-
tion according to Eq. �10�. In Fig. 2 we plot the ZFC mag-
netization thus obtained as a function of temperature for vari-
ous values of the applied field of a polydisperse assembly of
noninteracting maghemite nanoparticles with mean diameter
Dm=5 nm, standard deviation �=1.0, and random aniso-
tropy. Apart from the obvious bell-like shape and the vertical
shift of the maximum with the increasing field, we can see
that the position of the maximum changes with the field in a
nonmonotonic way.

In Fig. 3 we plot the position of the maximum of the
curves in Fig. 2 as a function of the applied field, i.e.,
Tmax�H�, for various values of the interparticle �center to cen-
ter� distance, for two substances. First of all, we observe that
indeed the effect of DDI is to change Tmax�H� from a bell-
like curve with a maximum to a monotonically decreasing

FIG. 1. �Color online� �nc versus the dimensionless parameter k
�k=a /Dm, a being the interparticle distance and Dm the mean diam-
eter� for the damping parameter �=0.01, 0.1, 0.25, and temperature
T=15 K.

FIG. 2. �Color online� ZFC magnetization of a noninteracting
assembly for various field values ��=1�.

FIG. 3. �Color online� The temperature Tmax�H� as a function of
the applied field for �a� maghemite and �b� cobalt particles for the
same parameters Dm and �, as in Fig. 2. “Free” stands for the
noninteracting assembly and the other curves are for the interacting
case with mean interparticle distance a=kDm. The damping param-
eter is �=0.01.
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function, and this compares well with the experimental re-
sults �see Fig. 1 of Ref. 8�. As was stressed in Ref. 3, the
effect of DDI is not merely to change the potential-energy
scape, as was argued in many previous publications,17,24,25

but also to introduce a transverse field that induces saddle
points in the potential.21 This in turn makes the relaxation
rate quite sensitive to the damping strength, and for rela-
tively low damping, as is the case in Fig. 3 ��=0.01�, the
probability of switching increases. In addition, if a magnetic
field is added with increasing intensity, the energy barrier is
lowered and the magnetic moments switch at lower tempera-
tures. This concomitant effect makes the relaxation time
shorter and for a given observation time, the temperature
Tmax�H� increases. This is, of course, compatible with the
effect discussed above, that DDIs reduce the population of
superparamagnetic particles in favor of the blocked ones and
this leads to a larger Tmax�H�. In summary, the critical vol-
ume Vc �or equivalently nc� given by Eq. �20�, in fact, cor-
responds to the “critical” field at the maximum of Tmax�H�
which, in the presence of the DDI field, separates �i� the
low-field regime: the population of blocked particles be-
comes more and more dominant, which leads to the increase
of the “average” blocking temperature, and �ii� the high-field
regime: the population of superparamagnetic particles takes
over, thus, leading to a decrease of the average blocking
temperature. Furthermore, increasing the intensity of the
DDI field increases both its longitudinal and transverse com-
ponents. While the longitudinal component contributes to the
increase of Tmax, the transverse component shifts its maxi-
mum toward low magnetic fields.

Finally, we recall that the work of Ref. 8 showed that, in
the absence of DDI, the maximum of Tmax�H� can be ex-
plained by the nonlinear variation of the superparamagnetic
contribution to the ZFC magnetization with the applied field.
In the presence of DDI, we see that the contribution of su-
perparamagnetic particles is reduced in favor of blocked par-
ticles and this leads to the disappearance of the maximum.

The analytical expression �Eq. �21�� derived for �nc is
valid, in principle, for �dnm

2 �1 �see notation in Eq. �2��,
where nm is the mean number of Bohr magnetons in the
assembly. This condition is equivalent to ��nc /nc,0��1 �see
Eq. �21�� which leads to the condition on k,

k3 �
2
�3

� �0

4�
� ��B

2/Dm
3 �nc,0

kBT
�� �̄0fc

1
2 − �c�c

� , �23�

where

�c = �0nc,0, fc = 1 −
5

16�2

1

�c
, �c = ���c,h� .

Then, using the physical parameters of Fig. 3 �top� with
Dm=5 nm and nm	2117, taking T=20 K, H=100 Oe, and
computing nc,0 from Eq. �20� without the DDI term, Eq. �23�
yields k�3, which is a reasonable condition. Accordingly, in
Fig. 3 we took k�4.

Regarding the expression of the relaxation rate �Eq. �13��,
a few remarks are in order. As we said earlier, rigorously, this
expression applies to the case of a textured assembly with all

easy axes parallel to the applied field. For random aniso-
tropy, one should employ a numerical procedure for comput-
ing the relaxation rate with an oblique field, as is done in,
e.g., Refs. 12 and 22. However, we recall that the main ob-
jective of the present work was to �i� understand the effect of
DDI on the Tmax�H� curve and �ii� provide relatively simple
�approximate� expressions including the DDI contribution. In
addition, as the latter is only possible using perturbation
theory which assumes weak DDI, a transverse magnetic field
would be dominating and the subtle effect of the DDI field
transverse component would not be easy to disentangle in a
nonambiguous manner. On the other hand, we have shown
here that the disappearance of the maximum of Tmax�H� is
mainly due to the effect of the transverse component of the
DDI field on the relaxation rate of the magnetic moments.
One could then ask why the transverse component of the
applied magnetic field does not play the same role in the case
of a free assembly. The main reason is that the applied mag-
netic field has a static effect, while the DDI provide a field
that changes dynamically with temperature and other physi-
cal parameters related with the dynamics of the system. In
this respect, we wish to make a connection with the work26

where the effect of exchange interaction on the relaxation
rate of a two-spin system was �semianalytically� investigated
by the kinetic Langer’s theory. It was shown that, in the
weak coupling regime, when the first spin starts its switching
process and arrives at the saddle point, the orientation of the
second spin undergoes some fluctuations creating a small
transverse field that increases the switching probability or the
relaxation rate.

Furthermore, we would like to point out that in the
present work, we consider an assembly of nanoparticles
placed at the sites of a regular �simple cubic� lattice, with
varying interparticle distances. The effect of changing the
lattice structure or, equivalently, the distribution of the vec-
tors rij �see Eq. �3� et seq.� is to modify the lattice sum in Eq.
�22�, and thereby to change �nc in Eq. �21�. In Ref. 3, the
lattice sum R ���̄0, for a monodisperse assembly� takes the
values of 16.8, 14.5, and 14.5 for simple cubic, bcc, and fcc
lattices, which leads to weaker DDI. On the other hand, in
many realistic samples the position of the particles on the
hosting matrix is random, and for a given concentration, the
precise variation of the lattice sum �̄0 should depend on the
particular form of the particles spatial distribution function,
which may dramatically change in the presence of aggre-
gates, chains, and the like.

We also found that changing the volume distribution �
width has only a quantitative effect on Tmax�H�, very much
similar to the results presented in Fig. 4 of Ref. 8 for a free
assembly. Hence, in both interacting and noninteracting as-
semblies, we find that when the volume distribution becomes
narrower, Tmax decreases in magnitude and slightly flattens.

In addition, changing from maghemite to cobalt particles,
which is mainly equivalent �in the present approach� to
changing the anisotropy constant by an order of magnitude,
has a quantitative effect on the Tmax�H ,�d� curves but the
qualitative features remain the same.

V. CONCLUSION

We have investigated the effect of �weak� dipolar interac-
tions on the zero-field-cooled magnetization by computing
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their contribution to the longitudinal relaxation time. We
have shown that the effect of the dipolar interactions is to
lower the critical volume of the assembly which separates
the dominating populations of blocked and superparamag-
netic particles. More precisely, it is demonstrated that the
Tmax�H� shifts toward low values of the applied field as the
intensity of the dipolar interactions, or equivalently the
sample concentration, increases. This result is in good quali-
tative agreement with experiments on both maghemite and
cobalt nanoparticles. We finally emphasize the important role
played by damping in the presence of a transverse field pro-
vided here by the dipolar interaction.
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APPENDIX A: SPIN AVERAGES

We compute the average of the square of the longitudinal
and transverse components with respect to the local easy axis
ei of the effective field �i �see Eq. �12�� comprising both the
applied magnetic and the DDI fields with the condition ���
�1. The magnetic field is included here only for complete-
ness and is dropped in the final expressions obtained in these
appendices. In fact, the calculation of the ZFC magnetization
and thereby that of Tmax�H� requires the full range of this
field, and for this reason in the calculation of Tmax�H�, the
magnetic field is included exactly in the relaxation rate �see
Eq. �13��. Nevertheless, the expressions of the longitudinal
and transverse components of the effective field �i obtained
here may be used in the range of small magnetic fields.

The effective local field �i reads

�i = xieh + �dni�
j

Dij · S j , �A1�

where Si�nisi. Its longitudinal component is then defined as

�i,� = �i · ei = xi�eh · ei� + �dni�
j

ei · Dij · S j , �A2�

and thus

��i,�
2 �0 = xi

2�eh · ei�2 + 2xi�dni�eh · ei��
j

ei · Dij · �S j�0

+ ��dni�2�
j

�
k

��ei · Dij · S j��ei · Dik · Sk��0,

where the average �¯�0 is defined with respect to the Gibbs
probability distribution containing only the anisotropy term.

Now, using the following formulas:

�si
 �0 = 0, �sj

 sk
��0 = �1

3
�1 − Sj2�� � + Sj2ej

 ej
��� jk,

�A3�

with16,27

Sil��i� 	 �
�l − 1�!!

�2l + 1�!!��i

2
�l/2

+ ¯ , �i � 1

1 −
l�l + 1�

4�i
+ ¯ , �i � 1, �

we obtain

��i,�
2 �0 = xi

2�eh · ei�2 + 2xi�dni�eh · ei��
j

ei · Dij · �S j�0

+ ��dni�2�
j

�
k

��ei · Dij · S j��ei · Dik · Sk��0

= xi
2�eh · ei�2 +

��dni�2

3 �
j

nj
2��1 − Sj2��ei · Dij · Dij · ei�

+ 3Sj2�ei · Dij · e j�2� . �A4�

The transverse field is given by ��i,�
2 �0= ��i

2�0− ��i,�
2 �0, with

��i
2�0 = xi

2 + ��dni�2�
j

nj
2��Dijs j�2�0,

��i,�
2 �0 = xi

2�1 − �eh · ei�2� + ��dni�2�
j

nj
2��Dijs j�2�0

−
��dni�2

3 �
j

nj
2��1 − Sj2��ei · Dij · Dij · ei�

+ 3Sj2�ei · Dij · e j�2� �A5�

=xi
2�1 − �eh · ei�2� +

��dni�2

3 �
j

nj
2�3��Dijs j�2�0

− �1 − Sj2��ei · Dij · Dij · ei�

− 3Sj2�ei · Dij · e j�2� . �A6�

Next, using Eq. �A3�, we compute the first term in the
square brackets as

��Dijs j�2�0 = ��Dijs j��Dijs j��0

= �
 ��

Dij
 �Dij

 ��sj
�sj
��0

=
1

3��1 − Sj2��
 �

Dij
 �Dij

 � + 3Sj2�
 ��

�ej
�Dij

 ��

	�Dij
 �ej

��� .

Let us now compute these two terms:
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�
 �

Dij
 �Dij

 � = �
 �

3eij
 eij

� − � �

rij
3

3eij
 eij

� − � �

rij
3

=
9

rij
6 �
 �

eij
 eij

�eij
 eij

� +
1

rij
6 �
 �

� �� � −
6

rij
6 �

 

eij
 eij

 

=
6

rij
6 .

Next,

�
 

Dij
 �Dij

 � =
1

rij
6 �

 

�3eij
 eij

� − � ���3eij
 eij

� − � ��

=
1

rij
6 �9eij

�eij
��
 

�eij
 eij

 � − 3eij
��
 

eij
 � �

− 3eij
��
 

eij
 � � + �

 

� �� ��
=

1

rij
6 �3eij

�eij
� − ���� +

2

rij
6 �

��

=
1

rij
3 Dij

�� +
2

rij
6 �

��,

then

�
 ��

�ej
�Dij

 ���Dij
 �ej

�� = �
 ��

ej
�ej

�Dij
 �Dij

 �

=
1

rij
3 �
��

ej
�� 1

rij
3 Dij

�� +
2

rij
6 �

���ej
�

=
1

rij
3 e j · Dij · e j +

2

rij
6 .

Recapitulating, we have

��Dijs j�2�0 =
1

3� 6

rij
6 − Sj2

6

rij
6 +

1

rij
3 3Sj2e j · Dij · e j +

6

rij
6 Sj2�

=
1

3� 6

rij
6 +

1

rij
3 3Sj2�e j · Dij · e j�� .

Therefore, inserting all results back into Eq. �A5�, we
finally obtain

��i,�
2 �0 = xi

2�1 − �eh · ei�2�

+
��dni�2

3 �
j

nj
2� 6

rij
6 +

3

rij
3 Sj2�e j · Dij · e j�

− �1 − Sj2��ei · Dij · Dij · ei� − 3Sj2�ei · Dij · e j�2� .

Gathering the results for both longitudinal and transverse
components for the effective field, we write

��i,�
2 �0 = xi

2�eh · ei�2 +
��dni�2

3 �
j

nj
2�ij ,

��i,�
2 �0 = xi

2�1 − �eh · ei�2�

+
��dni�2

3 �
j

nj
2� 6

rij
6 +

3

rij
3 Sj2�ij − �ij� , �A7�

where we have introduced the notation

�ij � �1 − Sj2��ei · Dij · Dij · ei� + 3Sj2�ij
2 ,

�ij � ei · Dij · e j .

APPENDIX B: AVERAGING OVER ANISOTROPY

The general expressions for the longitudinal and transver-
sal fields can be simplified in some relevant situations. For a
textured assembly �with parallel anisotropy axes�, we set all
the ei parallel to e. For a system with randomly distributed
anisotropy axes, one replaces expressions involving f�ei� by

integrals �d2ef�e�� f̄ and uses �e ·v1��e ·v2�= 1
3v1 ·v2.

In the present work, we only deal with random anisotropy.
In this case, we have


 d2e�eh · ei�2 =
1

3
,

so that for the longitudinal component, we obtain

��i,�
2 �0 =

1

3
xi

2 +
��dni�2

3 �
j

nj
2��1 − Sj2�ei · Dij · Dij · ei

+ 3Sj2�ei · Dij · e j�2� =
1

3
xi

2 +
��dni�2

3 �
j

2nj
2

rij
6 ,

where we have used the averages

ei · Dij · Dij · ei =
1

rij
6 3�ei · eij�2 + 1 =

2

rij
6 ,

�ei · Dij · e j�2 =
1

3

1

rij
6 3�e j · eij�2 + 1 =

2

3

1

rij
6 ,

�ij = �1 − Sj2��ei · Dij · Dij · ei� + 3Sj2�ij
2

=
2

rij
6 �1 − Sj2� + 3

2

3

1

rij
6 Sj2 =

2

rij
6 .

For the transverse component,

��i,�
2 �0 =

2

3
xi

2 +
��dni�2

3 �
j

nj
2 6

rij
6 +

��dni�2

3

	�
j

nj
2Sj2

3

rij
3 �ij −

��dni�2

3 �
j

nj
2�ij

=
2

3
xi

2 +
��dni�2

3 �
j

4nj
2

rij
6 +

��dni�2

3

	�
j

3nj
2

rij
3 Sj2�ij ,

with
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�ij = ei · Dij · e j =
1

rij
3 �3�ei · eij��eij · e j� − ei · e j� = 0,

and thereby

��i,�
2 �0 =

2

3
xi

2 +
��dni�2

3 �
j

4nj
2

rij
6 .

Finally, for random anisotropy we have

��i,�
2 �0 = 1

3xi
2 +

��dni�2

3 �
j

2nj
2

rij
6 ,

��i,�
2 �0 = 2

3xi
2 +

��dni�2

3 �
j

4nj
2

rij
6 = 2��i,�

2 �0. �B1�
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