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Hypersound generation and detection by laser pulses incident on the interface of an opaque anisotropic
crystal are theoretically and experimentally investigated in the case where the symmetry is broken by a tilt of
its axis of symmetry relative to the interface normal. A nonlocal volumetric mechanism of plane shear sound
excitation is revealed and a modification of the temporal shape of the reflectivity signal with variation in probe
light polarization is observed, both attributed to asynchronous propagation of the acoustic eigenmodes. Ex-
periments and theory demonstrate the possibility of using polycrystalline materials with an arbitrary distribu-
tion of grain orientations for the generation and the detection of picosecond shear ultrasound.
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I. INTRODUCTION

The general tendency in the development of laser ultra-
sonics, a research field where lasers are used for the excita-
tion of ultrasonic waves,1,2 is the continuous effort to gener-
ate coherent acoustic waves of higher and higher
frequencies. Following the advent of ultrafast lasers, picosec-
ond longitudinal-acoustic pulses were generated and detected
for the first time in 1984,3 announcing the emergence of
picosecond laser ultrasonics.4 This technique has found
widespread use for studies of ultrafast phenomena and non-
destructive testing of submicron thin films and nanostruc-
tured materials. Another clear tendency in the development
of laser ultrasonics, also stimulated by the demand of non-
destructive testing, is the continuous search for methods that
excite different types of acoustic waves �e.g., Rayleigh
acoustic waves for surface diagnostics5,6� or different acous-
tic wave polarizations �e.g., bulk shear waves for the evalu-
ation of the shear viscosity of fluids or the rigidity of
solids7�.

There is an important difference in the processes of laser
generation of longitudinal and shear bulk acoustic waves in
isotropic materials when the photoelastic generation is based
on the thermoelastic effect �that is, when acoustic waves are
excited due to thermal expansion following the absorption of
laser radiation�. In fact, shear acoustic waves are not excited
in an individual heated point of the material volume at all.
From the physical point of view, this is the consequence of
the isotropy of thermal expansion which proceeds equiva-
lently along all possible directions from the heated point. As
a result, the particle displacement preserves spherical sym-
metry, but a shear deformation is not generated because
transverse displacement is orthogonal to this spherically
symmetric excitation. Mathematically, this physical observa-
tion is expressed in the fact that the thermoelastic stress ten-
sor �ij =−K�T�ij is spherical. Here, K is the bulk elastic
modulus, T is the temperature rise, � is the volumetric
thermal-expansion coefficient, and �ij denotes the Kronecker
delta �or unit tensor�. The density of thermoelastic forces
acting in the inhomogeneously heated isotropic material can

be written in the form f�=−K��� T. Consequently, the ther-

moelastic forces in isotropic media are potential forces and,
as a result, they excite only the potential part of the particle
velocity field associated with longitudinal-acoustic waves. If
the velocity of the particle is represented in the form �u� /�t

=�� �+�� ��� , where u� is the particle displacement vector and

� and �� are scalar and vector potentials, respectively, then,
the equation of material motion splits into two parts �see,
e.g., Chap. 3 of Ref. 8�,

�2�

�t2 − cL
2�� = − �*cL

2 �T

�t
, �1�

�2��

�t2 − cS
2��� = 0, �2�

where cL and cS are the velocities of the longitudinal and
shear waves, respectively, � denotes the Laplace operator,
and �*=�K /	cL

2 =��1−4cS
2 /3cL

2� is the effective thermal-
expansion coefficient. Equations �1� and �2� explicitly dem-
onstrate that shear acoustic waves are not excited in the vol-
ume of a homogeneous isotropic material. However, the
scalar and vector potentials �the longitudinal and shear
waves� are coupled at the boundaries of the medium.8 Con-
sequently, shear waves can be excited via mode conversion
of the longitudinal waves obliquely incident on the material
surface �see Fig. 1�.

The difference between longitudinal and shear waves,
from the point of view of their thermoelastic generation in
the isotropic media described above, leads to additional com-
plexity in the generation of plane shear acoustic waves by
lasers. A well-known approach for the generation of plane
longitudinal-acoustic waves is to homogeneously illuminate
the plane surface of the material at a spatial scale exceeding
the characteristic wavelength of the generated ultrasound. In
other words, the size of the laser spot focused on the surface
of the material should be significantly larger than both the
optical heating depth and the distance of acoustic wave
propagation during the time of pulsed laser action. In this
case, the elementary sources of longitudinal waves are later-
ally homogeneously distributed in a plane layer beneath the
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surface. The particles far from the edges of the laser irradi-
ated region will move predominantly in the direction normal
to the surface �see Fig. 1�, because all the directions of mo-
tion along the surface are locally equivalent. Most of the
light absorbing volume operates as a piston expanding nor-
mally to the surface �Fig. 1�. As a consequence, two plane
longitudinal-acoustic waves are excited �one propagating
from the surface and another incident on the surface�. Unfor-
tunately, the plane longitudinal-acoustic waves normally in-
cident to the surface cannot lead to plane shear acoustic
waves via mode conversion. By virtue of symmetry, plane
reflected shear waves cannot chose a unique polarization
among all equivalent polarizations along the surface, and as
a result they are not excited at all. However, shear waves will
be excited through mode conversion in the vicinity of the
edges of the excited area where longitudinal waves are ob-
liquely incident �see Fig. 1�. However, even in the near field,
the emitted shear waves are not planar; the predominant
emission direction is inclined relative to the surface normal
and in general the duration of the nonplanar shear acoustic
pulses excited depends on the radius of the laser focus, in
addition to the dependence on the laser pulse duration and on
the depth of the heated region.9–11

Different solutions were proposed to overcome the afore-
mentioned problem of the generation of plane shear waves.
One solution, successful in the megahertz frequency regime
with the application of nanosecond lasers,12,13 requires the
use of prisms �see Fig. 2�. Plane longitudinal-acoustic �LA�
pulses are generated in the face of one of the coated prism’s
faces. This launches LA pulses obliquely incident on the hy-
potenuse free surface of the prism where plane shear acoustic
�TA� pulses are excited via mode conversion by reflection of

LA pulses.14 However, scaling to the gigahertz frequency
regime of picosecond laser ultrasonics requires a technique
of microprism machining and their deposition on the surface
of structures that remains to be developed. Because the hy-
persound hardly propagates deeper than a few microns at
room temperature, the prisms would need to be on the order
of 1 
m in size.

Other solutions proposed for the generation of plane shear
hypersound do not require this complicated microgeometry.
Electrostriction7,15 and the inverse piezoelectric effect16,17

have been proposed for the generation of plane shear acous-
tic waves in the gigahertz frequency regime. The former can
be realized even in an isotropic medium,7 while the latter
requires laser irradiation of single crystals, but does not re-
quire disorientation of the material crystallographic axis rela-
tive to the surface normal. It is always necessary to break the
symmetry of the system in order to generate shear waves. In
the cases of electrostriction and piezoelectric effects, the
symmetry is broken at the level of the forces inducing the
material motion.

Returning to the thermoelastic excitation of acoustic
waves, it has been proposed to break the symmetry of the
system by using interface mode conversion between the iso-
tropic material where plane LA waves are generated and an
anisotropic material with the crystallographic axis disori-
ented relative to the interface normal. In this case, plane
transverse waves are excited in reflection18 and plane quasi-
transverse waves are excited in transmission19 through the
interface mode conversion of plane LA pulses, even those
which are normally incident.

Finally, it has been proposed to break the symmetry at the
level of the thermoelastic force by using materials with an-
isotropic thermal-expansion coefficients �ij

T .20 In the first ex-
periments of this type,20 the use of hexagonal crystals has
been primarily motivated by the static strain relation of the
unrestricted expansion of the crystal, Sij

T =�ij
TT, where Sij

T is
the static strain tensor; static shear strain exists only in ma-
terials capable of anisotropic thermal expansion, that is,
those with nonspherical tensor �ij

T , the lowest symmetry be-
ing hexagonal. It should be noted, however, that although
shear waves are excited in the case of nonspherical �ij in
each point of the laser heated region, nevertheless, in order to
achieve emission of plane shear waves normally to the laser
irradiated surface it is necessary to break the symmetry at the
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FIG. 1. �Color online� Schematic representation of the near field
of thermoelastic acoustic wave generation in an isotropic homoge-
neous medium. Each point of the heated region is a source of lon-
gitudinal waves only. By virtue of symmetry, longitudinal waves
from different point sources propagating off the surface normal axis
are mutually compensated and no shear waves are excited in normal
reflection. Shear waves are excited only near the edges by obliquely
incident longitudinal waves.

L

L
S

Laser

Sample
Metallic
Film

FIG. 2. �Color online� Schematic of the megahertz prism pho-
toelastic transducer. The shear acoustic waves arise from the ob-
lique reflection of the longitudinal waves at the hypotenuse free
surface of the prism.
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level of the surface orientation. The normal to the surface
should not coincide with the symmetry axis of the aniso-
tropic material. We label this situation the plane geometry
with broken symmetry.

In this paper, the detailed results of experimental and the-
oretical analyses of laser induced thermoelastic generation
and photoelastic detection of hypersound in anisotropic ma-
terials are presented in order to describe a general picture of
picosecond laser ultrasonics in crystals. A brief report of the
obtained results has been published earlier.21 We show that
anisotropic thermal expansion is not necessary for the gen-
eration of plane shear waves. Moreover, it is possible to ex-
cite plane shear waves in the plane geometry with broken
symmetry even in the hypothetical case where the ther-
moelastic stress tensor in the anisotropic material �ij
=Cijkl�kl

T T is spherical. We reveal the mechanism of shear
wave excitation by the spherical part ��kk /3��ij of the non-
spherical �ij, which does not require anisotropic thermal ex-
pansion and is operative even in crystals with isotropic ther-
mal expansion, such as cubic crystals. In the general case,
the spherical part of the thermoelastic stress can give a more
important contribution to plane shear wave excitation than its
deviatoric part �̄ij =�ij − ��kk /3��ij.

Both the theory of thermoelastic generation and of the
photoelastic detection in crystals described in this paper,
which have been successful in explaining all our experimen-
tal observations, carefully take into account two essential
features of laser ultrasonics in crystals.

First, in a general case, all three acoustic eigenmodes �one
quasilongitudinal and two quasishear� are excited simulta-
neously through the photoelastic mechanism. Qualitatively
speaking, for the physics of the thermoelastic generation it is
important that all thermoelastic eigenmodes in the crystals
are quasi and that all of them include a longitudinal part. As
a consequence, all the eigenmodes can be excited even by
isotropic �spherical� stress through the excitation of their lon-
gitudinal components. The other important point concerns
the asynchrony between the acoustic eigenmodes, in the
sense that all three modes are propagating with different ve-
locities. Later on, after the longitudinal strain components
are instantaneously launched by the action of the laser, the
wave field will be spatially and temporally decomposed into
individual acoustic modes revealing shear components.

Second, the asynchrony between the acoustic modes plays
an important role in the understanding of the acousto-optic
detection process as well. The developed theory relates both
the observation of shear pulse anomalous broadening and the
observation of the strong dependence of the detected longi-
tudinal pulse profiles on the polarization of the probe laser
pulse to the asynchrony in the propagation of acoustic eigen-
modes. The theory provides physical insight into why, in our
experiments, it was possible to monitor �to generate and to
detect� shear hypersound using not only single crystals but
also polycrystalline materials with significant variations in
individual grain orientations relative to the material surface.
The latter observations could be suited for the future appli-
cations of picosecond ultrasonics involving shear waves.

The paper is arranged as follows. We present our experi-
mental results in Sec. II. Section III describes a theory of
thermoelastic excitation of acoustic waves in a system com-

posed of an isotropic transparent film deposited on an aniso-
tropic opaque material with crystallographic axes disoriented
relative to the interface normal �plane geometry with broken
symmetry�. Section IV is devoted to the theoretical analysis
of the photoelastic detection of the acoustic pulses propagat-
ing in an anisotropic substrate. We finish by discussion in
Sec. V and conclusions in Sec. VI.

II. EXPERIMENTAL RESULTS

For the picosecond transient reflectivity measurements,
we used a common pump-probe configuration �see the inset
of Fig. 3� based on a mode-locked femtosecond Ti:sapphire
laser operating in the near infrared �800 nm�, producing
100 femtosecond pulses at a repetition rate of 76 MHz. The
laser beam from the cavity is split into a pump beam and a
probe beam, both focused onto an area of the sample
�40 
m in diameter. Each pump pulse of 2 nJ induces a
thermal stress in the metallic zinc substrate that gives rise to
coherent acoustic waves propagating normally to the
ZnO/Zn interface. The time-delayed probe beam �with ten
times less energy� is sensitive to the strain induced small
variations of the sample reflectivity. The record of the change
in reflectivity of the delayed probe beam provides the time
resolved acoustic dynamics in the hundreds of picoseconds
time scale. Several anisotropic Zn single crystals with the C6
axis tilted by angles � ranging from 0° up to 40° relative to
the surface normal were prepared. The surface was then me-
chanically polished, leading to a roughness better than 5 nm
checked by atomic force microscopy over a surface exceed-
ing 100 
m2. Each zinc substrate was then coated with a rf
sputtered transparent polycrystalline ZnO layer. The impor-
tant improvement in the structures prepared here compared
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FIG. 3. �Color online� Change in transient reflectivity for a Zn
single-crystal substrate with C6 axis oriented at angle ��25° rela-
tive to the interface normal and on which a transparent ZnO film of
270 nm thickness has been deposited. The probe polarization coin-
cides with the x2 direction. The variation in transient reflectivity
presented in the inset corresponds to the case of a Zn single crystal
whose normal surface coincides with the C6 axis.
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with those of Matsuda et al.20 is that transparent ZnO films
used here, due to their extremely low photoelastic constants
at the optical probe wavelength of 800 nm, do not add a
Brillouin component to the observed reflectivity signals �see
Fig. 3�. Thus, in ZnO/Zn structures, both the excitation and
detection of sound take place in the optical penetration depth
of the Zn substrate.

Theoretical estimates of the arrival time of the echoes in
Fig. 3 permit identification of the various detected acoustic
strain pulses from the known thickness and sound velocities
�i.e., vL=6096 m s−1 and vS=2736 m s−1� of the ZnO films.
The signals denoted by 2L and 4L correspond to the arrival
of the longitudinal pulses at the ZnO/Zn interface after
crossing the film twice and four times, respectively. The no-
tation 2S is given to shear pulses on their first arrival at the
ZnO/Zn interface. The notations 2S-2L/2L-2S are given to
pulses arriving after one more round-trip in the film, that is,
to the L �S� pulses mode converted in the first reflection at
the interface from the 2S �2L� pulses. Additional confidence
in the identification of the shear wave arrivals is given by
comparison with the signal in the inset of Fig. 3 which was
detected in the symmetrical system ��=0° � where S waves
are seen to be absent. These experiments confirm the possi-
bility of direct thermoelastic excitation of S waves as well as
their excitation through mode conversion of the echoes �see
2L-2S/2S-2L echoes�. Furthermore, an interesting feature of
the signal is the different duration of the leading fronts when
we compare the longitudinal and shear wave signals. While
the first one is rather abrupt, the second one rises and reaches
a maximum in about 10 ps. The theory of thermoelastic gen-
eration in anisotropic opaque materials presented in the next
section will go deeper into the interpretation of the different
durations of the leading fronts of the pulses of different po-
larizations, which cannot be attributed to the difference in
longitudinal and shear velocities and to the difference in the
absorption of L and S waves only. In particular, the theory
reveals a new mechanism of shear wave thermoelastic gen-
eration specific to anisotropic media.21

Finally, the fact that the probe photoelastic scattering oc-
curs in the anisotropic zinc single crystal gives a remarkable
feature of the recorded transient reflectivity signal’s depen-
dence on the orientation of the probe’s polarization. Figure 4
shows the modifications of the transient reflectivity signal
changes accompanying rotation of the probe polarization.
Drastic modification of the profile of the 2L echo and of the
magnitude of the 2S echo is due to the fact that the detection
process takes place in the anisotropic medium where in gen-
eral all three of the acoustic modes influence light scattering.
The theory of photoelastic scattering in anisotropic materials
is detailed in Sec. IV. The coincidence of the signals for �
=0° and 180°, see Fig. 4, which is equivalent to 180° crystal
rotation ��→−��, indicates that the symmetry of the detected
scattered electric field is higher than the symmetry of the
sample geometry. This will be explained when anisotropy is
taken into consideration both in the theoretical description of
the thermoelastic generation and in the photoelastic detection
detailed in the next sections.

III. THERMOELASTIC GENERATION IN ANISOTROPIC
OPAQUE MEDIUM

To the best of our knowledge, the first formulation of the
problem of efficiency of the thermoelastic excitation of
sound in anisotropic materials was proposed 20 years ago.22

However, only the generation efficiency of the longitudinal
waves propagating along the directions of high symmetry
was analyzed, while the anisotropy of the thermal expansion
was not taken into account. Later on, a numerical model23

was developed for the description of the thermoelastic gen-
eration of the acoustic waves of different polarizations in an
orthotropic medium. The model23 deals with the anisotropy
of thermal expansion. However, the analysis was undertaken
in a geometry with unbroken symmetry �the crystal surface is
oriented perpendicularly to one of the crystallographic axes�.
In this case, plane acoustic waves with shear components
propagating from the laser irradiated surface are not excited.
Recently, the thermoelastic excitation of acoustic waves near
the free surface of an anisotropic media was revisited using
the method of images24 and the method of integral
transforms.25

In the present paper, we extend the theory of thermoelas-
tic generation of acoustic waves by lasers in anisotropic
materials25 to the case of current experimental interest: an
isotropic transparent film deposited on a semi-infinite opaque
disoriented crystal �see Fig. 5�. The problem can be further
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simplified by taking into account that in our experiments the
spatial extent of the ultrashort acoustic pulses is shorter than
the film thickness. Consequently, in the analysis of the ther-
moelastic generation process, we will consider the transpar-
ent medium as semi-infinite.

A. General theory

The starting point of the thermoelastic theory are the
equations of motion in both media, that is, in the transparent
isotropic film �F� and the opaque anisotropic substrate �S�,

	*�2ui
*

�t2 =
��i3

*

�x3
* , �3�

where 	* is the mass density, ui
* is the acoustic displacement,

and �ij
* is the stress defined by

�i3
* = Ci3k3

* Sk3
* − Bi3

* T*, Sk3
* =

�uk
*

�x3
* . �4�

The superscript * means that the equation is similar for both
media S and F �i.e., x3

* is simply x3 for medium S and x3� for
medium F, respectively�. The Einstein summation conven-
tion is implicit throughout this paper �i.e., in Eq. �4�, the
summation is done over k �=1, 2, and 3� for a given i�. These
equations of motion are coupled by the boundary conditions
at the interface,

�i3�x3 = 0,t� = �− 1�i+1�i3� �x3� = 0,t� ,

ui�x3 = 0,t� = �− 1�iui��x3� = 0,t� . �5�

The coefficients �−1�i+1 and �−1�i appear due to the axis
convention shown in Fig. 5. The elastic stiffness tensor Cijkl

*

and the thermoelastic stress tensor Bij
* are expressed in the

coordinate axes represented in Fig. 5 that have an arbitrary
orientation relative to the crystal axes. As already discussed

in the Introduction, those equations assume a one-
dimensional source where all the parameters depend on the
x3

* spatial coordinate only.
The heat diffusion equations that satisfy

�T

�t
= �33

�2T

�x3
2 +

I

	cp
f�t�e−x3, �6�

�T�

�t
= �33�

�2T�

�x3�
2 �7�

govern the thermoelastic stress −Bi3
* T* of Eq. �4�. Here, �33

and �33� are the thermal diffusivities in the x3
* direction of S

and F media, respectively, cp is the specific heat, and  is the
optical absorption coefficient of S. The intensity I is the ef-
fective intensity that reaches the opaque crystal for an inci-
dent laser radiation of temporal profile f�t�. The temperature
boundary conditions couple Eqs. �6� and �7�,

�33
�T

�x3
�x3 = 0,t� = − �33�

�T�

�x3�
�x3� = 0,t� .

T�x3 = 0,t� = T��x3� = 0,t� . �8�

The general solution procedure consists of applying temporal
t-Fourier and spatial x3

*-Laplace transformations, as defined
by

ũi
*�x3

*,�� = �
−�

+�

ui
*�x3

*,t�ej�tdt , �9�

ûi
*�p,�� = �

0

+�

ui
˜ *�x3

*,��e−px3
*
dx3

*, �10�

to the whole set of equations �3�–�8�. Here, ũi
* is the t-Fourier

transform of ui
* and ûi

* the x3
*- Laplace transform of ũi

*, p is a
complex variable, � is a real variable, and j2=−1. We recall
that x3

* must be replaced by x3� and x3 when the above trans-
formations concern the media F and S, respectively.

Following this procedure, the transformed equation of
motion �3� can be written in the form

− 	*�2ûi
* = Ci3k3

* �p2ûk
* − pũk

*�0,�� −
�ũk

*

�x3
* �0,��� − pBi3

* T̂*

+ Bi3
* T̃*�0,�� . �11�

The t-Fourier transformation of the stress that appears in Eq.
�4�, at the specific coordinate x3

*=0,

�̃i3
* �0,�� = Ci3k3

* �ũk
*

�x3
* �0,�� − Bi3

* T̃*�0,�� , �12�

allows a simplification of Eq. �11� that can be rewritten as
follows:
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FIG. 5. �Color online� Assumed geometry for the theoretical
analysis of the thermoelastic generation of the acoustic waves. The
photoelastic process occurs beneath the interface of the semi-
infinite anisotropic opaque crystal coated by a transparent isotropic
film, considered as semi-infinite as well.
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− 	*�2ûi
* = Ci3k3

* �p2ûk
* − pũk

*�0,��� − pBi3
* T̂* − �̃i3

,*�0,�� .

�13�

Equation �13� can be simplified as

Pij
* ûj

* = Si
*, �14�

where the matrix Pij
* satisfies

Pij
* = p2Ci3j3

* + 	*�2�ij , �15�

and �ij is the Kronecker function. The vector Si
* verifies

Si
* = p�i3

* �p,�� + �̃i3
* �0,�� , �16�

where

�i3
* �p,�� = Ci3k3

* ũk
*�0,�� + Bi3

* T̂*�p,�� . �17�

Following the detailed method described in Ref. 25 that re-
quires the use of the Cramer determinant technique, the sys-
tem �14� gives the transformed acoustic displacements,

ûi
*�p,�� = �i

*�p,��/�*, �18�

where �*=det�Pij
* � is the Cramer determinant and �i

*�p ,��
can be written in the form

�i
*�p,�� = p5	aij

* �p,���� j3
* �p,�� + �̃ j3

* �0,���/�p�
 . �19�

The symmetrical aij
* �p ,�� coefficients satisfy

a11
* �p,�� = �C44

* +
	*�2

p2 ��C33
* +

	*�2

p2 � − C34
*2,

a22
* �p,�� = �C55

* +
	*�2

p2 ��C33
* +

	*�2

p2 � − C35
*2,

a33
* �p,�� = �C55

* +
	*�2

p2 ��C44
* +

	*�2

p2 � − C45
*2,

a12
* �p,�� = C35

* C34
* − C45

* �C33
* +

	*�2

p2 � ,

a13
* �p,�� = C45

* C43
* − C35

* �C44
* +

	*�2

p2 � ,

a23
* �p,�� = C35

* C45
* − C34

* �C55
* +

	*�2

p2 � . �20�

Contracted notation is used for the symmetrical elastic stiff-
ness tensor Cijkl. The six roots ±jki

* of the Cramer determi-
nant �* are reminiscent of the three acoustic mode wave
numbers ki

*. Inverse Laplace transformation of Eq. �18� is
achieved by evaluating the residues of the six roots ±jki

*. The
outcome of this procedure is an expression for the acoustic
displacements ũi

*�x3
* ,�� in the Fourier domain,

ũi
*�x3

*,�� = 
r=1

6

Rr,i
* =

�i
*�jk1

*,��ejk1
*x3

*

2jk1
*a*�k1

*2 − k2
*2��k1

*2 − k3
*2�

+
�i

*�− jk1
*,��e−jk1

*x3
*

− 2jk1
*a*�k1

*2 − k2
*2��k1

*2 − k3
*2�

+
�i

*�jk2
*,��ejk2

*x3
*

2jk2
*a*�k2

*2 − k1
*2��k2

*2 − k3
*2�

+
�i

*�− jk2
*,��e−jk2

*x3
*

− 2jk2
*a*�k2

*2 − k1
*2��k2

*2 − k3
*2�

+
�i

*�jk3
*,��ejk3

*x3
*

2jk3
*a*�k3

*2 − k1
*2��k3

*2 − k2
*2�

+
�i

*�− jk3
*,��e−jk3

*x3
*

− 2jk3
*a*�k3

*2 − k1
*2��k3

*2 − k2
*2�

, �21�

where Rr,i
* are the six residues corresponding to the wave

numbers ±ki
*, and the coefficient a* depends on the elastic

stiffness coefficients,

a* = C55
* C44

* C33
* − C55

* C34
*2 − C44

* C35
*2 − C33

* C45
*2 + 2C45

* C34
* C35

* .

�22�

The inverse Fourier transform of Eq. �21� will provide the
general spatiotemporal solutions of the displacements
ui

*�x3
* , t�, valid outside the area of excitation. Equation �21�

involves two kinds of waves with wave number ±ki
*. Con-

cretely, each exponent ejki
*x3

*
of Eq. �21� is a wave coming

from the interface and each exponent e−jki�x3� of Eq. �21� is a
wave coming from infinity. Noting that the wave coming
from infinity is unphysical, we obtain the following condi-
tions on the determinant �i

*�p ,�� at the specific values of
p=−jki

*:

�i
*�− jk1

*,�� = �i
*�− jk2

*,�� = �i
*�− jk3

*,�� = 0. �23�

Finally, the general expression for the acoustic displacement
in the Fourier domain far from the laser excited area can be
expressed in the form

ũi
*�x3

*,�� =
�i

*�jk1
*,��ejk1

*x3
*

2jk1
*a*�k1

*2 − k2
*2��k1

*2 − k3
*2�

+
�i

*�jk2
*,��ejk2

*x3
*

2jk2
*a*�k2

*2 − k1
*2��k2

*2 − k3
*2�

+
�i

*�jk3
*,��ejk3

*x3
*

2jk3
*a*�k3

*2 − k1
*2��k3

*2 − k2
*2�

. �24�

Each coefficient �i
*�jkr

* ,�� of Eq. �24� is coupled to the un-

knowns ũi
*�0,��, �̃i

*�0,��, and T̂*�jkr
* ,�� through Eqs. �17�

and �19�. Hence, the next step in the solution consists in
obtaining analytical expression for each coefficient
�i

*�jkr
* ,�� of Eq. �24�, in order to derive these unknowns.

This task can be straightforwardly realized by making an
approximation concerning the transparent film F that reduces
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the complexity of the problem. However, this can be accom-
plished without additional assumptions when necessary.

B. Simplified problem

Since at the picosecond time scale thermal diffusion is
commonly neglected in the thermoelastic generation process
�even in a metallic medium such as substrate S�, it follows
that in the transparent dielectric medium F, the thermal dif-
fusion contribution can be neglected with even more accu-
racy. That is, in the following we will neglect the thermal
diffusion contribution and correspondingly we will assume
that the temperature rise T� induced in the transparent film F
due to the heat diffusion from the absorptive crystal S is
negligible. Note that this contribution could have played a
role in the case of an anomalously high thermoelastic modu-
lus tensor Bij� of the film, but this is not the situation in our
case.

The above approximation leads to a modification of Eq.
�24� that is operationally faster and easier to obtain by ap-
plying the inverse Laplace transform of Eq. �13� than by
developing the coefficients �i��jkr� ,�� of Eq. �24�. In fact, by
neglecting thermal diffusion, Eq. �13� becomes

ûi��p,�� =
pCi3i3� ũi��0,�� + �̃i3� �0,��

p2Ci3i3� + 	��2 . �25�

We recall that the prime index means that the equations deal
with the isotropic film F. Then, the inverse Laplace transform
of Eq. �25�, performed using the technique of the calculus of
residues, provides the solution for the displacement in the
frequency domain,

ũi��x3�,�� =
jki�Ci3i3� ũi��0,�� − �̃i3� �0,��

2jki�Ci3i3�
ejki�x3�

+
�− jki�Ci3i3� ũi��0,�� + �̃i3� �0,���

− 2jki�Ci3i3�
e−jki�x3�. �26�

As mentioned previously, the solutions �26� are only valid
outside the area of thermoelastic excitation. In that sense, the
second term of Eq. �26� that corresponds to waves coming
from infinity is physically inappropriate, and thus must be
zero,

jki�Ci3i3� ũi��0,�� = − �̃i3� �0,�� . �27�

Finally, Eq. �27� allows a simplification of Eq. �26�,

ũi��x3�,�� = ũi��0,��ejki�x3�. �28�

This last equation highlights the fact that by neglecting the
thermal diffusion in the transparent film F, the displacements
at the interface ũi��0,�� govern the excitation of the acoustic
waves inside the film. Thus, the unknowns ũi��0,�� are the
key to this problem.

Hence, the next step of the solution consists in getting the
transformed boundary acoustic displacements ũi��0,��
= �−1�iũi�0,��. This is realized by analyzing the Eqs. �23�
that involve the acoustic displacements at the interface.
Among the nine equations that are expressed by Eqs. �23�, a

relevant set of three equations involving the three unknowns,
ũi�0,��, can be written in the form

	vi
2aij�vi�ũi�0,�� = − air�v1�Br3T̂�− jki,��

+ air�vi��̃r3�0,��/jki. �29�

Concerning the transparent medium F, transposition of the
last set of equations �29� leads to the previous equation �27�.
The Fourier transformed boundary conditions of the stresses,
�̃i3� �0,��= �−1�i+1�̃i3�0,�� and of the acoustic displacements
ũi�= �−1�iũi, with the axes conventions of Fig. 5, provide the
following system from Eqs. �27� and �29�:

Aijui
˜ �0,�� = − air�vi�Br3T̂�− jki,�� , �30�

where

Aij = �	vi
2 + 	�viv j��aij�vi� . �31�

The solutions ui
˜ �0,�� of Eq. �30� are deduced using the

Cramer technique in the form

ui
˜ �0,�� = �imT̂�− jkm,�� . �32�

The �im coefficients are deduced from the quotient of the
Cramer determinants of the system �30� �they do not depend
on the frequency ��,

�11 = − a1r�v1�Br3��	v2
2 + 	�v2v2��

��	v3
2 + 	�v3v3��a22�v2�a33�v3�

− �	v3
2 + 	�v3v2���	v2

2 + 	�v2v3��

�a23�v3�a23�v2��/det�Aij� ,

�12 = a2r�v2�Br3��	v1
2 + 	�v1�v2�

��	v3
2 + 	�v3v3��a12�v1�a33�v3�

− �	v3
2 + 	�v3v2���	v1

2 + 	�v1v3��

�a23�v3�a13�v1��/det�Aij� ,

�13 = − a3r�v3�Br3��	v1
2 + 	�v1v2��

��	v2
2 + 	�v2v3��a12�v1�a23�v2�

− �	v2
2 + 	�v2v2���	v1

2 + 	�v1v3��

�a22�v2�a13�v1��/det�Aij� ,

�21 = a1r�v1�Br3��	v2
2 + 	�v2v1��

��	v3
2 + 	�v3v3��a12�v2�a33�v3�

− �	v3
2 + 	�v3v1���	v2

2 + 	�v2v3��

�a13�v3�a23�v2��/det�Aij� ,

�22 = − a2r�v2�Br3��	v1
2 + 	�v1v1��

��	v3
2 + 	�v3v3��a11�v1�a33�v3�

− �	v1
2 + 	�v1v3���	v3

2 + 	�v3v1��

�a13�v1�a13�v3��/det�Aij� ,
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�23 = a3r�v3�Br3��	v1
2 + 	�v1v1��

��	v2
2 + 	�v2v3��a11�v1�a23�v2�

− �	v2
2 + 	�v2v1���	v1�

2 + 	�v1v3��

�a12�v2�a13�v1��/det�Aij� ,

�31 = − a1r�v1�Br3��	v2
2 + 	�v2v1��

��	v3
2 + 	�v3v2��a12�v2�a23�v3�

− �	v3
2 + 	�v3v1���	v2

2 + 	�v2v2��a13�v3�

�a22�v2��/det�Aij� ,

�32 = a2r�v2�Br3��	v1
2 + 	�v1v1��

��	v3
2 + 	�v3v2��a11�v1�a23�v3�

− �	v1
2 + 	�v1v2���	v3

2 + 	�v3v1��

�a12�v1�a13�v3��/det�Aij� ,

�33 = − a3r�v3�Br3��	v1
2 + 	�v1v1��

��	v2
2 + 	�v2v2��a11�v1�a22�v2�

− �	v1
2 + 	�v1v2���	v2

2 + 	�v2v1��

�a12�v1�a12�v2��/det�Aij� . �33�

The Fourier-transformed solutions in the transparent medium
are then deduced from Eq. �28�,

ũi��x3�,�� = �− 1�i�imT̂�− jkm,��ejki�x3�. �34�

In order to obtain the spatiotemporal solutions of the dis-

placements, the inverse Fourier transform of T̂�−jkm ,��
must be performed in Eq. �34�. The general expression of

T̂�−jkm ,��, whose inverse Fourier transform can be fully
analytically treated, is detailed in the Ref. 25. To further
reduce the complexity of the problem, it is again possible to
neglect thermal diffusion even in the substrate S. This sim-
plification facilitates the inverse Fourier transformation of

T̂�−jkm ,��. Finally, we obtain

ui��x3�,t� = �− 1�i� F

	cp
��im�1 − e−vm�t−x3�/vi��� , �35�

for t−
x3�

vi�
�0, and

ui��x3�,t� = 0, �36�

for t−
x3�

vi�
�0, where F is the laser fluence, 	 is the mass

density, and cp is the specific heat. The corresponding strain
is deduced from Eqs. �35� and �36�,

S3i� �x3�,t� = �− 1�i+1� F

	cp
�vm

vi�
�ime−vm�t−x3�/vi��, �37�

for t−
x3�

vi�
�0, and

S3i� �x3�,t� = 0, �38�

for t−
x3�

vi�
�0. The physical meaning of the �im coefficients is

clear from Eqs. �37�: they weight the contribution of each
individual acoustic mode, i.e., �im weights the contribution
of the mth thermoelastically excited acoustic modes of the
crystal S to the ith acoustic mode of the transparent medium
F.

C. Asynchronous mechanism of shear generation

In this section, we will describe the asynchronous mecha-
nism of shear generation that is revealed by a careful analysis
of the above thermoelastic generation theory. To this end, we
present the results of the computation of the shear strain
generated for various crystals. All the parameters necessary
to perform the simulations were found in Refs. 26 and 27.
Regarding the symmetry induced by the � tilt of the symme-
try axis C6 �see Fig. 5�, the purely transverse mode S31� ,
whose acoustic displacement u1� is pointing in the x1 direc-
tion, cannot be excited in any kind of the considered crystals
S. Consequently, only four nonzero �im coefficients are con-
sidered, �22, �23, �32, and �33. The coefficients �22 and �32
correspond to the contribution of the quasishear �QS� mode,
and �23 and �33 to that of the quasilongitudinal �QL� mode
excited in the disoriented crystal S. Figure 6 shows the simu-
lation of the dynamics of the longitudinal S33� and the shear
S32� strains recorded at some coordinate x3�=610 nm inside
the ZnO transparent medium F �assumed to be semi-infinite�,
for different kinds of metallic disoriented crystals of cubic
symmetry �Pb, Al, Fe, Cu, and Au� and of hexagonal sym-
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FIG. 6. �Color online� Dynamics of the longitudinal S33� and
shear S32� strains at an arbitrarily chosen coordinate x3�=610 nm in-
side a ZnO semi-infinite transparent medium F on top of a semi-
infinite metallic crystal S, of different kinds, each with a cut off-axis
of symmetry by �=28°. The laser fluence value is FL=1 J m−2.
Both thermal and electronic diffusions are neglected.
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metry �Zn�. The tilt angle � around 28° corresponds to the
optimum for shear strain generation in all crystals. After the
delayed times since laser action of �33=100 ps and �32
=223 ps, corresponding to a travel time inside the ZnO film
at two different velocities of v3�=6096 m s−1 and v2�
=2736 m s−1, the longitudinal and the shear strains arrive at
the chosen coordinate x3�=610 nm.

First of all, these numerical simulations provide clear evi-
dence that the shear acoustic generation efficiency is compa-
rable with that of the longitudinal-acoustic generation.28

Moreover, they attest that shear generation is possible even
in cubic disoriented crystals S whose thermal dilatation ten-
sor �ij

T and static strain tensor Sij
T =�ij

TT are spherical. Addi-
tionally, these calculations highlight a strong difference in
the shape of each strain field that cannot be explained by
classic approach of the thermoelastic generation theory.4 In-
deed, the shear strain field exhibits a temporal duration of the
leading front subsequently broader as well as a clear differ-
ence in the leading-front shape than for the longitudinal
strain field �see Fig. 6�. In addition, just at the moment the
strain field arrives �which corresponds for the longitudinal
and the shear strains displayed in Fig. 6 to delays of �L
�100 ps and �S�223 ps, respectively�, the longitudinal
strain is maximum, in contrast with the shear strain, which is
minimum. This unexpected behavior reveals that the longi-
tudinal strain excitation takes place in the very early stages
of the laser thermoelastic excitation, while the shear strain
excitation requires some delay �i.e., the shear strain starts
almost from zero and its maximum is shifted by a few pico-
seconds�. All these features are consistent with our experi-
mental observations since the difference in both the strength
and the leading front are observed �see Fig. 3�. This shear
strain excitation peculiarity, never before reported, finds its
origin in the so-called asynchronous mechanism of shear
generation, as explained below.

As already mentioned in the Introduction, the shear strain
S23� transmitted in the film F is the result of the contributions
of the quasimodes QL and QS of the crystal S, each of which
carries an exponential strain profile given by the exponential
depth profile of the laser excitation,

S23
QL�0,t� � exp�− v3t�, S23

QS�0,t� � exp�− v2t� ,

�39�

where v3 and v2 are the velocities of the QL and QS acoustic
modes of the crystal, and S23

QL�0, t� and S23
QS�0, t� are the shear

strain contributions of the QL and QS acoustic modes, re-
spectively, at the interface x3=x3�=0. While the total longitu-
dinal strain S33 induced in the crystal is greatest at t=0 �i.e.,
the longitudinal strain carries the summation of two positive
exponents�, in the general case of spherical dilatation tensor,
the total shear strain at t=0 is a summation of two exponents
of opposite signs,

S23�0,t� = S23
QS�0,t� − S23

QL�0,t�

� �exp�− v2t� − exp�− v3t��H�t� , �40�

where H�t� is the Heaviside function. As a consequence, due
to the exact compensation of the individual shear strain con-
tributions of the quasimodes excited in the crystal S with

spherical thermal dilatation, the total shear strain is canceled
at t=0. However, thanks to the mismatch propagation of the
modes QL and QT in the direction of the interface, the sepa-
ration of the shear strain contributions happens and reaches a
maximum for a time defined by

�t =
1

�v3 − v2�
ln�v3

v2
� . �41�

This time delay is given by the differentiation with respect to
time of the total shear strain �40�. It matches the shear strain
profile transmitted in the film F and describes the spatial
separation of the two shear mode components over the opti-
cal area of excitation �1/. Concretely, due to the differ-
ence between the acoustic velocities v3 and v2, the shear
strain increases starting at t=0 �in the early stages, the shear
strain excitation is of virtual character� and reaches a maxi-
mum at t=�t when the compensation of each individual
shear strain mode is minimized. As a consequence, the shear
strain front is broadened in comparison with the longitudinal
strain front. This is observed in Fig. 6, where the maximum
of the shear strain is shifted in accordance with the difference
between the acoustic velocities of the quasimodes of each
material investigated. The inset of Fig. 6 highlights a non-
zero abrupt contribution of the shear strain leading front that
is attributed to the surface mediated mode conversion of the
initially nonzero longitudinal strain, that have nothing to
compare with the asynchronous mechanism of shear genera-
tion, without which the shear strain generated would have
been of significantly lower amplitude.

In anisotropic crystals, the thermoelastic generation of
acoustic waves is governed by the very general properties of
the thermoelastic stress tensor �ij

T =Cijkl�kl
T T that depend not

only on the thermal-expansion tensor �kl
T but also on the

elastic stiffness tensor Cijkl. Consequently, it is not the devia-
toric part of �kl

T �which is zero in the case of cubic crystals
and nonzero in the specific case of zinc crystal� but rather the
deviatoric thermoelastic stress tensor �̄ij

T =�ij
T − ��kk

T /3��ij that
directly drives excitations of shear polarization �i.e., x2 po-
larization�. Our simulations show that the contribution of the
deviatoric thermoelastic stress tensor �̄ij

T =�ij
T − ��kk

T /3��ij to
the amplitude of the shear pulse emitted from Zn into ZnO is
less than 40% of the contribution from the isotropic stress
��kk

T /3��ij. Indeed, the isotropic thermoelastic stress
��kk

T /3��ij is able to excite shear polarizations as well be-
cause of the specific elastic anisotropy of broken symmetry
and the asynchronous shear generation mechanism. Although
thermoelastic stress ��kk

T /3��ij locally excites only longitudi-
nal polarizations �i.e., x3 polarization� in crystals, the corre-
sponding longitudinal strain is distributed between the longi-
tudinal components of QL and quasi transverse �QT� modes
that also contain plane shear strain components, which are
initially mutually compensated but later appear because of
the asynchronous propagation.

IV. THEORY OF DETECTION OF ACOUSTIC WAVES

Owing to the fact that the interferometric detection tech-
niques for shear displacements, previously performed with
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nanosecond lasers,29,30 have never been transposed to the de-
tection of picosecond shear displacements, we experimen-
tally and theoretically investigated the possibility of detect-
ing picosecond shear phonons by the use of the
reflectometric technique. This detection technique is sensi-
tive to any phenomenon that modifies the optical properties
of the material. For instance, the photoelastic interaction pro-
duced by a shear strain that induces a modification in the
dielectric tensor can be detected in this manner. In addition,
the uncommon behavior of the recorded profile of the echoes
within the probe polarization orientation �see Fig. 3� revealed
a shortcoming in the theoretical description of the reflecto-
metric detection process in an opaque disoriented crystal.
The following theoretical approach describes the reflecto-
metric detection of picosecond shear and longitudinal-
acoustic strains in a medium such as a semitransparent or
opaque crystal in a geometry with broken symmetry.

Several previous works have treated the theory of reflec-
tometric detection in laser ulrasonics. The theory of reflecto-
metric detection in a semi-infinite opaque isotropic medium
has been established for picosecond longitudinal-acoustic
strains only.4,31 Several other theoretical studies32–34 have
been extended to shear picosecond wave detection but still
for isotropic medium. The theoretical problem investigated
in this part consists in solving the electromagnetic wave
propagation in the opaque disoriented medium S perturbated
by an acoustic field composed of a combination of several
strain fields �resulting from the interface mediated mode con-
version of the longitudinal or shear strain waves coming
from the isotropic transparent film, decomposed into the
quasimodes QL and QS by crossing the crystal interface�.

The coupling between the acoustic and the electromag-
netic fields is described in Sec. IV B through the linear
photoelastic effect. Solution by a first-order perturbation
technique is performed in Sec. IV C. The classical electro-
magnetic boundary conditions are finally applied in Sec.
IV D to obtain the general theoretical transient reflectivity
coefficient �R, described in Sec. IV E, required to simulate
the experimental measurements.

A. Electromagnetic wave propagation analysis

Consider the situation of a semi-infinite homogeneous an-
isotropic medium �called S medium in the previous part� of
relative dielectric tensor ��� in the x3�0 region. The spa-
tiotemporal modulation of the dielectric tensor induced by
the propagating plane acoustic strain through photoelastic
effect is described by �����x3 , t� Nelson and Lax perturbated
dielectric tensor, and general electromagnetic wave equation
for the electric field is then given by

�� − �� · � +
�2

c2 ���� + ������E� = 0� . �42�

The perturbated dielectric tensor is nonstationary and nonho-
mogeneous, as it follows the acoustic wave. Because of
the relatively low frequency of the acoustic perturbation
��1 THz� compared with the frequency of the probe light,
we can consider the problem as a quasistatic one. Under this

assumption, the perturbated dielectric tensor depends only on
the x3 coordinate, �����x3�.

For the convenience of the analytical solution of Eq. �42�,
and in agreement with the experimental protocol, we assume
that the probe light is normally incident on the sample sur-
face �Fig. 7�. Then, Eq. �42� can be written in the form

�2E1

�x3
2 +

�2

c2 ��1i + ��1i�Ei = 0, �43�

�2E2

�x3
2 +

�2

c2 ��2i + ��2i�Ei = 0, �44�

�2

c2 ��3i + ��3i�Ei = 0, �45�

where Ei is the ith component of the electric field, and the
summation is done over i=1, 2, and 3. A common technique
used to solve this coupled system of equations consists in
applying a perturbative method. In fact, the electric field Ei
solution of the set of equations �43�–�45� can be seen as the
superposition of the zero-order electric field Ei,0, i.e., the
solution without any perturbation, and the scattered electric
fields of increasing orders when the perturbation is taken into
account. Concretely, the picosecond strain of �10−6–10−4 of
magnitude induces a dielectric perturbation at the same order
of magnitude, which allows us to truncate the expansion at
first order. In other words, the solution is well described by
the following assumption:

Ei � Ei,0 + Ei,1, �46�

where Ei,0, called the zero-order electric field, is the existing
electric field when no acoustic perturbation exists in the
probed medium. Ei,1, called the first-order electric field, is
the additional perturbation term originating from the acoustic
disturbance.

In the specific case under investigation of a hexagonal
crystal with broken symmetry, the zero-order solutions Ei,0
of the set of equations �43�–�45� are well known and can be
written in the form

axis
θ

C6

x3

Opaque hexagonal
crystal

optical

x2

−→
E ◦

−→
k ◦

0

FIG. 7. The probe light is assumed to be normally incident to
the crystal surface.
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E1,0 = E1,0
o ej��t−�no/c�x3�,

E2,0 = E2,0
o ej��t−�ne/c�x3�,

E3,0 = − ��23/�33�E2,0
o ej��t−�ne/c�x3�, �47�

where no is the ordinary index of refraction and ne is the
extraordinary index of refraction of the medium. The indices
of refraction satisfy no=��11

o and ne=��11
o �33

o /�33, where
�33=sin2 ��11

o +cos2 ��33
o . Also, � angle is the angle between

the x3 axis and the C6 axis of symmetry �see Figs. 4 and 5�.
The superscript o denotes a component expressed in the crys-
tallographic eigenaxis system. The solutions �47� can be eas-
ily extended to any crystal of symmetry order lower than the
hexagonal one.

To first order, neglecting the second-order terms ��ijEi,1,
and considering Eqs. �46� and �47�, the set of equations
�43�–�45� can be expressed as follows:

�2E1,1

�x3
2 +

�2

c2 �11
o E1,1 = −

�2

c2 ��1iEi,0, �48�

�2E2,1

�x3
2 +

�2

c2 �22E2,1 +
�2

c2 �23E3,1 = −
�2

c2 ��2iEi,0, �49�

�23E2,1 + �33E3,1 = − ��3iEi,0. �50�

These coupled equations are solvable when the perturbated
Nelson and Lax tensor is written out explicitly as in next
section.

B. Perturbated tensor of Nelson and Lax

This part aims at determining the expression of the per-
turbated dielectric tensor ���� in the situation of broken sym-

metry. In the crystallographic principal-axis system, the per-
turbated dielectric tensor verifies

��ij
o = − �im

o �nj
o Pmnkl

o Skl
o , �51�

where �im
o is the dielectric tensor and Pmnkl

o is the photoelastic
tensor of Nelson and Lax.35 By using the contracted nota-
tions, Eq. �51� is expressed as

��I
o = − �Ko�I�PIJ

o �SJ
o � − �NIJ

o �SJ
o, �52�

where SJ
o�Sjj

o for j=1,2,3, SJ
o�2Sij

o otherwise. The photo-
elastic tensor PIJ

o of an 6
mmm hexagonal symmetry medium is

given as36

PIJ
o =�

p11 p12 p13 0 0 0

p12 p11 p13 0 0 0

p31 p31 p33 0 0 0

0 0 0 p44 0 0

0 0 0 0 p44 0

0 0 0 0 0 �p11 − p12�/2
� ,

and the Ko vector verifies

Ko =�
��11

o �2

��11
o �2

��33
o �2

�11
o �33

o

�11
o �33

o

��11
o �2

� . �53�

A trivial calculation of the product Ko�I�PIJ
o , which is similar

to a scalar product �i.e., each I line of the PIJ matrix is
multiplied by the Ko�I� coefficient�, leads to

NIJ
o = Ko�I�PIJ

o =�
p11��11

o �2 p12��11
o �2 p13��11

o �2 0 0 0

p12��11
o �2 p11��11

o �2 p13��11
o �2 0 0 0

p31��33
o �2 p31��33

o �2 p33��33
o �2 0 0 0

0 0 0 p44�11
o �33

o 0 0

0 0 0 0 p44�11
o �33

o 0

0 0 0 0 0
�p11 − p12�

2
��11

o �2
� . �54�

The contracted formulation �54� corresponds to the conven-
tional situation when the C6 axis of symmetry coincides with
the x3 axis. Due to the broken symmetry, the tensor �54� has
to be transformed by applying the tensorial rules of coordi-
nate changes. Since the only possible acoustic strain fields in
the anisotropic medium are S33�S3 and S23�S4 �see previ-
ous part dealing with thermoelastic generation and also

previous work25�, the calculation of NIJ in the situation when
the symmetry axis C6 is tilted from the x3 axis by an angle �
can be restricted to the calculation of the columns C3 and C4

of that tensor. That restriction shows then that the columns
C3 and C4 are the only ones required to obtain the perturba-
tion series and thus the terms of the perturbated dielectric
tensor. The columns C3 and C4 of the tensor NIJ satisfy
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�NIJ�C3,C4
=

⎝
⎜
⎜
⎜
⎛ �sin2 � p12 + cos2 � p13���11

o �2 cos � sin ��p13 − p12���11
o �2

�cos2 � p11��11
o �2 + sin2 � p31��r,3

o �2�sin2 � cos � sin ��cos2 ��p13 − p11���11
o �2�

+ �cos2 � p13��r,1
o �2 + sin2 � p33��33

o �2�cos2 � + sin2 ��p33 − p31���33
o �2

− 4 cos2 � sin2 � p44�11
o �33

o � + 2p44�11
o �33

o cos 2��

�sin2 � p11��11
o �2 + cos2 � p31��33

o �2�sin2 � cos � sin ��sin2 ��p13 − p11���11
o �2�

+ �sin2 � p13��11
o �2 + cos2 � p33��33

o �2�cos2 � + cos2 ��p33 − p31���33
o �2

+ 4 cos2 � sin2 � p44�11
o �33

o � − 2p44�11
o �33

o cos 2��

cos � sin ��− sin2 � p11��11
o �2 + sin2 � p31��33

o �2� �cos � sin ��2�− ��11
o �2�p13 − p11��

− cos2 � p13��11
o �2 + cos2 � p33��33

o �2 + ��33
o �2�p33 − p31�

� − 2p44�11
o �33

o cos 2�� � + p44�11
o �33

o cos2 2��

0 0

0 0
⎠
⎟
⎟
⎟
⎞

. �55�

The fact that the fifth and the sixth lines of the condensed
tensor �55� are equal to zero reveals that the following com-
ponents of the dielectric tensor are zero as well:

��12 = ��21 � ��6 = 0, ��13 = ��31 � ��5 = 0. �56�

Physically, Eq. �56� means that there is no coupling between

the polarizations E1
� and E2

� which can be regarded as eigen-
modes of polarization.

Each of the perturbated dielectric parameters ��I are then
deduced from

��I = − �NIJ�LI,CJ
SJ, �57�

where LI is the Ith row of the �NIJ�C3,C4
matrix �55� �since SJ

is either S3 or S4�.

C. Solution by first-order perturbation theory

The last set of equations �48�–�50� can be then simplified,
thanks to Eqs. �56� and �50�, and by introducing the indices
of refraction no and ne,

�2E1,1

�x3
2 +

�2

c2 no
2E1,1 = �1E1,0, �58�

�2E2,1

�x3
2 +

�2

c2 ne
2E2,1 = �2E2,0, �59�

�23E2,1 + �33E3,1 = − ��3iEi,0, �60�

where

�1 = −
�2

c2 ��11 �61a�

�
�2

c2 �NIJ�1,3m, �61b�

�2 = −
�2

c2 ���22 − 2��23/�33���23 + ��23/�33�2��33�

�62a�

�
�2

c2 �NIJ�2,3m. �62b�

In anticipation of Sec. IV E, we introduce the �NIJ�k,3m coef-
ficients, derived from Eq. �57�, where the k index refers to
the probe polarization direction �either x1 �k=1� or x2

�k=2�� and the 3m index �either 33 or 32� denotes the acous-
tic polarization of the SJ strain,

�NIJ�1,3m � �NIJ�L1,CJ
, �63�

�NIJ�2,3m � �NIJ�L2,CJ
− 2��23/�33��NIJ�L4,CJ

+ ��23/�33�2�NIJ�L3,CJ
. �64�

Solution of Eqs. �58� and �59� is the key to the first-order
perturbation solution leading to the general expression of the
electric field. A particular solution of the first-order pertur-
bated electric field is inspired from plane waves,

Ek,1 = Ek,1
* �x3�ej��t−�nk/c�x3�, �65�

where nk corresponds to no for k=1 and to ne for k=2, and
Ek,1

* �x3� is the spatially inhomogeneous amplitude of the scat-
tered field. By inserting the formal solutions Eq. �65� into the
differential equations �58� and �59�, we obtain a new differ-
ential equation,
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�2Ek,1
*

�x3
2 − 2j��nk/c�

�Ek,1
*

�x3
= �k�x3�Ek,0

o , �66�

with k=1,2. By assuming that the particular electric field
solution and its first derivative is zero at infinity, an integra-
tion from infinity to x3 gives

�Ek,1
*

�x3
− 2j��nk/c�Ek,1

* = �
+�

x3

Ek,0
o �k�x3��dx3�. �67�

The particular solution of Eq. �67� can then be assumed in
the form

Ek,1
* = A�x3�e2j��nk/c�x3, �68�

where A�x3� is the spatially inhomogeneous amplitude of the
scattered field. By inserting �68� into Eq. �67�, we obtain

�A

�x3
= ��

+�

x3

Ek,0
o �k�x3��dx3��e−2j��nk/c�x3. �69�

Integration of Eq. �69� gives

A = Ek,0
o �

+�

x3 ��
+�

x3�
�k�x3��dx3��e−2j��nk/c�x3�dx3�. �70�

The double integral can be rewritten in the form

A = Ek,0
o �

+�

x3

�k�x3����
x3�

x3�
e−2j��nk/c�x3�dx3��dx3� �71�

to yield

A = Ek,0
o �

+�

x3

�k�x3��
e−2j��nk/c�x3 − e−2j��nk/c�x3�

− 2j��nk/c�
dx3�. �72�

The particular solution of Eq. �68� becomes

Ek,1
* = Ek,0

o �
+�

x3

�k�x3��
1 − e−2j��nk/c��x3�−x3�

− 2j��nk/c�
dx3�. �73�

The final formal expression of the particular solution of the
first order is deduced from Eqs. �65� and �73�,

Ek,1 = ��
+�

0 �k�x3��
− 2j��nk/c�

dx3�

− �
0

x3 �k�x3��
2j��nk/c�

dx3��Ek,0
o ej��t−�nk/c�x3�

+ ��
+�

x3

�k�x3��
e−2j��nk/c�x3�

2j��nk/c�
dx3��Ek,0

o ej��t+�nk/c�x3�.

�74�

The homogeneous solutions that propagate in both direc-
tions, namely, C1ej��t−�nk/c�x3� and C2ej��t+�nk/c�x3�, are then
added to Eq. �74� in order to obtain the final solution of the
scattered electric field. We obtain

Ek,1 = ��
+�

0 �k�x3��
− 2j��nk/c�

dx3�

− �
0

x3 �k�x3��
2j��nk/c�

dx3� + C1�Ek,0
o ej��t−�nk/c�x3�

+ ��
+�

x3

�k�x3��
e−2j��nk/c�x3�

2j��nk/c�
dx3� + C2�Ek,0

o ej��t+�nk/c�x3�.

�75�

The constant C1 is found from the condition that at the sur-
face x3=0, the amplitude of the electromagnetic wave propa-
gating towards +x3 should be equal to the amplitude of the
launched electromagnetic wave. Moreover, due to radiation
boundary conditions at x3= +�, the C2 constant must be
zero. Finally, the general solution of the scattered electric
field is

Ek = Ek,0
o ej��t−�nk/c�x3��1 − �

0

x3 �k�x3��
2j��nk/c�

dx3��
+ Ek,0

o ej��t+�nk/c�x3��
+�

x3 �k�x3��
2j��nk/c�

e−2j��nk/c�x3�dx3�.

�76�

The first term in Eq. �76� describes the loss of the incident
electric field that is partially backscattered to the front sur-
face. The second term of Eq. �76� corresponds to the Bril-
louin scattering of the electric field.

D. Reflectivity coefficients

Assessing the optical reflection coefficients for the sample
configuration of Fig. 4, air/transparent film/opaque crystal
requires the use of the Maxwell equations at the boundaries.
The sequence of the analytical treatment begins with the de-
termination of the reflection coefficients at the transparent-
film/opaque-crystal boundary followed by the treatment of
the whole air/transparent-film/opaque-crystal assembly. Fol-
lowing this, the value of Eq. �76� when x3=0 gives the elec-
tric field at the boundary of the crystal surface,

Ek�0� = Ek,0
o ej�t�1 + Dk� , �77�

where

Dk = �
+�

0 �k�x3��
2j��nk/c�

e−2j��nk/c�x3�dx3�. �78�

The magnetic field at the boundary is given by Faraday’s
law, which can be expressed as

−
�E2

�x3
− j�B1 = 0, �79�

�E1

�x3
− j�B2 = 0 �80�

− j�B3 = 0. �81�

Spatial differentiation of Eq. �76� gives
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�Ek

�x3
�0� = − j��nk/c�Ek,0

o �1 − Dk� , �82�

and the magnetic-field components at the boundary satisfy

B1�0� = �n2/c�E2,0
o ej�t�1 − D2� , �83�

B2�0� = − �n1/c�E1,0
o ej�t�1 − D1� , �84�

B3�0� = 0. �85�

The optical reflection coefficients at the transparent-film/
opaque-crystal interface will be defined by

EF,k
− �0� = rkkEF,k

+ �0� , �86�

where k=1,2. The superscript � indicates an incident elec-
tric field propagating in the x3��0 direction whereas � indi-
cates a reflected field propagating in the x3��0 direction. The
index F indicates the film medium. Since there is no cou-
pling between the electric fields E1↔E2, the off-diagonal
reflection coefficients r12 and r21 cancel. The continuity of
the electric field at the transparent-film/opaque-crystal
boundary, coming from Faraday’s law, gives

EF,k
+ �0��1 + rkk� = Ek�0� = Ek,0

o �1 + Dk� . �87�

Since surface density charges are incorporated inside the
complex dielectric constants, Faraday’s law enforces the con-
tinuity of the tangential components of the magnetic field
and we obtain

�nk/c�EF,k
+ �1 − rkk� = Bk�0� . �88�

Taking into account Eqs. �78�, �83�, and �84�, we obtain

�nk/c�EF,k
+ �1 − rkk� = �nk/c�Ek,0

o �1 − Dk� . �89�

The combination of the set of equations �87� and �89� allows
the determination of the reflection coefficients rkk,

rkk =
Dk�nF + nk� + nF − nk

Dk�nF − nk� + nF + nk
, �90�

where k=1,2, and nF is the isotropic index of refraction of
the transparent medium. The fact that the Dk coefficients,
that incorporate the acoustic perturbation, are assumed to be
small �Dk�1� allows us to perform a first-order Taylor ex-
pansion of Eq. �90�,

rkk �
nF − nk

nF + nk
+ Dk

4nFnk

�nF + nk�2 �91a�

�rkk,0 + rkk,1, �91b�

where rkk,0 is the zero-order reflection coefficient and rkk,1
the first-order reflection coefficient that involves the acousti-
cal perturbation.

The two reflection coefficients rkk
o =Eair,k

− /Eair,k
+ of the

whole air/transparent-film/opaque-crystal assembly appear in
the continuity of the electric- and magnetic-field components
at the air/isotropic-film boundary, respectively, written in the
form

Eair,k
+ �ejkairH + rkk

o e−jkairH� = EF,k
+ �ejkFH + rkke

−jkFH� , �92�

Eair,k
+ �− ejkairH + rkk

o e−jkairH� = − nFEF,k
+ �ejkFH − rkke

−jkFH� ,

�93�

where kair=� /c, kF=nF� /c, and H is the transparent-film
thickness. The electric fields in air and inside are assumed to
be of the form Eair,k

± ej��t�kairx3� and EF,k
± ej��t�kFx3�. A straight-

forward division of Eq. �92� by Eq. �93� gives

e−2jkairH + rkk
o

e−2jkairH − rkk
o =

1 + rkke
−2jkFH

nF�1 − rkke
−2jkFH�

, �94�

and we obtain

rkk
o =

rkke
−2jkFH�1 + nF� + 1 − nF

rkke
−2jkFH�1 − nF� + 1 + nF

e2jkairH. �95�

The phase term e−2jkFH expresses the interferometric process
that occurs with the superposition of the electric fields re-
flected form the two air/transparent-film and transparent-
film/opaque-crystal interfaces.

The reflectivity technique that has been experimentally
carried out is sensitive to the differential modification of the
light reflectivity coefficient that satisfies

�Rk = d��rkk,0
o �2� , �96�

where rkk,0
o is the reflection coefficient without acoustic per-

turbation, transposed from Eq. �95� by changing rkk into rkk,0
of Eq. �91b�. The following analytical treatment consists in
calculating the modulus of Eq. �95� and its derivative. The
modulus of Eq. �95� satisfies

�rkk,0
o �2 =

�rkk,0�2�1 + nF�2 + �1 − nF�2 + 2�1 − nF
2�Re�rkk,0e−2jkiH�

�rkk,0�2�1 − nF�2 + �1 + nF�2 + 2�1 − nF
2�Re�rkk,0e−2jkiH�

. �97�

Afterward, the differentiation of Eq. �97� yields

�Rk =
32nF	�1 + nF

2� + �1 − nF
2�Re�rkk,0e−2jkiH�
Re�rkk,0rkk,1

* �
��rkk,0�2�1 − nF�2 + �1 + nF�2 + 2�1 − nF

2�Re�rkk,0e−2jkiH��2 +
8nF�1 − nF

2��1 − �rkk,0
o �2�Re�rkk,1e−2jkiH�

��rkk,0�2�1 − nF�2 + �1 + nF�2 + 2�1 − nF
2�Re�rkk,0e−2jkiH��2

+
8nF�1 − nF

2��1 − �rkk,0
o �2�Im�rkk,0e−2jkiH�d�2kiH�

��rkk,0�2�1 − nF�2 + �1 + nF�2 + 2�1 − nF
2�Re�rkk,0e−2jkiH��2 . �98�
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We recall that the differential reflectivity �Rk is expressed
here for an arbitrary electric-field polarization k. For the gen-
eral case, the differential reflectivity would be a linear com-
bination of the contributions of both cross-polarized scat-

tered electric field E1
� �i.e., k=1� and E2

� �i.e., k=2� such as
�R=�R1+�R2. The term rkk,1�x3 , t� characterizes the contri-
bution of the photoelastic coupling �see Eqs. �78� and �90��,
which appears in the first two terms of Eq. �98�. The last
term of Eq. �98� characterizes the contribution of interfero-
metric sensitivity; a slight modification of the film thickness
H, caused by an acoustical displacement of x3 polarization,
induces a modification of the optical path that in turn modi-
fies the optical interference. Actually, the whole Eq. �98�
underscores that by choosing the film thickness H, the detec-
tion of photoelastic perturbations could be enhanced at the
same time as the interferometric contribution is canceled
�when the term Im�rkk,0e−2jkiH� is canceled, the photoelastic
term Re�rkk,0e−2jkiH� of Eq. �98� is enhanced�. In the follow-
ing, we will neglect the interferometric sensitivity contribu-
tion that has been removed on purpose by a proper choice of
the film thickness H.

E. Analytical synthesis of the reflectivity variation

The aim of this section is to link the theory of thermoelas-
tic generation to the theory of photoelastic detection. In other
words, we will describe a means of getting the general ana-
lytical reflectivity variation �R that takes into account the
formulation of the thermoelastically induced acoustic strains.

As soon as the parameters rkk,1 that involve the photoelas-
tic coupling through the Dk coefficients are expressed, the
difference in reflectivity �R that gives the trace of the strain
acoustic wave can be numerically evaluated �the optical pa-
rameters ni, nk are known, hence rkk,0 is easily evaluated as
well�. In fact, the task consists in getting the general Dk
terms that follow the strain acoustic field. Because each of
the incident strains that penetrate the crystal, either longitu-
dinal S33� or shear S32� , is decomposed into two strain compo-
nents of the QL and QS modes, it is necessary to evaluate the
amplitudes of these corresponding modes. Each of these
strains matches the incident strain waves that satisfies, in the
coordinate axes of the crystal,

S3i� �x3,t� = − � F

	cp
�vm

vi�
�ime−vm�t−x3/vi��. �99�

We recall that the existence �absence� of the prime index
denotes the isotropic film �anisotropic substrate�. The nega-
tive sign comes from the total acoustic reflection at the film/
air interface. The �−1�i+1 coefficients disappear from Eq. �37�
because x3� has been replaced by x3. The QL and QS strains
launched in the crystal are proportional to the following
strains S3i

q , transposed from Eq. �99� when vi� is replaced by
vq:

S3i
q �x3,t� = − � F

	cp
�vm

vi�
�ime−vm�t−x3/vq�, �100�

where q denotes the QL mode for q=3 and the QS mode for
q=2. Moreover, the amount of the QL and QS strains effec-

tively transmitted through the interface is weighted by the
acoustic transmission coefficients that carefully distinguish
each of the components S33

q and S32
q contributions to the

strain. Moreover, the evaluation of the strain S3i
q at the 3m

coordinate, obtained from the 3i incident strain component
and for the q quasimode, written in the form

S3m,q
3i = T3m,q

3i S3i
q , �101�

involves the coefficients T3m,q
3i that are the acoustic transmis-

sion coefficients of the 3m strain components; the superscript
3i of S3m,q

3i denotes the acoustic polarization of the incident
wave �i.e., from the film F� and the q coefficient the polar-
ization of the induced quasimode. The technique of calcula-
tion of the acoustic transmission coefficients T3m,q

3i of the 3m
strain component, inspired by the academic theory of acous-
tic transmission at the interface of two solids, is described in
Ref. 37. We obtain

T33,3
33 = − �v3�

v3
�sin 

2z3��z2� + z2�cos 

d
,

T33,2
33 = �v3�

v2
�cos 

− 2z3��z2� + z3�sin 

d
,

T32,3
33 = �v3�

v3
�cos 

2z3��z2� + z2�cos 

d
,

T32,2
33 = �v3�

v2
�sin 

− 2z3��z2� + z3�sin 

d
,

T33,3
32 = − �v2�

v3
�sin 

− 2z3��z2� + z3�sin 

d
,

T33,2
32 = �v2�

v2
�cos 

− 2z3��z2� + z3�sin 

d
,

T32,3
32 = �v2�

v3
�cos 

− 2z3��z2� + z3�sin 

d
,

T32,2
32 = �v2�

v2
�sin 

− 2z3��z2� + z3�sin 

d
, �102�

where the denominator d is

d = �z3� + z3��z2� + z2� + sin2 �z3� + z2���z2 − z3� ,

z3�, z2�, z3, and z2 are the acoustic impedances of the L, S, QL,
and QS modes, respectively, and  is the angle between the
QL polarization and the x3 axis. Given the induced strain
S3m,q

3i , we deduce the following Dk term, according to Eq.
�78�:

Dk
3i =

�2

c2

�NIJ�k,3m

2j��nk/c��+�

0

S3m,q
3i e−2j��nk/c�x3dx3, �103�

where the superscript 3i has been introduced to denote the
polarization of the incident strain S3i� . The coefficients
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�NIJ�k,3m can be estimated from Eqs. �63� and �64�. This ex-
pression for Dk is given for a probe polarized along x1
�k=1� or along x2 �k=2�; for intermediate directions, the
general reflected light �R will be due to a linear superposi-
tion of the two orthogonally polarized polarization of the
probes, namely, �R�D1

3i� and �R�D2
3i�.

This last expression �103� finalizes the task of linking
both theories.

V. DISCUSSION

Thanks to the picture of both the thermoelastic generation
process and the reflectivity detection process provided by the
theoretical analyses of Secs. III and IV, we are able to per-
form full numerical simulations of the transient reflectivity
measurements. The unknowns are the photoelastic coeffi-
cients pij of the Zn hexagonal crystal. With a single set
of the following six photoelastic coefficients, p11=−5p13,
p33=−97p13, p44=−9p13, p12=41p13, p31=8p13, where p13 is
a negative imaginary number �as in the case of an ideal
metal�, a mean-square procedure results in a satisfactory
simulation of the transient reflectivity signals as a function of
the probe polarization or as a function of the Zn crystal tilt
angle �. Figure 8 shows a simulation of the transient reflec-
tivity of the signal presented in Fig. 4, for a fixed angle � of
36° and for several angles � of probe polarization �when
�=0°, the polarization is in the +x2 direction of the crystal,
and when �=180°, the probe polarization is in the −x2 di-
rection�. The numerical values of the acoustic reflective co-
efficients, detailed in Ref. 37, are RLL�−0.2, RSS�−0.08,
RLS�−0.45, and RSL�−0.03. From the numerical values of
RLS and RSL, the 2L-2S/2S-2L echo appears to be almost
94% of shear polarization nature.

Concretely, it can be mentioned that such a tilt configura-
tion expands the possibilities of picosecond acoustics by pro-

viding a different means of measuring the photoelastic coef-
ficients of the metallic substrate under consideration, in
conjunction with the theory detailed in the present paper. In
fact, the full set of Zn photoelastic coefficients �normalized
to p13 in our case� is deduced from a single experiment,
whereas just one photoelastic coefficient is accessible from a
typical picosecond acoustic sample configuration.

Our numerical calculations attest that the theory can pro-
vide a complete picture of the recorded signals, in particular,
concerning the shape of the recorded 2L and 2S echoes that
appear to be extremely sensitive to the direction of the
probe’s polarization. For a qualitative interpretation of the
drastic polarization dependence �see Figs. 4 and 8�, the
change in reflectivity �R can be presented in the following
contracted form, following Eq. �103�:

�Rk
3i � �

0

�

f3m,k�x3�S3m,q
3i dx3. �104�

Here, f3m,k�x3� is the normalized sensitivity distribution func-
tion as a function of the direction of probe’s polarization,
given by the k index �k=1, ordinary; k=2, extraordinary�,
and on the acoustic polarization of the strain S3m,q

3i , given by
the 3m index. The q index, which indicates the nature of the
quasimode, results in an implicit summation of the strain
S3m,q

3i , that can be expanded in the following way:

S3m,q
3i = T3m,2

3i S3i
2 + T3m,3

3i S3i
3 � T3m,2

3i S3i� �t − x3/v2�

+ T3m,3
3i S3i� �t − x3/v3� , �105�

where

S3i� ��� = − � F

	cp
�vm

vi�
�ime−vm��� �106�

is the mathematical strain function of the � variable that
comes from Eq. �99�. Approximating the sensitivity function
f3m,k�x3� beneath the surface of the metallic substrate as a
Dirac delta, Eq. �105� leads to

�Rk
3i � S3i� �0,t��T3m,2

3i + T3m,3
3i ��

0

�

f3m,k�x3�dx3 −
�S3i�

�t
�0,t�

��T3m,2
3i

v2
+

T3m,3
3i

v3
��

0

�

x3f3m,k�x3�dx3. �107�

This truncated Taylor expansion is based on a smallness of
the light penetration length le relative to the length la of the
detected acoustic strain. The contribution ��S3i� /�t can be
estimated to be la / le�1 times smaller than of �S3i� �t�. How-
ever, owing to the asynchrony of the acoustic eigenmodes
�v3�v2�, the two coefficients in the square brackets in Eq.
�107� are different, and it can happen that, for a particular
polarization of the probe that significantly reduces the mag-
nitude of the first term, the second term is not necessarily
reduced, and the signal proportional to the strain rate
�S3i� �t� /�t can dominate. This is exactly the qualitative reason
for the differentiation of the signal profile in a transition from
extraordinary to ordinary light probe for the 2L echoes
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FIG. 8. �Color online� Full numerical simulations of the reflec-
tivity measurements shown in Fig. 4. The photoelastic coefficients
that match our experimental observations are p12=41p13, p31

=8p13, p11=−5p13, p33=−97p13, and p44=−9p13, where p13 is a
negative imaginary number. The thermal contribution was taken
into account by an exponential background.
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reported in Fig. 4 and numerically reproduced in Fig. 8. In
fact, the sensitivity to the strain rate acoustic field, that has
been observed for an ordinary probe polarization �i.e., x1
direction�, is another mark of the asynchrony of propagation
of the quasimodes QL and QS.

A remarkable feature of the dependence on probe polar-
ization direction is the coincidence of the signals for �=0°
and �=180°, that is equivalent either to rotation of the crys-
tal by 180° or to transformation of the tilted angle from � to
−�. This coincidence highlights that the reflectivity measure-
ment is actually symmetric with respect to a � rotation of the
crystal or an inversion of the tilted angle �. To theoretically
investigate this property, we return to the analysis of the
scattering phenomena of the electric field by the acoustic
strain field, that is governed by the following coefficients
�see Eqs. �61a� and �62a��:

�1 = −
�2

c2 ��11, �108�

�2 = −
�2

c2 ���22 − 2��23/�33���23 + ��23/�33�2��33� .

�109�

Using the expression of the perturbated dielectric tensor
given in Eq. �57�, it is easy to show that a transformation of
� into −� introduces a change of sign into the pertinent com-
ponents of the extended photoelastic tensor �NIJ� as follows:

�NIJ�L1,C3
��� = �NIJ�L1,C3

�− �� ,

�NIJ�L1,C4
��� = − �NIJ�L1,C3

�− �� ,

�NIJ�L2,C3
��� = �NIJ�L2,C3

�− �� ,

�NIJ�L2,C4
��� = − �NIJ�L2,C4

�− �� ,

�NIJ�L3,C3
��� = �NIJ�L3,C3

�− �� ,

�NIJ�L3,C4
��� = − �NIJ�L3,C4

�− �� ,

�NIJ�L4,C3
��� = − �NIJ�L4,C3

�− �� ,

�NIJ�L4,C4
��� = − �NIJ�L4,C4

�− �� . �110�

For clarity, the components of the photoelastic tensor �NIJ�
are labeled according to the index of the line LI and to that of
the column CJ. Taking into account that the transformation of
� into −� affects the sign of the shear S23�S4 and longitu-
dinal S33�S3 strains according to

S4��� = − S4�− �� ,

S3��� = S3�− �� , �111�

the transformations of the perturbated dielectric tensor are
predicted to be

��11��� = ��11�− �� ,

��22��� = ��22�− �� , �112�

��33��� = ��33�− �� ,

��23��� = − ��23�− �� . �113�

Since

�23���
�33���

= −
�23�− ��
�33�− ��

, �114�

we obtain the following important results:

�1�− �� = −
�2

c2 ��11��� = �1��� , �115�

�2�− �� = −
�2

c2 	��22��� − 2��23���/�33������23���

+ ��23���/�33����2��33���
 = �2��� . �116�

As a consequence, the probe light is scattered in the same
way when the crystal disorientation is changed from � to −�,
which is equivalent to a � rotation of the crystal. In other
words, the reflectivity measurement is not sensitive to the
sign of the tilt angle � �i.e., � or −� is the same�.

Important practical application of this finding is the pos-
sibility of generating and detecting picosecond shear strain
pulses by the use of polycrystalline samples, whose crystal-
lites are naturally randomly oriented. Thus, even if the aver-
age shear strain over the whole assembly of the crystallites
involved is almost zero due to the random orientation and/or
disorientation of the grains �mathematically speaking
�S4�����0�, it is not so for the average shear strain reflec-
tivity signal which integrates all the individual reflectivity
signals of the crystallites without cancellation �mathemati-
cally speaking ��R�����0�. There is no cancellation of the
total shear strain scattered electric field if the generation and
the detection of the acoustic waves both take place locally in
the same crystallite. These theoretical arguments explain the
possibility of using polycrystalline materials for the genera-
tion and detection of shear picosecond strains, and have been
successfully experimentally confirmed �see Fig. 9�. The use
of a Zn polycrystalline substrate, mechanically polished and
layered by a ZnO transparent layer, demonstrates an almost
equivalent efficiency of generation and detection of shear
strain pulses as for Zn single crystals. By comparison of the
size of the laser spots �diameter �40 
m� with the size of
the grains, it appears that each recorded picosecond transient
reflectivity signal averages over tens of grains �see Fig. 10�.
Since the picosecond acoustic contribution of the ��0°
grains is much smaller �see the inset of Fig. 3� compared to
other favorable grain orientations that permit shear wave
generation, the shear acoustic pulses are systematically de-
tected. In addition, the modification of the shape of the re-
corded longitudinal pulses of Fig. 9 is understood within the
framework of the probe’s polarization dependence described
above; this tells about the average angle of orientation ������
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of the local crystallites, as long as the acoustic diffraction
length is larger than the acoustic wave propagation length.

VI. CONCLUSION

In summary, we have reported essential features of the
generation and detection of plane hypersound pulses in
single-crystal and polycrystalline samples. The detection of
these pulses takes place in the crystals and proved to be
sensitive to the probe linear polarization orientation. These
results are promising not only for the realistic routine use of
picosecond shear pulses to the noncontact evaluation of thin
films but also in the field of ultrafast tribology. Indeed, the
ability to excite and detect shear picosecond collimated
acoustic beams and multibeams is not only of fundamental
interest but is also a considerable step toward the practical
implementation of purely optical methods in ultrafast spec-
troscopy of solids, liquids, and interfaces. The liquid film for

testing could be deposited directly on the metallic generator
and/or detector of shear hypersound or on a dielectric trans-
parent film covering it; this dielectric film may serve as an
acoustic delay line as well as an acoustic impedance match-
ing medium.38 For example, one of the challenging problems
would be the study of ultrafast relaxation mechanisms of
ions in liquids, which are still debated. The brief character-
istic times of short-range reorganization in liquids or melted
crystals are indeed investigated through inelastic x-ray
scattering.39 Therefore, probing viscoelastic properties of liq-
uids with very high frequency shear waves could obviously
provide different insights on the ultrafast relaxation pro-
cesses. Moreover, laser ultrasonics is well adapted for prob-
ing surface, interface, or confined volumes where liquids can
also exhibit a departure from bulklike behavior, as shown
recently.40
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