Crystal field analysis and emission cross sections of Ho^{3+} in the locally disordered single-crystal laser hosts $M^+\text{Bi}(XO_4)_2$ ($M^+=\text{Li},\text{Na}; X=W,\text{Mo}$)

A. Méndez-Blas,* M. Rico, V. Volkov, C. Zaldo, and C. Cascales[†]

Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain (Received 15 November 2006; revised manuscript received 16 April 2007; published 24 May 2007)

The spectroscopic properties of Ho³⁺ laser channels in locally disordered tetragonal NaBi(WO₄)₂ (NaBiW), NaBi(MoO₄)₂ (NaBiMo), and LiBi(MoO₄)₂ (LiBiMo) single crystals grown by the Czochralski method have been studied in the 5–300-K temperature range using several holmium concentrations [Ho] $\approx 0.05-0.6 \times 10^{20}$ cm⁻³. Here 5-K polarized optical absorption and photoluminescence measurements have been used to determine the energy position of 85, 56, and 39 Ho³⁺ Stark levels in NaBiW, NaBiMo, and LiBiMo crystals, respectively. These energy levels were labeled with irreducible representations corresponding to the *S*₄ local symmetry of an average optical center. Single-electron Hamiltonians combining together free-ion and crystal-field interactions have been used in the fit of experimental energy levels and in the simulation of the corresponding 4*f*¹⁰ Ho³⁺ configuration for NaBiW and NaBiMo crystals. Very satisfactory correlations were obtained between experimental and calculated crystal-field levels, with rms deviations σ =8.8 and 7.3 cm⁻¹ for NaBiW and NaBiMo, respectively. The radiative properties and emission cross sections of Ho³⁺ laser channels in these hosts were calculated by the Judd-Ofelt theory and compared with experimental results. The emission cross sections of Ho³⁺ in NaBiW are similar to those observed in other crystal laser hosts, and positive gain cross sections can be achieved in extended spectral ranges. These properties make the Ho³⁺-doped double tungstates and double molybdates feasible materials for tunable and short-pulse laser operation.

DOI: 10.1103/PhysRevB.75.174208

PACS number(s): 61.43.-j, 78.20.-e, 78.55.-m, 42.55.Rz

I. INTRODUCTION

Disordered crystals with inhomogeously broadened optical bands are presently being searched for in the context of ultrafast (femtosecond) laser systems.¹ Tetragonal double tungstate (DT) and double molybdate (DMo) single crystals with general formula $MT(XO_4)_2$ (M=monovalent, T =trivalent, and $X = W^{6+}$ or Mo⁶⁺ ions) are a class of locally disordered compounds related to the CaWO₄ scheelite type. For brevity we shall refer to each particular DT or DMo compound as MTX. The substitution of two Ca^{2+} ions by an M^+T^{3+} pair gives rise to a large number of compounds, some of them exhibiting polymorphism; therefore, different crystallographic structures (triclinic, monoclinic, orthorhombic, etc.) can be selected.² LiLaW,³ LiTMo (T=Bi, 4Y, 5La, 5)Ce-Lu⁵), NaTW (T=Bi,⁴ Y,⁶ La,⁶ Nd-Er⁶), NaTMo (T=Bi,⁴ Y,⁷ La,⁸ Gd⁸), KLaMo,⁹ and AgLaW,¹⁰ compounds have congruent melt, and the tetragonal crystallographic phase is stable upon cooling from their congruent melting points to room temperature. Single crystals of these compounds can be grown in air by the Czochralski method, with high growth rates (typically 1 mm/h) and a relatively low crystal cost, which ease their applications.

The most common trivalent lanthanide Ln^{3+} ions of interest for laser operation are $Ln^{3+}=Pr$, Nd, Ho, Er, Tm, and Yb. The *f* electrons of Yb³⁺ and Tm³⁺ experience a stronger interaction with the vibrational lattice environment, and therefore these ions are well suited for tuning and mode-locked laser operation even in ordered crystals. The broad bandwidths are also useful for pumping with commercial (nonwavelength-matched) semiconductor diodes without thermal stabilization, leading to low-cost systems. Another outstanding application already demonstrated in some DT and DMo crystals is solid-state stimulated Raman laser shifting (SRS).¹¹ Tetragonal DT and DMo crystals have larger Raman bandwidths [full width at half maximum (FWHM) $\approx 15 \text{ cm}^{-1}$] than the ordered phases of DT and DMo compounds, like monoclinic KY(WO₄)₂ (FWHM $\approx 5 \text{ cm}^{-1}$), leading thus to operation in shorter SRS picosecond regimes.¹² When the other Ln³⁺ (Pr-Er) are considered, the above applications require spectral inhomogeneous broadening. In tetragonal DT and DMo the spectral broadening derives from two features of the crystal host: the overlapping Ln³⁺ contributions arising from two shared crystal sites 2*b* and 2*d* and the broadening associated to structural disorder that is, the optical centers resulting from different shortrange *M* and *T* distributions around each one of the two above Ln³⁺ lattice sites.

Laser tunability and mode-locked operation have been recently achieved by using Yb³⁺- and Tm³⁺-doped tetragonal DT and DMo hosts: for Yb³⁺ a continuous tuning range up to 65 nm has been reached around 1.05 μ m,¹³ and 212 nm around 1.93 μ m has been also realized with Tm³⁺.¹⁴ The tuning ranges so far demonstrated were limited by the spectral responses of the optical cavity elements (mirrors and birrefringent filter), and then even broader tuning ranges are expected. The estimated full tuning range can be used in mode-locked operation to produce <50-fs laser pulses. First steps in this direction have already shown pulses of 120 fs in Yb-doped NaGdW¹³ and 90 fs in Yb-doped NaLuW.¹⁵ To achieve similar results for other laser-active Ln³⁺ (Pr-Er) in DT and DMo still remains a challenging task. Knowledge of the spectroscopic ion properties is required to evaluate this possibility.

NaBi(WO₄)₂ (NaBiW), NaBi(MoO₄)₂ (NaBiMo), and LiBi(MoO₄)₂ (LiBiMo) single crystals have a locally disordered tetragonal crystallographic structure with space group (SG) $I\bar{4}$.¹⁶ Laser operation of Ln³⁺ in NaBiW, and NaBiMo

was first shown using Nd³⁺.¹⁷ In the present work we study Ho³⁺ in NaBiW, NaBiMo, and LiBiMo as a potential laser ion for the visible and midinfrared regions.¹⁸ Although Ho³⁺ lacks a strong absorption for diode pumping at $\lambda = 800-1000$ nm, it can be sensitized in this region by Tm³⁺ and Yb³⁺ codoping¹⁹ or pumped directly with the $\lambda \approx 1.9 \ \mu$ m emissions of GaInAsSb/AlGaAsSb quantum-well diodes and Tm lasers using a pumping cascade scheme. Therefore, Ho³⁺ remains of wide interest in present laser technology.²⁰

Using low-temperature (5 K) polarized spectroscopic techniques and crystal field modeling we have determined the Ho³⁺ Stark energy levels from ⁵*I*₈ up to ³*H*₆ (for NaBiW) or ⁵*G*₅ (for NaBiMo and LiBiMo) manifolds, which have been labeled with the adequate irreducible representation (IR) for the current *S*₄ local symmetry, and the large bandwidth of the spectral bands has been confirmed. Radiative and nonradiative processes of these Ho³⁺ materials have been studied in detail to evaluate the application as solid-state laser systems.

II. GROWTH PROCEDURES AND CRYSTAL STRUCTURE

The Czochralski crystal growth procedures of NaBiW, NaBiMo, and LiBiMo have been described previously.^{4,16} Ho-doped single crystals with optical quality were obtained reacting the host compounds with 99.9% Ho₂O₃ from CERAC Inc. during ~100 h at 1133 K for tungstates and 1058 K for molybdates. The products were melted in Pt crucibles, and crystals were pulled at the following rates: 0.8–4 mm/h for NaBiW, 1.3–2.3 mm/h for NaBiMo, and 1.7–1.9 mm/h for LiBiMo.

The Ho concentration in the crystal [Ho]_{crys} was determined by proton-induced x-ray emission (PIXE) spectroscopy using for each host samples of the highest Ho concentration available. For this purpose we used $L_{\alpha 1.\alpha 2}$ holmium x-ray emission at about 6.719 keV, which was free of interference with x-ray emissions from other crystal constituents. Samples were irradiated in vacuum with 2.0-MeV protons supplied by a 2.5-MV Van de Graaff accelerator. The proton beam was collimated down to 1.5 mm in diameter, and beam currents close to 3 nA were used. A 165-eV-resolution Si(Li) detector was placed at 110° relative to the proton beam direction, and the face of the sample was tilted to an angle of 15° with the incident beam. Spectra analyses were performed by the AXIL-PC V3.1 computer code. Quantitative analysis was carried out through the DATTPIXE program, which accounts for proton energy loss.²¹

The Ho content for lower concentrations was determined by comparison of the optical absorption (OA) intensities. Table I summarizes the results obtained. It is worth noting that the segregation coefficient $S=[Ho]_{crys}/[Ho]_{melt}$ of holmium in Bi-based DT and DMo is larger than 1, in agreement with previous results of other lanthanides.⁴

In the noncentrosymmetric tetragonal SG *I*4 (No. 82), Z=2, Li⁺/Na⁺ and Bi³⁺ cations share two nonequivalent lattice sites 2*d* and 2*b*, both with S_4 local symmetry and the same high-symmetry axis parallel to the crystal *c* axis, but with different occupancy factors: namely, 63(60)% Bi

TABLE I. Holmium concentration in NaBiW, NaBiMo, and LiBiMo crystals used in this work. The Ho concentration in low-doped samples was deduced from a comparison of the Ho³⁺ optical absorption (OA) taken as reference the PIXE results.

	[Ho] _{melt} [mol %]	[Ho] _{crys} [mol %]	[Ho] _{cyrs} [10 ²⁰ cm ⁻³]
NaBiW	0.02	0.11	0.07 OA
	0.31	0.56	0.35 PIXE
NaBiMo	0.02	0.10	0.06 OA
	0.10	0.48	0.30 OA
	0.33	1.09	0.68 PIXE
LiBiMo	0.02	0.08	0.05 OA
	0.10	0.31	0.20 OA
	0.32	0.64	0.41 PIXE

+37(40) % Na and 46(40) % Bi+54(60) % Na for 2*d* and 2*b* sites, respectively, in NaBiW,^{16,22} 45 % Bi+55 % Na and 53 % Bi+47 % Na in NaBiMo,¹⁶ or 0.52 % Bi+0.48 % Li and 0.51 % Bi+0.49 % Na in LiBiMo, for 2*d* and 2*b* sites,¹⁶ respectively. In these crystals as well as in other isostructural DT and DMo, detailed crystallographic analyses have shown that Ln^{3+} active ions replace $Bi^{3+}(T^{3+})$ in both sites: Er^{3+} in NaBiW, NaBiMo, and LiBiMo,¹⁶ Yb³⁺ in NaGdW,¹³ and Yb³⁺ in LiGdMo.²³

III. EXPERIMENTAL TECHNIQUES

Ground-state optical absorption (GSA) was recorded in a Varian spectrophotometer model CARY-5E. Photoluminescence (PL) was excited with a cw Ar⁺ laser or with Rhodamine R-6G ($\lambda \approx 591$ nm) and Coumarin-480 (λ \approx 485 nm) emissions of a dye laser (LSI, model DUO-220). The holmium emission was dispersed with a SPEX 340E spectrometer using 1200- or 600-1/mm gratings. The light was detected with a water-cooled R2658 Hamamatsu InGaAs photomultiplier ($\lambda = 0.0185 - 0.1030 \ \mu m$) and a 77-K-cooled Ge photodiode ($\lambda = 0.8 - 1.7 \mu m$). PL emissions were corrected by the spectral response of the equipment, which was previously determined using a calibrated W lamp standard. The intensity of the ${}^{5}F_{5} \rightarrow {}^{5}I_{7}$ and ${}^{5}S_{2} \rightarrow {}^{5}I_{6}$ transitions has been used to relate the spectral responses of the photomultiplier and Ge photodiode. To record the PL spectral distributions we used a lock-in amplifier. Lifetime measurements were excited with the dye laser described above. Coumarine 440 (or 540A) and Rhodamine 6G dyes were used for excitation of the ${}^{4}S_{2}$ and ${}^{5}F_{5}$ holmium levels, respectively. The laser pulse width has FWHM \approx 3 ns. The nominal spectral bandwidth is ≈ 0.3 nm, but in practice the wavelength accuracy is limited to ± 1 nm by the mechanics of the tuning system. The pulsed detector signal outputs were monitored with a 500-MHz Tektronix TDS520 digital oscilloscope. In the spectroscopic experiments the sample temperature was selected in the 5-300-K temperature range by using a He closed-cycle cryostat connected to a suitable temperature controller.

FIG. 1. Comparison of the 5-K (solid line) and 75-K (dashed line) selected optical absorption of Ho³⁺ in NaBiW. [Ho]=0.35 $\times 10^{20}$ cm⁻³. π spectra are arbitrarily displaced in the y axis for clarity.

IV. Ho³⁺ ENERGY LEVELS

A. Low-temperature ground-state absorption and photoluminescence

Ho³⁺ energy-level positions were investigated by lowtemperature optical absorption and photoluminescence measurements. The large degeneracy of the ground ${}^{5}I_{8}$ multiplet of the $4f^{10}$ configuration of Ho³⁺, 13 Stark energy levels in the current S_4 symmetry, hampers this task. Usually ${}^{5}I_8(1)$ and ${}^{5}I_8(2)$, and sometimes even ${}^{5}I_8(3)$, excited Stark levels are only few cm⁻¹ above the ground ${}^{5}I_8(0)$ (Ref. 18) level, and therefore they can be electronically populated even at 5 K, giving rise to *hot* bands, ${}^{5}I_8(n \ge 1) \rightarrow {}^{2S+1}L_J$, merged together with those corresponding to true ground-state transitions, ${}^{5}I_8(0) \rightarrow {}^{2S+1}L_J$. Measurements at very low temperatures ≈ 1.4 K can be thus required to fully depopulate the excited ${}^{5}I_8(n \ge 1)$ Stark levels.

To overcome this uncertainty, we have measured the optical absorption of several excited multiplets at different temperatures in the 5–75-K range. Figure 1 shows a representative example of the OA thermal evolution. It is worth noting that while the intensity of some bands in a given polarization decreases with increasing temperature, some new bands may appear in the alternative polarization but shifted to low energy. This behavior will be explained later in the framework of the transition polarization rules expected for the S_4 point symmetry. At this point we just want to note that from the systematic analysis of the energy position of the bands whose observation has been induced by raising the sample temperature we determine ${}^{5}I_8(n \ge 1)$ levels at 11, 29, and 51 cm⁻¹ for Ho³⁺ in NaBiW. Similar results were achieved for Ho³⁺ in NaBiMo and LiBiMo; see Table II.

The energy positions of the ${}^{5}I_{8}(n)$ Stark levels have been further assessed by low-temperature PL to the ground ${}^{5}I_{8}$ multiplet. Figure 2 shows a comparison of the ${}^{5}S_{2} \rightarrow$, ${}^{5}F_{5} \rightarrow$, and ${}^{5}I_{6} \rightarrow {}^{5}I_{8}(n)$ emissions of Ho-doped NaBiMo taken as an example. Results for Ho-doped NaBiW were very similar, and they are not shown for the sake of brevity, while the bands observed in Ho³⁺-doped LiBiMo have lower resolution due to the broader bands observed and therefore led to a lower number of experimentally determined ${}^{5}I_{8}$ Stark levels [see Fig. 2(c) and Table II].

For two (${}^{5}F_{5}$ and ${}^{5}I_{6}$) of the Ho³⁺-emitting multiplets in NaBiMo the PL shows a first set of four overlapped bands (0, 22, 49, and 72 cm⁻¹) followed by an energy gap, an isolated band (179 cm⁻¹), and finally two overlapped bands (233, 260 cm⁻¹). The photoluminescence from the ${}^{5}S_{2}$ multiplet is slightly different in terms of the relative intensity of the last three bands. This suggests that the ground ${}^{5}S_{2}(0)$ Stark level belongs to a different IR than those of ${}^{5}F_{5}(0)$ and ${}^{5}I_{6}(0)$.

Taking into account the possible hot OA bands, the relative Ho³⁺ energy-level positions in the considered Bi-based DT and DMo have been investigated by 5-K-polarized OA. The wider range of ultraviolet transparency of NaBiW allows identifying electronic transitions to multiplets up to 28 000 cm⁻¹ above the ground ${}^{5}I_{8}$ multiplet—i.e., up to ${}^{3}H_{4}$ —with only the exception of ${}^{5}I_{4}$. In NaBiMo and LiBiMo hosts the Ho³⁺ spectra are limited by the UV band edge at ~24 000 cm⁻¹—i.e., up to ${}^{5}G_{5}$ or a lower-energy multiplet. Moreover, the Ho3+ spectra in LiBiMo are less resolved as a consequence of the presence of broader bands, hampering the correct identification of hot bands, and therefore a lower number of Stark levels was determined and the polarization assignment is more uncertain. Apart from these facts the results are basically similar in the three matrices. For the sake of brevity we present in Fig. 3 only the results concerning to Ho³⁺-doped NaBiW crystal and Table II includes the energy levels obtained for each of the three crystals. It is worth remarking that the π (**E**||*c* and **B** \perp *c*) spectra are clearly different from the σ (**E** \perp *c* and **B** \parallel *c*) and α (**E** \perp *c* and $\mathbf{B} \perp c$) spectra; **E** and **B** are the electromagnetic fields and c the crystal axis. The two latter spectra are very similar between them, as expected from induced electric-dipole (ED) transitions for the S_4 point symmetry discussed later.

The OA results achieved at 5 K and displayed in Figs. 1–3 do not show any resolved contribution from the two possible lattice sites or multiple host environments for Ho. Further measurements made at 1.2 K on selected multiplets showed bandwidths similar to those obtained at 5 K, and no new band structure was found. Therefore, the present energy-level sets must be understood, in each case, as corresponding to an average Ho center including the nonresolved contributions of different Ho sites and environments.

B. Crystal-field analysis and simulation of $4f^{10}$ energy levels

Although for Ln^{3+} ions with large ionic radii, like Nd and Pr, the C_2 local symmetry was required to adequately describe the $4f^{\text{N}}$ energy sequences and polarization behavior of transitions observed in NaBiW, NaBiMo, and LiBiMo crystals,^{24,25} the first option for a similar analysis of Ho³⁺ spectral properties must be the S_4 symmetry of *T* sites in the host. In fact the latter symmetry described successfully the spectroscopic properties of Er^{3+} (with ionic radii close to Ho³⁺) in the same hosts.²⁶ In the current analysis the free-ion (FI) and crystal-field (CF) interactions have been simulta-

		Nal	BiW	NaE	BiMo	LiBiMo			Nal	BiW	NaB	iMo	LiBiMo			Nal	BiW	Nal	BiMo	LiBiMo
$^{2S+1}L_J$	IR	Eo	E_c	Eo	E_c	– E _o	$^{2S+1}L_J$	IR	Eo	E_c	Eo	E _c	Eo	${}^{2S+1}L_J$	IR	Eo	E_c	Eo	E_c	Eo
${}^{5}I_{o}$	Γ _{3.4}	0	3	0	1	0	${}^{5}F_{5}$	Γ_2	15416	15411	15404	15397	15398		Γ _{3.4}	22247	22230	22215	22205	
8	Γ_2	11	10	9	9		5	$\Gamma_{3,4}$		15416		15402			Γ_1		22238	22228	22214	
	Γ_2	29	28	22	18			Γ_1	15441	15432	15426	15418	15508		Γ_2	22252	22246		22215	22221
	Γ_1	51	52	45	43	55		Γ_1	15480	15475	15469	15462	15463							
	Γ_1		61		52			$\Gamma_{3,4}$	15530	15542	15514	15523		${}^{5}F_{1}$	Γ_1		22281	22261	22253	22277
	$\Gamma_{3,4}$	79	76	72	64			Γ_2	15548	15552		15531	15528		$\Gamma_{3,4}$	22323	22326	22308	22307	
	Γ_1		201	179	178	178		Γ_1		15561	15529	15542		_						
	$\Gamma_{3,4}$		254	233	234			$\Gamma_{3,4}$	15575	15580	15559	15563	15551	${}^{5}G_{5}$	Γ_1	23874	23876	23860	23848	23819
	Γ_1		260		243		-								$\Gamma_{3,4}$	23879	23883	23838	23855	23842
	Γ_2	266	262	260	262	252	${}^{5}S_{2}$	Γ_2		18410		18395			Γ_2		23905		23870	
	Γ_1		283		259			Γ_1	18414	18413	18404	18397	18400		Γ_2		23941		23907	
	$\Gamma_{3,4}$		289		272			$\Gamma_{3,4}$	18438	18440	18422	18422	18424		$\Gamma_{3,4}$		23944		23912	
	Γ_2		304		272			Γ_2	18449	18448		18430			Γ_1	23963	23960		23928	
e							F								$\Gamma_{3,4}$	23967	23975	23946	23946	23927
${}^{5}I_{7}$	Γ_2		5130		5125		${}^{5}F_{4}$	Γ_1		18525	18508	18512	18502		Γ_1	23998	23992		23957	23968
	$\Gamma_{3,4}$	5135	5135	5130	5130	5135		$\Gamma_{3,4}$	18519	18534		18513		F						
	Γ_2	5135	5138	5130	5131			Γ_2	18529	18526	18513	18519		${}^{3}G_{4}$	Γ_2		25725			
	Γ_1	5146	5144		5141			$\Gamma_{3,4}$	18600	18597	18579	18582	18571		Γ_1	25776	25770			
	$\Gamma_{3,4}$		5160		5150			Γ_1		18599		18589	18581		$\Gamma_{3,4}$	25779	25781			
	Γ_1		5182	5165	5174			Γ_2	18604	18614	18585	18594			Γ_1		25829			
	$\Gamma_{3,4}$	5205	5202	5193	5192	5188		Γ_1	18625	18625	18605	18608			$\Gamma_{3,4}$	25825	25836			
	Γ_2		5207	5201	5198		5	_							Γ_2	25850	25863			
	$\Gamma_{3,4}$	5264	5267	5255	5258		${}^{3}F_{3}$	$\Gamma_{3,4}$	20562	20550	20547	20538	20531		Γ_1	25914	25891			
	Γ_2	5265	5265	5255	5260	5258		Γ_1	20577	20571	20564	20556	20545	3	_					
	Γ_1		5268		5261			Γ_2	20621	20615	20606	20598	20605	${}^{3}K_{7}$	$\Gamma_{3,4}$		26125			
5 -								$\Gamma_{3,4}$	20672	20669	20655	20653	20637		Γ_2		26126			
J_6	Γ_1		8651		8651			Γ_2	20666	20668	20645	20653			Γ_1		26127			
	Γ_2	8656	8651		8651		5								Γ_2	26145	26143			
	$\Gamma_{3,4}$		8657		8654		${}^{J}F_{2}$	Γ_2		21043		21034			$\Gamma_{3,4}$	26151	26137			
	Γ_2	8665	8663		8657	0.650		Γ_1	21046	21046	21035	21035	21032		Γ_1		26166			
	Г _{3,4}	8667	8664	8662	8664	8659		Г _{3,4}	21085	21085	21073	21073	21058		Г _{3,4}		26172			
	Γ_1	0/77	8673		8670	0/7/		Γ_2	21137	21138	21120	21126	21114		Γ_1	0(170	26176			
	Γ_2	8677	8677		8673	8676	3	F	0100-		21225	2 121-			I _{3,4}	26179	26185			
	Γ_1		8752		8751		K_8	Γ_1	21327	21321	21321	21316			Γ_2	26180	26182			

TABLE II. Energy levels (in cm⁻¹) of Ho³⁺, observed at 5 K (E_o) and calculated (E_c) in S_4 symmetry for NiBiX, X=Mo or W, and LiBiMo crystals. IR indicates the corresponding irreducible representation, Γ_1 , Γ_2 (σ spectra) and $\Gamma_{3,4}$ (π spectra).

174208-4

PHYSICAL REVIEW B 75, 174208 (2007)

		Nal	BiW	NaB	ыMo	LiBiMo			Nal	BiW	NaE	BiMo	LiBiMo			Nal	BiW	Na	BiMo	LiB
$^{2S+1}L_J$	IR	Eo	E_c	Eo	E_c	Eo	$^{2S+1}L_J$	IR	Eo	E_c	Eo	$E_{\rm c}$	Eo	$^{2S+1}L_J$	IR	Eo	E_c	Eo	E_c	Ē
	$\Gamma_{3,4}$	8761	8763	8762	8759	8744		Γ_2	21327	21324	21321	21320	21318		Γ_2		26186			
	Γ_2		8773		8768			$\Gamma_{3,4}$	21331	21329	21323	21324								
								Γ_1		21338		21329		${}^{5}G_{5}$	Γ_2	27484	27495			
${}^{5}I_{5}$	$\Gamma_{3,4}$		11215		11208			$\Gamma_{3,4}$	21341	21340		21333			$\Gamma_{3,4}$	27507	27502			
	Γ_1		11217		11212			Γ_2		21340	21329	21330			Γ_1	27507	27516			
	$\Gamma_{3,4}$	11224	11220		11220			Γ_1		21362		21352			Γ_1	27583	27590			
	Γ_1		11224		11219			$\Gamma_{3,4}$	21400	21411	21390	21396			$\Gamma_{3,4}$	27585	27574			
	Γ_2		11226		11226			Γ_1		21412		21397			Γ_2	27635	27629			
	Γ_1		11284		11285			Γ_1		21414		21399	21400		$\Gamma_{3,4}$	27653	27629			
	$\Gamma_{3,4}$	11286	11306		11301			Γ_2	21423	21431	21410	21415	21412		Γ_1		27632			
	Γ_2		11310		11305			$\Gamma_{3,4}$	21441	21437	21428	21419								
								Γ_2	21437	21438		21419		$^{5}H(4)_{6}$	Γ_1	27728	27733			
$^{5}I_{4}$	Γ_1		13170		13180		-								Γ_2		27738			
	$\Gamma_{3,4}$		13240		13243		${}^{5}G_{6}$	Γ_2	21996	22007	21980	21988	21963		$\Gamma_{3,4}$	27756	27750			
	Γ_2		13292		13296			$\Gamma_{3,4}$	22006	22015	21982	21994			Γ_2	27771	27780			
	Γ_1		13307		13297			Γ_1		22026		22005			$\Gamma_{3,4}$	27865	27846			
	Γ_2		13333		13329			Γ_2	22077	22082	22056	22057	22047		Γ_2		27846			
	$\Gamma_{3,4}$		13384		13382			Γ_2		22083		22058			Γ_1		27866			
	Γ_1		13494		13477			Γ_1	22155	22156		22132			Γ_1		27874			
								$\Gamma_{3,4}$	22158	22155	22133	22130	22118		$\Gamma_{3,4}$	27897	27910			
															Γ_2	27918	27927			

FIG. 2. 5-K ${}^{2S+1}L_J \rightarrow {}^{5}I_8$ unpolarized photoluminescence of Ho³⁺ in NaBiMo (solid line) and in LiBiMo (dashed line).

neously considered in the procedure of fitting the observed energy levels. In this manner all intermediate coupling and crystal-field *J*-mixing effects are included in the calculations and arbitrary adjustments of the barycenter of the multiplets have been avoided. The theoretical background, including the expressions of the corresponding FI and CF Hamiltonians, and a short description of the IMAGE routine used to perform the current CF analysis, can be found in Ref. 27.

For the S_4 symmetry of Ho³⁺ in *M*BiX hosts the CF potential involves five real B_a^k and one complex S_a^k parameters (after setting S_4^4 to zero by choosing adequate reference axes for the system), which must be adjusted to give the best agreement between the calculated and observed Stark levels. These levels are characterized by the IR of the S_4 point group, monodimensional, Γ_1 , Γ_2 , or bidimensional, $\Gamma_{3,4}$. The selections rules for induced ED or magnetic dipolar (MD) transitions for S_4 symmetry and an even number of electrons are collected in Table III. Since the $4f^{10}$ configuration does not includes any nondegenerate excited state, the attribution of the IR for the ${}^{5}I_{8}(0)$ ground level is not straightforward. To proceed with this analysis we have first simulated the sequence of the Ho³⁺ energy levels using the previously reported CF parameters of Er³⁺ in NaBiW²⁶ and FI parameters calculated for Ho³⁺ in monoclinic KGd(WO₄)₂ α -KGW.²⁸ In the calculation process, the $S_4 4f^{10}$ states—i.e., the observed energy levels-are distributed in three submatrices, each being a submatrix associated with only one IR. These matrices contain 257, 254, and 245 energy levels, and consequently the last one will correspond to the IR $\Gamma_{3,4}$. This initial simulation showed that ${}^{5}I_{8}(0)$ belongs to IR $\Gamma_{3,4}$, in agreement with the results found for Ho³⁺ in the closely related CaWO₄

FIG. 3. Polarized 5-K optical absorption of Ho³⁺ in NaBiW single crystal. [Ho]= 0.35×10^{20} cm⁻³. The arrows indicate transitions considered as starting in ${}^{5}I_{8}(0)$.

crystal,²⁹ while ${}^{5}I_{8}(1)$ and ${}^{5}I_{8}(2)$ correspond to the same IR, either Γ_{1} or Γ_{2} , and ${}^{5}I_{8}(3)$, which appears in the remaining submatrix, to the other IR—that is, Γ_{2} or Γ_{1} .

Once the IR of the ground level was assessed, we assigned the excited ones as Γ_1 or Γ_2 if the corresponding band appears in the σ (or α) spectrum or as $\Gamma_{3,4}$ when the band appears in the π spectrum. Finally, the Γ_1 and Γ_2 assignment was made on the basis of the best adjustment to the calculated energy levels in the corresponding submatrices, which sometimes only differs in a few cm⁻¹—that is, inside the experimental error of the Ho³⁺ bands. Current fits indicate that for the NaBiW host the observed ${}^{5}I_8(1)$ and ${}^{5}I_8(2)$ levels, at 11 and 29 cm⁻¹, are Γ_2 singlets, which once again agrees with the energy and IR found for Ho³⁺ levels in CaWO₄,³⁰ and in the also scheelite-type LiYF₄ crystals,³¹ while ${}^{5}I_8(3)$, at 51 cm⁻¹, corresponds to Γ_1 . The thermal OA

TABLE III. Selection rules for ED and MD transitions for S_4 symmetry and an even number of *f* electrons.

		ED			MD					
	Γ_1	Γ_2	$\Gamma_{3,4}$	Γ_1	Γ_2	Γ _{3,4}				
Γ_1		π	α, σ	σ		σ,π				
Γ_2	π		α, σ		σ	σ,π				
$\Gamma_{3,4}$	α, σ	α, σ	π	σ,π	σ,π	σ				

behavior presented in Fig. 1 can now be rationalized: Transitions to a given excited Stark level and starting from ${}^{5}I_{8}(1,2,3)$ levels must appear either in a different polarization than that observed when starting from the ${}^{5}I_{8}(0)$ or become forbidden.

The optical absorption of Ho³⁺ in NaBiW, NaBiMo, and LiBiMo was basically identical for α and σ spectra; therefore, the intensity of the observed transitions is dominated by the induced ED contribution, even for those with $\Delta J=1$, which have non-negligible MD contributions.³² For the present analysis we have assigned each band to the polarization where it is observed with higher intensity, although often a residual intensity is also observed in the other polarization configuration. It must be noted that several centers associated with the two independent 2b and 2d lattice sites for T $=Ho^{3+}$, as well as with different Na (or Li) and Bi environments around both sites, are simultaneously contributing to the experimental spectra. This is the likely reason for the residual contributions described above, and the present energy levels must be understood as corresponding to an average Ho³⁺ center.

The CF calculation was done first for Ho³⁺ in NaBiW because of the larger number of observed energy levels. The total Hamiltonian includes 26 parameters, and among them some FI parameters have been held constant through the adjustment, while others were constrained to vary within determined ratios. The results achieved in NaBiW were taken as the model for the IR and submatrix assignments of Ho³⁺ in NaBiMo. The values of the Judd parameters, initially those obtained for NaBiW, after a few cycles of refinement were kept constant along the adjustment process.

In both hosts and despite the modest number of observed Stark levels, the simulation reproduces very adequately the experimental Ho3+-NaBiW and NaBiMo level sequences, with overall agreements of $\sigma = 8.8$ and 7.3 cm⁻¹, respectively, and in no case have large individual discrepancies between experimental and calculated energy levels been found: see Table II. These uncertainties are small considering the precision of the experimental data inherent to the large linewidth. The final results of the refinements are summarized in Table II, for the energy levels, and in Table IV, for adjusted FI and CF parameters. EPAPS MS Word Supplementary Documents with calculated energy levels of the Ho^{3+} configuration in NaBi(WO₄)₂ and in NaBi(MoO₄)₂, indicating the three main components of their corresponding associated wave functions, up to ${}^{3}H(4)_{6}$, $\sim 28\ 000\ {\rm cm}^{-1}$ and ${}^{5}G_{5}$, ~24 000 cm⁻¹, respectively, are available.²⁷ Lists of energy levels in these configurations up to 60 000 cm⁻¹ can be also obtained from the authors. The confidence in the obtained phenomenological parameters and the physical meaning of the fits are supported not only by the low σ values obtained, but also by the very similar results of previous calculations performed either independently for the same $4f^{10}$ Ho³⁺ configuration in the isostructural scheelite CaWO₄ crystal³⁰ or those parallel for the closest $4f^{11}$ Er³⁺ configuration in the same crystalline matrices, ²⁶ which provide S_4 CF parameter sets with only smooth variations.

V. Ho³⁺ RADIATIVE PROCESSES

Ho³⁺ has a large number of electronic transitions which can lead to laser action.¹⁸ The most important ones are those

TABLE IV. Free-ion and CF parameters (cm⁻¹) in S_4 symmetry for Ho³⁺ in NaBi(XO_4)₂, X=W,Mo, single crystals. Values in parentheses refer to estimate standard deviations in the indicated parameter. Values in square brackets were not allowed to vary in the parameter fitting.

	NaBiW	NaBiMo
E^0	47647.9(9)	47624.2(9)
E^2	6381.6(3)	6390.0(3)
E^4	31.78(2)	31.92(3)
E^6	637.33(5)	633.26(6)
α	17.37(3)	16.60)
β	-670(2)	-729(1)
γ	[1750]	[1750]
ζ	2140.5(5)	2148.9(5)
M^{0} a	3.5(6)	[3.5]
$P^{2 b}$	750(20)	[825]
T^2	[330]	[330]
T^3	37(2)	[38]
T^4	112(2)	[172]
T^6	-197(10)	[-127]
T^7	237(22)	[336]
T^8	[336]	[336]
B_{0}^{2}	411(31)	440(30)
B_{0}^{4}	-601(30)	-565(34)
B_4^4	$\pm 832(18)$	$\pm 800(21)$
B_0^6	-67(34)	-54(32)
B_{4}^{6}	$\pm 576(20)$	$\pm 509(19)$
S_{4}^{6}	$\pm 195(54)$	$\pm 85(42)$
S_2^{c}	184	197
S_4	440	422
S_6	239	203
S_T	308	293
L	85	56
σ d	8.8	7.3
Residue	5289.2	2296.5

 $^{a}M^{0} M^{2} = 0.56M^{0}, M^{4} = 0.32M^{0}.$

 $^{b}P^{4}=0.75P^{2}, P^{6}=0.50P^{2}.$

^cThe crystal field strength parameters S_T and S_K are defined (Ref. 33) as $S_T = \left[\frac{1}{3}\sum_k S_k^2\right]^{1/2}$, $S_k = \left\{\frac{1}{2k+1}\left[(B_0^k)^2 + 2\sum_q \left[(B_q^k)^2 + (S_q^k)^2\right]\right]\right\}^{1/2}$. ${}^d\sigma = \left[\sum(\Delta_i)^2/(L-P)\right]^{1/2}$, $\Delta_i = E_0 - E_c$, *L* number of levels, *P* number of parameters.

operating at room temperature and related to deexcitations from three different multiplets: ${}^{5}I_{6} \rightarrow {}^{5}I_{7}$ ($\lambda = 3 \ \mu m$), ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$ ($\lambda = 2 \ \mu m$), and ${}^{5}S_{2} \rightarrow {}^{5}I_{7}$ ($\lambda = 760 \ nm$), $\rightarrow {}^{5}I_{6}$ ($\lambda = 1.03 \ \mu m$), $\rightarrow {}^{5}I_{5}$ ($\lambda = 1.4 \ \mu m$), and $\rightarrow {}^{5}F_{5}$ ($\lambda = 3.37 \ \mu m$). Moreover, the ${}^{5}F_{5} \rightarrow {}^{5}I_{5,6,7}$ deexcitations produce laser operation at cryogenic temperatures and the ${}^{5}I_{5} \rightarrow {}^{5}I_{6}$ ($\lambda = 3.9 \ \mu m$) has been also reported in selected systems. In this section we study first the expected radiative properties of Ho³⁺ in the considered Bi-based DT and DMo, and later we show the actual properties as a function of the temperature and concentration, with particular emphasis on the abovementioned laser-related multiplets.

FIG. 4. 300-K ground state $({}^{5}I_{8} \rightarrow {}^{2S+1}L_{J})$ optical absorption of Ho³⁺ in NaBiW single crystal. [Ho]_{crys}=0.35 × 10²⁰ cm⁻³.

A. Judd-Ofelt calculations

The Judd-Ofelt (JO) theory^{34,35} is often used to obtain the radiative properties of 4*f* transitions of Ln³⁺ in solid and liquid hosts. The theory uses 300-K integrated absorption cross sections $[Ho]^{-1}\int \alpha \partial \lambda$ to calculate the JO parameters Ω_k (k=2,4,6), from which radiative transition rates $A_{JJ'}$, luminescence branching ratios $\beta_{JJ'}=A_{JJ'}/\Sigma_{J'}A_{JJ'}$, and radiative lifetimes $\tau_{r,J}=1/\Sigma_{J'}A_{JJ'}$ for each *J* manifold can be achieved. Details of the JO treatment and definitions can be found in previous works.^{28,34,35}

To perform these calculations we measured the roomtemperature polarized OA of Ho^{3+} in the three considered Bi-based DT and DMo crystal hosts. Figure 4 shows the results obtained in Ho-doped NaBiW. For Ho-doped NaBiMo and LiBiMo crystals the spectra (not shown for the sake of brevity) were similar to those shown in Fig. 4 but a lower number of transitions were determined due to the smaller energy gap of the molybdate hosts. Table V summarizes the experimental integrated cross sections, which were weighted as $(2\sigma + \pi)/3$ to obtain the experimental oscillator strengths \overline{f}_o . In this process the refractive index values of each matrix at the corresponding average wavelength were considered.^{4,16}

The JO Ω_k parameter sets obtained for the two molybdate hosts are very similar but slightly different from that obtained for the tungstate host. In particular, the Ω_4 parameter in NaBiW is significantly larger. Ω_2 is mainly determined by the ${}^{5}I_{8} \rightarrow {}^{5}G_{6}$ transition probability which is rather similar in the three hosts. Ω_4 is determined by the ${}^5I_8 \rightarrow {}^5F_5$, 5F_4 , and ${}^{5}G_{6}$ transition probability; therefore, the Ω_{4} difference between NaBiW and Na(Li)BiMo is related to the larger absorption cross section of the ${}^{5}F_{5}$ and ${}^{5}F_{4}$ multiplets in the latter host, particularly for the π contribution. All the Ω_k sets obtained are within the usual values found for Ho³⁺ in solids.³² In particular they agree rather well with those reported for Ho³⁺ in the NaYMo,³⁶ but are clearly different from those reported for Ho:NaYW.³⁷ Our analysis is later validated by a comparison of the calculated spectroscopic magnitudes with the experimental results.

The radiative properties obtained by using the Ω_k set for each host are summarized in Table VI for transitions with fluorescence branching ratios larger than $\approx 20\%$ and, when possible, compared with experimental results. Magnetic-

TABLE V. Room-temperature spectroscopic absorbance properties of Ho³⁺ in NaBiW, NaBiMo, and LiBiMo crystals. σ - and π -polarized integrated ground state (${}^{5}I_{8} \rightarrow {}^{2S+1}L_{J}$) absorption cross section, $\int \sigma = [\text{Ho}]^{-1} \int \alpha \partial \lambda$. $\bar{\lambda}$ is the corresponding average wavelength of each ${}^{2S+1}L_{J}$ multiplet. Observed oscillator strength (\bar{f}_{o}), calculated electric-dipole oscillator strength (f_{ED}), $|\Delta f| = |\bar{f}_{o} - f_{ED}|$, JO parameters Ω_{k} (×10⁻²⁰ cm²).

			NaE	BiW					NaB	iMo					LiB	iMo		
$\overline{{}^{5}I_{8}} \rightarrow$	$\int^{\sigma} \sigma$	$\int^{\pi} \sigma$	$\overline{\lambda}$	\overline{f}_{o}	$f_{\rm ED}$	$ \Delta f $	$\int^{\sigma} \sigma$	$\int^{\pi} \sigma$	$\bar{\lambda}$	\overline{f}_{o}	$f_{\rm ED}$	$ \Delta f $	$\int^{\sigma} \sigma$	$\int^{\pi} \sigma$	$\bar{\lambda}$	\overline{f}_{o}	$f_{\rm ED}$	$ \Delta f $
$^{3}H(4)_{6}$	100	170	361	1066	1494	428												
${}^{3}K_{7} + {}^{5}G_{4}$	17	18	388	132	135	3												
${}^{5}G_{5}$	145	66	419	764	209	555												
${}^{5}G_{6} + {}^{5}F_{1}$	1279	1390	453	7247	7203	44	1062	1465	453	6589	6589	0	1286	1674	453	7976	7976	0
${}^{5}F_{3} + {}^{5}F_{2} + {}^{3}K_{8}$	64	114	478	402	259	143	56	73	478	306	210	96	68	89	477	371	271	100
${}^{5}F_{4} + {}^{5}S_{2}$	115	261	541	632	497	135	86	130	541	387	307	80	104	158	542	469	383	86
${}^{5}F_{5}$	111	209	648	478	575	97	90	161	648	304	326	22	109	195	649	368	391	23
${}^{5}I_{5}$	16	16	899	22	17	5	5	8	899	13	19	6						
${}^{5}I_{6}$	96	142	1170	94	82	12	65	106	1165	66	60	6	105	113	1165	90	77	13
${}^{5}I_{7}$	514	568	1960	91	129	38	413	585	1960	71	91	20	539	605	1960	93	116	23
$f_{\rm MD}{}^{\rm a}$				+65.2						+67.2						+71.2		
Ω_2	10.5								9.	.5					10	.1		
Ω_4	5.2							2.6						2.7				
Ω_6			0.	6				0.4						0.5				
rms			2×2	10 ⁻⁶				0.7×10^{-6}						0.8×10^{-6}				

^aThe magnetic-dipole $f_{\rm MD}$ contribution has been discounted from the ${}^{5}I_{7}$ experimental oscillator strength to obtain the reported observed \bar{f}_{o} value.

TABLE VI. Radiative properties of Ho³⁺ in NaBiW, NaBiMo, and LiBiMo crystals. Total electric-dipole, ED, plus magnetic-dipole, MD (in parentheses) radiative transitions rates $A_{JJ'}$. Calculated and 300 K observed branching ratios $\beta_{JJ'}$, β_0 (in parentheses). Radiative, τ_r , and 5 K observed τ_0 , lifetimes. The observed branching ratios and lifetimes were measured in samples with low (<1×10¹⁹ cm⁻³) Ho concentration.

			NaBiW			NaBiMo			LiBiMo	
	λ [nm]	$\begin{array}{c} A_{JJ'} \\ [s^{-1}] \end{array}$	$egin{array}{c} eta_{JJ'} & (eta_{ m o}) \ & [\%] \end{array}$	$egin{array}{l} au_{ m r} \left(au_{ m o} ight) \ \left[\mu { m s} ight] \end{array}$	$\begin{array}{c} A_{JJ'} \\ [s^{-1}] \end{array}$	$egin{array}{lll} eta_{JJ'} & (eta_{ m o}) \ & \ & \ & \ & \ & \ & \ & \ & \ & \ $	$ au_{ m r}\left(au_{ m o} ight) = \left[\mu { m s} ight]$	$\begin{array}{c} A_{JJ'} \\ [s^{-1}] \end{array}$	$egin{array}{c} eta_{JJ'} & (eta_{ m o}) \ & \ & \ & \ & \ & \ & \ & \ & \ & \ $	$egin{array}{l} au_{ m r}\left(au_{ m o} ight) \ \left[\mu { m s} ight] \end{array}$
${}^{3}K_{7} \rightarrow {}^{5}I_{7}$	477	526	21	403						
${}^{5}I_{8}$	385	1379	56							
${}^{5}G_{4} \rightarrow {}^{5}I_{5}$	583	35321	52	15						
${}^{5}I_{7}$	484	14049	21							
${}^{5}G_{5} \rightarrow {}^{5}I_{7}$	534	34253	69	20	36586	75	20	44212	74	17
${}^{5}F_{1} \rightarrow {}^{5}I_{4}$	1115	1310	24	181	734	20	277	852	19	223
${}^{5}I_{5}$	903	2792	50		1656	46		1972	44	
					760	21		1010	23	
${}^{5}G_{6} \rightarrow {}^{5}I_{8}$	455	156444	94	6	161136	95	6	197868	95	5
${}^3K_8 \rightarrow {}^5I_8$	472	2475	91	369	2253	92	408	2806	92	328
${}^{5}F_{2} \rightarrow {}^{5}I_{6}$	807	2178	39	180	1309	33	250	1562	31	196
${}^{5}I_{8}$	478	1818	33		1657	41		2258	44	
${}^{5}F_{3} \rightarrow {}^{5}I_{7}$	650	5872	56	96	3554	51	142	4244	49	115
${}^{5}I_{8}$	490	2148	21		1960	28		2664	31	
${}^5F_4 \rightarrow {}^5I_8$	548	9430	73	77	6448	75	116	7974	76	95
${}^5S_2 \rightarrow {}^5I_6$	1010	864	11 (14)	381 (16)	183	9 (12)	469 (12)	228	20 (8)	353 (11)
${}^{5}I_{7}$	746	278	33 (34)		701	33 (27)		931	33 (33)	
${}^{5}I_{8}$	543	1372	52 (51)		1173	55 (61)		1578	56 (46)	
${}^5F_5 \rightarrow {}^5I_6$	1456	214	3 (12)	117 (1.9)	148	3	189 (2.0)	180	3	157 (1.7)
${}^{5}I_{7}$	965	1605	19 (28)		1017	19 (38)		1210	19 (39)	
${}^{5}I_{8}$	650	6699	78 (60)		4120	78 (62)		4952	78 (60)	
${}^{5}I_{4} \rightarrow {}^{5}I_{6}$	2151	42	39	9084	33	38	11524	42	38	9084
${}^{5}I_{7}$	1227	46	42		36	42		47	43	
${}^5I_5 \rightarrow {}^5I_7$	1657	92	36	3857	73	31	4280	93	32	3465
${}^{5}I_{8}$	905	144	55		140	60		172	60	
${}^{5}I_{6} \rightarrow {}^{5}I_{7}$	2860	(30) 65	22	3345	(32) 56	24	4225	(34) 63	22	3437
${}^{5}I_{8}$	1174	234	78		180	76		227	78	
${}^{5}I_{7} \rightarrow {}^{5}I_{8}$	1993	(57) 165	100	6047	(60) 141	100	7089	(77) 178	100	5613

dipole contributions have been explicitly considered when needed. These contributions are particularly relevant for the ${}^{5}I_{6} \rightarrow {}^{5}I_{7} (\lambda=3 \ \mu\text{m})$ and ${}^{5}I_{7} \rightarrow {}^{5}I_{8} (\lambda=2 \ \mu\text{m})$ laser transitions with $\Delta J=1$. The uncertainty of the radiative JO magnitudes obtained is estimated about $\pm 15\%$ due mainly to the experimental uncertainty in the measurement of the Ho concentration. Within this uncertainty, the Ho³⁺ radiative results obtained for the three hosts must be considered as similar.

B. Ho³⁺ fluorescence

The Ho³⁺ fluorescence has been studied in several spectral ranges to evaluate the observed branching ratios β_o of corresponding multiplets as a test for JO radiative results. Figure 5 shows the fluorescence obtained for Ho-doped NaBiW. Again, the results obtained for Ho-doped NaBiMo and LiBiMo were very similar, and therefore they are not shown

for brevity. The β_{α} results are included in Table VI.

Due to the considerable number of possible electronic transitions in Ho³⁺ and the large energy of the excited multiplets, an overlap of emissions from several multiplets is possible. For instance, in the 1000–1030-nm emission range contributions from ${}^{5}F_{2} \rightarrow {}^{5}I_{5}$, ${}^{5}F_{4} \rightarrow {}^{5}I_{6}$, and ${}^{5}S_{2} \rightarrow {}^{5}I_{6}$ can be found. However, for the ${}^{5}F_{5}$ and ${}^{5}S_{2}$ fluorescence spectra shown in Fig. 5 these possible contributions are weak and correspond to transitions with small branching ratios; therefore, the observed branching ratios summarized in Table VI are a good approximation. The general agreement between the observed and calculated branching ratios of the ${}^{5}S_{2}$ and ${}^{5}F_{5}$ multiplets shows the correctness of the radiative calculations in Table VI. In particular, the ${}^{5}S_{2} \rightarrow {}^{5}I_{5}$, ${}^{5}F_{5}$ emissions were not observed, what agrees with the very low branching ratios obtained for these transitions.

FIG. 5. 300-K fluorescence of Ho³⁺ in NaBiW. (a) Unpolarized fluorescence, λ_{exc} =454 nm (${}^{5}G_{6}$ + ${}^{5}F_{1}$). (b) Unpolarized fluorescence, λ_{exc} =488 nm (${}^{5}F_{3}$). (c) π -polarized (dashed line) and σ -polarized (solid line) fluorescences, λ_{exc} =488 nm (${}^{5}F_{3}$).

C. Ho³⁺ lifetimes

Lifetime measurements of Ln^{3+} in DT and DMo crystals have been most commonly provided in samples prepared for laser demonstration and, therefore, with a large concentration of active ions, typically above 1 at. % in the crystal. These measurements are difficult to compare with the radiative lifetime calculated by the JO analysis because several nonradiative deexcitation mechanisms coexist. In this work, as well as in our previous ones related to Nd, Pr, and Er in the same DT and DMo, we considered first samples with very low Ln^{3+} concentration for which Ln-Ln interactions can be ignored, and later on we studied these Ln-Ln interactions using samples with increasing Ln^{3+} concentration.

The Ho³⁺ lifetime results obtained in the three DT and DMo hosts here considered were similar; therefore, we shall describe the methodology and results for NaBiW and refer to Table VI for the minor differences found for Ho-doped NaBiMo and LiBiMo.

For each host we used first the sample with lowest Ho concentration; see Table I. All fluorescence intensity decays observed at this doping level ($\approx 5-7 \times 10^{18} \text{ cm}^{-3}$) were single exponential. This shows that the influence of the crystalline disorder on the energy levels is not very strong and the average centre assumption used in Sec. IV A is also valid to describe the emission properties. Figure 6(a) shows examples for the Ho-doped NaBiW sample. The multiplet ${}^{5}G_{6}$ is convenient for excitation of the ${}^{5}S_{2}$ photoluminescence because of its strong absorption; however, the large radiative lifetime of the intermediate ${}^{3}K_{8}$ multiplet can *a priori* introduce uncertainty in the measurements. To be sure that our measurements were free of this uncertainty, we compared the fluorescence intensity decays exciting at ${}^{5}G_{6}$ and ${}^{5}F_{4}$ multiplets at 300 K and 5 K. The ${}^{5}S_{2}$ lifetime obtained was independent of the excitation; therefore, we excited at the ${}^{5}G_{6}$ multiplet, which provided very intense ${}^{5}S_{2}$ fluorescence signals. This result is also consistent with the low-energy gap

FIG. 6. Lifetimes of ${}^{5}S_{2}$ and ${}^{5}F_{5}$ levels of Ho³⁺ in NaBiW. [Ho]=0.07×10²⁰ cm⁻³. (a) Light intensity ${}^{5}S_{2}\rightarrow{}^{5}I_{8}$ decays (λ_{exc} = 455 nm, λ_{emi} =550 nm) at several temperatures (points) and fits to a single-exponential law (lines). (b) Temperature dependence of the ${}^{5}S_{2}$ experimental lifetime (points), fit to a multiphonon model [Eq. (3)] (dashed line) and fit taking into account Eq. (4) (solid line). (c) Temperature dependence of the ${}^{5}F_{5}$ (λ_{exc} =650 nm, λ_{emi} =660 nm) experimental lifetime (points) and fit to the multiphonon model [Eq. (3)] (line).

between ${}^{3}K_{8}$ and ${}^{5}F_{2}$ multiplets (<200 cm⁻¹); therefore, the actual ${}^{3}K_{8}$ lifetime must be must shorter than the calculated radiative lifetime.

At 5 K the experimental ${}^{5}S_{2} \rightarrow {}^{5}I_{8}$ lifetime found in Hodoped NaBiW was $\tau_{0}=16 \ \mu s$ (see Table VI for other hosts) and this decreased up to $\tau_{0}=4.6 \ \mu s$ at 300 K. Figure 6(b) shows the thermal dependence. It must be first noted that $\tau_{0}(10 \text{ K})$ of ${}^{5}S_{2}$ is much lower than the calculated radiative lifetime $\tau_{r}=381 \ \mu s$. Ho-Ho energy transfer can be ignored at such low doping concentration because of the large average Ho-Ho distance $\overline{r}=(4\pi[\text{Ho}]/3)^{-1/3} \ge 320 \text{ nm}$, and since phonon emission is also minimized at 5 K, the difference between the experimental and radiative lifetimes must be ascribed to a Ho-host nonradiative interaction.

The 5F_5 lifetime in the different hosts was excited resonantly (${}^5I_8 \leftrightarrow {}^5F_5$) at $\lambda_{\rm exc}$ =650 nm and monitored at $\lambda_{\rm emi}$ =660 nm. Procedures similar to the case above and the same low-concentrated samples were used. The Ho³⁺ 5F_5 lifetime at 10 K was $\tau_0 \approx 1.9 \ \mu$ s, also much smaller than the calculated radiative lifetime τ_r =117 μ s, showing again the strong Ho-host nonradiative interaction.

The decrease of the experimental lifetime with increasing temperature is usually ascribed to nonradiative release of the energy by phonon emission. These nonradiative processes are described by the characteristic nonradiative multiphonon relaxation probability $W_{nr}^{ph} = \tau_{ph}^{-1}$ and energy transfer probability $W_{nr,c}^{ph} = \tau_{r}^{-1}$, which are related to the observed, τ_{o}^{-1} , and radiative, τ_{r}^{-1} , lifetimes as $\tau_{o}^{-1} = \tau_{r}^{-1} + \tau_{ph}^{-1} + \tau_{c}^{-1}$. The temperature dependence of the multiphonon relaxation rate is given by³⁸

$$W_{\rm nr}^{\rm ph}(T) = W_{\rm nr}^{\rm ph}(0) \prod_{i} (1 + n_{\rm eff}^{(i)})^{\rm ph(i)},$$
 (1)

where $n_{\text{eff}}^{(i)} = [\exp(\hbar \omega_{\text{eff}}^{(i)}/kT) - 1]^{-1}$, $\bar{h}\omega^{(i)}$ being the energy of the *i* phonon emitted and *k* the Boltzmann constant. To main-

tain the energy conservation in a nonradiative transition between levels separated by ΔE , the gap energy must be equal to the total thermal energy released—i.e., $\Delta E = \Sigma_i \text{ph}^{(i)} \times \hbar \varpi^{(i)}$, where $\text{ph}^{(i)}$ is the number of required *i* phonons. In the simplest case phonons of a single energy, usually the largest phonon observed in Raman or infrared absorption spectra, are emitted.

The analysis of the ${}^{5}S_{2}$ and ${}^{5}F_{5}$ lifetime thermal dependences with this nonradiative model produced different results. For ${}^{5}S_{2}$ the multiphonon emission model, given by Eq. (1), does not account for the behavior observed. As example, Fig. 6(b) shows (dashed line) the behavior expected for the ${}^{5}S_{2} \rightarrow {}^{5}F_{5}$ ($\Delta E \approx 2830 \text{ cm}^{-1}$) nonradiative deexcitation by emission of three phonons with $\bar{h}\omega = 912 \text{ cm}^{-1}$. The assumption of a single phonon type could not reproduce neither the thermal behavior of the ${}^{5}F_{5}$ lifetime [see dashed line of Fig. 6(c)], but in this case the assumption of the emission of two phonons with $\bar{h}\omega = 912 \text{ cm}^{-1}$ and one of $\bar{h}\omega = 390 \text{ cm}^{-1}$ ($\Delta E \approx 2000 \text{ cm}^{-1}$ for the ${}^{5}F_{5} \rightarrow {}^{5}I_{4}$ gap) provides an acceptable fit of the experimental results.

For ${}^{5}S_{2}$ it must be realized that the upper ${}^{5}F_{4}$ multiplet with lower radiative lifetime ($\tau_{r}=77 \ \mu s$) is very close, <100 cm⁻¹ (see Table II). The increase of temperature induces a redistribution of the electronic population between ${}^{5}S_{2}$ and ${}^{5}F_{4}$ multiplets. In this case the effective radiative probability becomes temperature dependent and it can be conveniently described as³⁹

$$W_{\rm rad}(T) = \frac{g_1 W_{\rm rad1} \exp(-\Delta E_{1-2}/kT) + g_2 W_{\rm rad2}}{g_1 \exp(-\Delta E_{1-2}/kT) + g_2},$$
 (2)

where $g_1=9$ and $g_2=5$ are the 5F_4 and 5S_2 degeneracies and $\Delta E_{1-2} \approx 100 \text{ cm}^{-1}$ is the energy gap between these two multiplets. Under this assumption the experimental 5S_2 lifetime temperature dependence can be properly described; see the solid line of Fig. 6(b).

We further studied the concentration dependence of the ${}^{5}S_{2}$ and ${}^{5}F_{5}$ room-temperature lifetimes. For the Ho concentration range available, [Ho] $< 0.6 \times 10^{20}$ cm⁻³, all the light intensity decays observed are single exponential and the lifetime of each host remains constant. This indicates that for the Ho concentrations used nonefficient Ho-Ho energy transfer took place.

VI. DISCUSSION

First, the large linewidth of Ho³⁺ transitions in NaBiW, NaBiMo, and LiBiMo must be noted. Figure 7 shows a comparison of one of the Stark levels of the ${}^{3}I_{8} \rightarrow {}^{5}F_{5}$ multiplet with an equivalent one corresponding to α -KGdW, an ordered double tungstate. The FWHM of the ${}^{3}I_{8} \rightarrow {}^{5}F_{5}$ band in NaBiW, NaBiMo, and LiBiMo is 34.5 cm⁻¹, 28.7 cm⁻¹, and 35.7 cm⁻¹, respectively. These values are about 4 times larger than the 7.7 cm⁻¹ observed in α -KGdW.

The broadening in M^+ BiX crystals must be understood as induced by the coexistence of several Ho environments around each of the two possible lattice sites 2b and 2d. The detailed structures of these environments or the importance of their contributions to the band shape are not yet well

FIG. 7. Optical absorption line shape of ${}^{5}I_{8} \rightarrow {}^{5}F_{5}$ Ho³⁺ Stark transition at 5 K in ordered monoclinic α -KGdW and in disordered tetragonal $MBi(XO_{4})_{2}$ crystals.

known but the present data show that differences between them cannot be large since, although broadened, a single band is observed at 10 K for most of the transition between Stark levels. The spectroscopic contributions of these sites have been resolved for the ${}^{4}F_{3/2} \leftrightarrow {}^{4}I_{11/2}$ Nd³⁺ transitions in NaBiW⁴⁰ and for the ${}^{2}F_{7/2}(0) \leftrightarrow {}^{2}F_{5/2}(0')$ transition of Yb³⁺ in NaGdW,¹³ NaLuW,¹⁵ and LiGdMo.²³ Similar site-resolved contributions have not been specifically searched in this work, but some of the band structures observed in Fig. 3—for instance, at 25 824 cm⁻¹ (${}^{5}G_{4}$)—could be related to this fact. The polarization features shown in Figs. 1 and 3 indicate that the optical axes of all Ho centers must be close to the lattice c axis. Therefore, within the spectral resolution of our measurements the assumption of an average Ho³⁺ center to discuss the observed spectroscopic characteristics seems a good first approximation although clearly the actual situation is more complex and should include centers with symmetry lower than S_4 .

The nonradiative probability W_{nr} related to the nonradiative interaction with the host is given by the *energy gap law*

$$W_{\rm nr} = \tau^{-1}(0 \text{ K}) - \tau_{\rm rad}^{-1} = \beta \exp(-\alpha \Delta E_g),$$
 (3)

where for a given lanthanide multiplet ΔE_g is the energy difference to the low-lying energy level, and α and β characterize the host. Figure 8 shows a representation of Eq. (3)

FIG. 8. Gap law representation of the nonradiative probability $W_{\rm nr}$ for tetragonal NaBiW (solid symbols), NaBiMo (open symbols), and LiBiMo (crossed symbols). Ho³⁺:⁵F₅, \Box ; ⁵S₂, \bigcirc . Er³⁺:⁴S_{3/2}, \triangle ; ⁴I_{13/2}, \bigstar .

FIG. 9. Emission cross sections at 300 K of Ho³⁺ in NaBiW. The ground-state absorption cross section $\sigma_{\rm GSA}$ is indicated with the dashed line. The experimental photoluminescence by points and the calculated emission cross section $\sigma_{\rm emi}$ by the solid lines. Unpolarized ${}^{5}S_{2} \rightarrow {}^{5}I_{J}$ (a)–(c). Unpolarized ${}^{5}F_{5} \rightarrow {}^{5}I_{J}$ (d)–(f). Polarized ${}^{5}I_{6} \rightarrow {}^{5}I_{8}$ (g). Polarized ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$ (f)–(i).

for the Bi-based DT and DMo. For this purpose we have used the Ho results presented in this work as well as previous results achieved for Er.¹⁶ This fit provides $\beta = 3.4 \times 10^7 \text{ s}^{-1}$ and $\alpha = 2.2 \times 10^{-3}$ cm as average values for the three Bi-based DT and DMo hosts.

We finally discuss the emission cross sections $\sigma_{\rm emi}$ of several Ho³⁺ transitions of interest for laser application taking NaBiW for reference. $\sigma_{\rm emi}$ represents the laser gain per unit of population inversion; therefore, high values are desirable. $\sigma_{\rm emi}$ of transitions to the ground ${}^{5}I_{8}$ multiplet can be calculated from the ground-state absorption cross section $\sigma_{\rm GSA} = \alpha_{\rm GSA} / [\rm Ho]$ using the the reciprocity principle⁴¹

$$\sigma_{\rm emi} = \sigma_{\rm GSA} \frac{Z_l}{Z_u} e^{(E_{zl} - h\nu)/k_B T}, \tag{4}$$

where Z_u and Z_l are the partition functions of the upper and lower multiplets, respectively, and E_{zl} is the energy difference between the lowest Stark levels of both multiplets. For a given transition these latter parameters can be calculated from the energy-level results of Table II. For the transition to

FIG. 10. Gain cross section for the ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$ transition of Ho³⁺ in NaBiW. (a) σ and π configurations. (b) Gain cross section in π configuration for increasing population inversion ratios β .

excited multiplets $\sigma_{\rm emi}$ can be obtained by the Füchtbauer-Ladenburg method:⁴²

$$\sigma_{\rm emi} = \sigma_{\rm emi}^{\rm ref} \frac{I\lambda^5}{I_{\rm ref}\lambda_{\rm ref}^5},\tag{5}$$

where $\sigma_{\text{emi}}^{\text{ref}}$, I_{ref} , and λ_{ref} are taken from the corresponding ${}^{2S+1}L_J \rightarrow {}^{5}I_8$ transition.

Figure 9 summarizes the emission cross sections of the laser channels of Ho³⁺ with the exception of ${}^{5}I_{6} \rightarrow {}^{5}I_{7}$ ($\lambda \approx 3 \ \mu m$) and ${}^{5}I_{5} \rightarrow {}^{5}I_{6}$ ($\lambda \approx 3.9 \ \mu m$), both expected beyond the spectral response of our equipment. Table VII shows a comparison with other laser crystal hosts taken as reference transitions to the fundamental ${}^{5}I_{8}$ multiplet. The emission cross sections obtained for Ho³⁺ in NaBiW are similar to those obtained in common oxide and fluoride laser hosts.

For transitions with the ground ${}^{5}I_{8}$ multiplet as terminal level the laser characteristics are determined by the balance between the radiative and absorption properties. This is ex-

TABLE VII. Room-temperature Ho³⁺ peak emission cross sections ($\times 10^{-20}$ cm²) in several crystal laser hosts. In parentheses the corresponding wavelength (nm).

	NaBi(WO ₄) ₂	$Y_3Al_5O_{12}^{a}$	YAlO ₃ ^a	YVO ₄ ^b	LiYF ₄ ^c
$5S_2 \rightarrow 5I_8$	2.35 (545)				π , 2.4 (536)
${}^{5}F_{5} \rightarrow {}^{5}I_{8}$	2.23 (660)			σ , 8.4 (660)	π , 3.3 (638)
${}^{5}I_{6} \rightarrow {}^{5}I_{8}$	π , 2.24 (1189)				π , 1.5 (1190)
$\underbrace{{}^{5}I_{7} \rightarrow {}^{5}I_{8}}_{}$	π , 1.45 (2047)	1 (2090)	1.1 (1975)	π , 2.5 (2030)	π, 2.24 (1950)

^aReference 43.

^bReference 44.

^cReference 45.

pressed by the gain cross section σ_{gain} , defined as

$$\sigma_{\text{gain}} = \beta \sigma_{\text{emi}} - (1 - \beta) \sigma_{\text{GSA}}, \tag{6}$$

where β is the inversion ratio between fundamental and excited populations.

Figure 10 shows the ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$ gain cross sections under different polarization and inversion ratio conditions. The wavelength corresponding to maximum σ_{gain} determines the free running laser wavelength. This occurs at 2053 nm with little difference for both polarizations. Moreover, it shifts to slightly shorter wavelength with increasing inversion ratios.

VII. CONCLUSIONS

Despite differences on the lattice cell parameters between NaBiX ($V \approx 320 \text{ Å}^3$) and LiBiMo ($V \approx 312 \text{ Å}^3$), the observed energy levels and radiative properties of Ho³⁺ in the three crystals remain similar each other and also close to those observed for Ho³⁺ in NaYMo ($V \approx 306 \text{ Å}^3$). While broadened, the bands preserve well-defined S_4 polarization characteristics according to the uniaxial symmetry of the above DT and DMo crystals. These Ho³⁺ properties are representative of an average center with local S_4 symmetry for the smaller Ln³⁺-doped structurally disordered tetragonal DT and DMo hosts with general formula $MT(XO_4)_2$. The average center

includes the effects induced by the two crystallographic sites for Ho³⁺ and the random Na⁺ and Bi⁺ distributions in the first cationic environment. Energy-level sequences for both NaBiW and NaBiMo have been fit very satisfactorily with rather similar sets of FI and S_4 CF parameters. The fits confirm the IR assignments derived from experiments as well as from the S_4 Er³⁺-based initial CF simulation.

Although large nonradiative losses have been found in these DT and DMo due to large phonon energies (\approx 980 cm⁻¹) associated with WO₄ or MoO₄ vibrations, the emission cross sections of Ho³⁺ in NaBiW are similar to those observed in other crystal laser hosts, and positive gain cross sections can be achieved in extended spectral ranges. These properties make the Ho³⁺-doped double tungstates and double molybdates to be promising materials for tunable and short-pulse laser operation.

ACKNOWLEDGMENTS

This work was financed by the European Union through the DT-CRYS or NMP3-CT-2003-505580 project and by Spain through the MAT2002-04603-C05-05 (also EU FEDER found) and MAT2005-06354-C03-01 projects. A.M.B. was supported by CONACyT (México) Grant No. 128118. M.R. is supported by the Spanish Education Ministry under the "Ramón y Cajal" program.

- *Present address Instituto de Física, Universidad Autónoma de Puebla. Apdo. Postal J-48. Puebla 72570 México.
- [†]Corresponding author: Concepción Cascales. FAX: 34 913720623. Electronic address: ccascales@icmm.csic.es
- ¹E. Sorokin, I. T. Sorokina, and E. Wintner, Appl. Phys. B: Lasers Opt. **72**, 3 (2001).
- ²V. K. Tzunov, V. A. Efremov, and Y. A. Velinkodnyi, *Crystal-lochemistry and Properties of Double Molybdates and Tung-states* (Nauka, Leningrad, 1986) (in Russian).
- ³X. Huang, Z. Lin, Z. Hu, L. Zhang, J. Huang, and G. Wang, J. Cryst. Growth **269**, 401 (2004).
- ⁴V. Volkov, M. Rico, A. Méndez-Blas, and C. Zaldo, J. Phys. Chem. Solids **63**, 95 (2002).
- ⁵ P. V. Klevtsov and L. P. Kozeeva, Izv. Akad. Nauk SSSR, Neorg. Mater. **5**, 1842 (1969) [Inorg. Mater. **5**, 1571 (1970)].
- ⁶E. Ya Rode, V. N. Karpov, and M. M. Ivanova, Russ. J. Inorg. Chem. **16**, 905 (1971).
- ⁷X. Li, Z. Lin, L. Zhang, and G. Wang, Opt. Mater. (Amsterdam, Neth.) **29**, 728 (2007).
- ⁸Yu. K. Voron'ko, K. A. Subbotin, V. E. Shukskin, D. A. Lis, S. N. Ushakov, A. V. Popov, and E. V. Zharikov, Opt. Mater. (Amsterdam, Neth.) **29**, 246 (2006).
- ⁹P. V. Klevtsov, L. P. Kozeeva, and A. A. Pavlyuk, Sov. Phys. Crystallogr. **20**, 736 (1976).
- ¹⁰ P. V. Klevtsov, V. I. Maksin, R. F. Klevtsova, and A. M. Golub, Sov. Phys. Crystallogr. **21**, 430 (1976).
- ¹¹A. A. Kaminskii, S. N. Bagayev, K. Ueda, H. Nishioka, Y. Kubota, X. Chen, and A. Kholov, Jpn. J. Appl. Phys., Part 2 34, L1461 (1995).

- ¹²A. García-Cortés, C. Cascales, A. de Andrés, C. Zaldo, E. V. Zharikov, K. A. Subbotin, S. Bjurshagen, V. Pasiskevicius, and M. Rico, IEEE J. Quantum Electron. **43**, 157 (2007).
- ¹³C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebner, and V. Petrov, Phys. Rev. B 74, 174114 (2006).
- ¹⁴J. M. Cano-Torres, M. D. Serrano, C. Zaldo, M. Rico, X. Mateos, J. Liu, U. Griebner, V. Petrov, F. J. Valle, M. Galan, and G. Viera, J. Opt. Soc. Am. B 23, 2494 (2006).
- ¹⁵A. García-Cortés, J. M. Cano-Torres, X. Han, C. Cascales, C. Zaldo, X. Mateos, S. Rivier, U. Griebner, V. Petrov, and F. J. Valle, J. Appl. Phys. **101**, 063110 (2007).
- ¹⁶M. Rico, A. Méndez-Blas, V. Volkov, M. A. Monge, C. Cascales, C. Zaldo, A. Kling, and M. T. Fernández-Díaz, J. Opt. Soc. Am. B 23, 2066 (2006).
- ¹⁷A. A. Kaminskii, A. Kholov, P. V. Klevtsov, and S. Kh. Khafozov, Phys. Status Solidi A **114**, 713 (1989).
- ¹⁸A. A. Kaminskii, Crystalline Lasers: Physical processes and operating schemes (CRC Press, Boca Raton, FL, 1996).
- ¹⁹A. Brenier, L. C. Courrol, C. Pedrini, C. Madej, and G. Boulon, Phys. Rev. B **49**, 881 (1994).
- ²⁰B. Yao, Y. Wang, Y. Ju, and W. He, Opt. Express **13**, 5157 (2005).
- ²¹M. A. Reis and L. C. Alves, Nucl. Instrum. Methods Phys. Res. B 68, 300 (1992).
- ²²J. Hanuza, A. Benzar, A. Haznar, M. Maczka, A. Pietraszko, and J. H. van der Maas, Vib. Spectrosc. **12**, 25 (1996).
- ²³M. Rico, U. Griebner, V. Petrov, P. Ortega, X. Han, C. Cascales,

and C. Zaldo, J. Opt. Soc. Am. B 23, 1083 (2006).

- ²⁴ A. Méndez-Blas, V. Volkov, C. Cascales, and C. Zaldo, J. Alloys Compd. **323-324**, 315 (2001).
- ²⁵A. Méndez-Blas, M. Rico, V. Volkov, C. Cascales, C. Zaldo, C. Coya, A. Kling, and L. C. Alves, J. Phys.: Condens. Matter 16, 2139 (2004).
- ²⁶ M. Rico, V. Volkov, C. Cascales, and C. Zaldo, Chem. Phys. **279**, 73 (2002).
- ²⁷See EPAPS Document No. E-PRBMDO-75-081717 for a brief description of the procedure followed in the crystal field analysis, its theoretical background, and the used routine IMAGE. Calculated energy levels of Ho³⁺ in NaBi(WO₄)₂ and in NaBi(MoO₄)₂, and the three main components of their associated wavefunctions are also included. For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.
- ²⁸C. Zaldo, M. Rico, C. Cascales, M. C. Pujol, J. Massons, M. Aguiló, F. Díaz, and P. Porcher, J. Phys.: Condens. Matter **12**, 853 (2000).
- ²⁹J. Kirton, Phys. Rev. **139**, A1930 (1965).
- ³⁰D. E. Wortman and D. Sanders, J. Chem. Phys. **53**, 1247 (1970).
- ³¹J. Magariño, J. Tuchendler, J. P. D'Haenens, and A. Linz, Phys. Rev. B **13**, 2805 (1976).
- ³²C. Görller-Walrand and K. Binnemans, in *Handbook on the Physics and Chemistry of Rare Earths*, edited by K. A. Gschneidner, Jr. and L. Eyring (Elsevier Science, Amsterdam, 1998), Vol. 25, Chap. 167, pp. 196–199.

- ³³N. C. Chang, J. B. Gruber, R. P. Leavitt, and C. A. Morrison, J. Chem. Phys. **76**, 3877 (1982).
- ³⁴B. R. Judd, Phys. Rev. **127**, 750 (1962).
- ³⁵G. S. Ofelt, J. Chem. Phys. **37**, 511 (1962).
- ³⁶X. Lu, Z. You, J. Li, Z. Zhu, G. Jia, B. Wu, and C. Tu, J. Phys. D 39, 3755 (2006).
- ³⁷Zh. X. Cheng, Sh. J. Zhang, J. R. Han, H. Ch. Chen, Q. M. Lu, and H. C. Guo, Cryst. Res. Technol. **36**, 449 (2001).
- ³⁸L. A. Riseberg and H. W. Moos, Phys. Rev. **174**, 429 (1968).
- ³⁹K. Tanimura, M. D. Shinn, W. A. Sibley, M. G. Drexhage, and R. N. Brown, Phys. Rev. B **30**, 2429 (1984).
- ⁴⁰C. Cascales, A. Méndez-Blas, M. Rico, V. Volkov, and C. Zaldo, Opt. Mater. (Amsterdam, Neth.) 27, 1672 (2005).
- ⁴¹D. E. McCumber, Phys. Rev. **136**, A954 (1964).
- ⁴²B. F. Aull and H. P. Jenssen, IEEE J. Quantum Electron. 18, 925 (1982).
- ⁴³S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, IEEE J. Quantum Electron. 28, 2639 (1992).
- ⁴⁴ R. Lisiecki, G. Dominiak-Dzik, W. Ryba-Romanowski, and T. Lukasiewicz, J. Appl. Phys. **96**, 6323 (2004); S. Golab, P. Solarz, G. Dominiak-Dzik, T. Lukasiewicz, M. Swirkowicz, and W. Ryba-Romanowski, Appl. Phys. B **74**, 237 (2002).
- ⁴⁵B. M. Walsh, N. P. Barnes, and B. Di Bartolo, J. Appl. Phys. 83, 2772 (1998); B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, J. Appl. Phys. 95, 3255 (2004).