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We study the long-distance behavior of the O�N� model in the presence of random fields and random
anisotropies correlated as �1/xd−� for large separation x using the functional renormalization group. We
compute the fixed points and analyze their regions of stability within a double �=d−4 and � expansion. We
find that the long-range disorder correlator remains analytic but generates short-range disorder whose correlator
develops the usual cusp. This allows us to obtain the phase diagrams in �d ,� ,N� parameter space and compute
the critical exponents to first order in � and �. We show that the standard renormalization group methods with
a finite number of couplings used in previous studies of systems with long-range correlated random fields fail
to capture all critical properties. We argue that our results may be relevant to the behavior of 3He-A in aerogel.
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I. INTRODUCTION

The effect of weak quenched disorder on large-scale prop-
erties and phase diagrams of many-body systems attracted
considerable attention for decades. Despite significant ef-
forts, there still remain many open questions. The prominent
example is the O�N� model in which an N-component order
parameter �the magnetization in the spin system notation� is
coupled to a symmetry-breaking random field. For N=1, it is
known as the random field ising model �RFIM�.1 For N�1,
one has to distinguish the random field �RF� case, where the
order parameter couples linearly to disorder, and the random
anisotropy �RA� case, where the coupling to disorder is bi-
linear. These models are relevant for a variety of physical
systems such as amorphous magnets,2 diluted antiferromag-
nets in a uniform external magnetic field,3 liquid crystals in
porous media,4 critical fluids in aerogels,5 nematic
elastomers,6 and vortex phases of impure superconductors.7

For N=1, the RA model reduces to the random temperature
model, where the randomness couples to the local energy
density as, for example, in diluted ferromagnets.8 In contrast
to the systems with random-temperature-like disorder, the
RF and RA models suffer from the so-called dimensional
reduction �DR�. A straightforward analysis of the Feynman
diagrams giving the leading singularities yields to all orders
that the critical behavior of the RF O�N� model in d dimen-
sion is the same as that of the pure system in d−2
dimensions.9 Consequently, the lower critical dimension is
dlc

DR�N=1�=3 for Ising-type systems and dlc
DR�N�1�=4 for

systems with continuous symmetry. This can elegantly be
demonstrated using supersymmetry.10 However, simple
Imry-Ma arguments show that the lower critical dimension
of the RFIM is dlc�N=1�=2.11 The deviation from DR is also
confirmed by the high-temperature expansion.12 Thus DR
breaks down, rendering standard field theoretic methods use-
less.

Another known problem where the perturbation theory is
spoiled by DR is elastic manifolds in disordered media.
There, two methods were developed to overcome difficulties
related to DR: The Gaussian variational approximation

�GVA� in replica space and the functional renormalization
group �FRG�. The GVA is supposed to be exact in the limit
N→�. Unfortunately, this approach when applied to the RF
problem leads to very complicated equations which do not
allowus to compute the critical exponents.13 Considering the
RF O�N� model, Fisher14 showed that expansion around the
lower critical dimension dlc=4 generates an infinite number
of relevant operators which can be parametrized by a single
function. However, he found that the corresponding one-loop
FRG equation has no analytic fixed point �FP� solution. Only
recently, using the progress in the elastic manifold
problem,15–18 it was realized that the scaling properties of
systems exhibiting metastability are encoded in a nonanalytic
FP. Feldman19 has shown that, indeed, in d=4+� and for
N�Nc�3 �a more precise computation20 gives Nc
=2.834 74�, there is a nonanalytic FP with a cusp at the ori-
gin. This FP provides the description for the ferromagnetic-
paramagnetic phase transition in the RF O�N� model and
allows one to compute the critical exponents which are dif-
ferent from the DR prediction. Recently, Le Doussal and
Wiese20 extended the FRG analysis to two-loop order. The
extension beyond one-loop order is highly nontrivial due to
the nonanalytic character of the renormalized effective ac-
tion, which leads to anomalous terms in the FRG equation.18

The two-loop calculations were also independently per-
formed in Ref. 21, and the truncated exact FRG was pro-
posed in Ref. 22. The more accurate analysis of the FRG
flows for the RF model showed that for N�N*=18+O���
there is a crossover to a FP with weaker nonanalyticity re-
sulting in the DR critical exponents.20–23 A similar picture
was found for the RA O�N� model with the main difference
that Nc=9.4412 and N*=�.20

A more peculiar issue concerns the phase diagram of the
RF and RA models below dlc. It is known that for the RF
model and models with isotropic distributions of random
anisotropies, true long-range order is forbidden below dlc
=4 �for anisotropic distributions, long-range order can occur
even below dlc�.24 However, quasi-long-range order �QLRO�
with zero-order parameter and an infinite correlation length
can persist even for d�dlc. For instance, the GVA predicts
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that the vortex lattice in disordered type-II superconductors
can form the so-called Bragg glass exhibiting slow logarith-
mic growth of displacements.25 This system can be mapped
onto the RF O�2� model, in which the Bragg glass corre-
sponds to the QLRO phase. Indeed, for N�Nc and d�dlc,
the FRG equations have attractive FPs which describe the
QLRO phases of RF and RA models.26 In order to study the
transition between the QLRO phase and the disordered phase
expected in the limit of strong disorder, one has to go beyond
the one-loop approximation. The truncated exact FRG �Ref.
22� and the two-loop FRG �Ref. 20� performed using a
double expansion in ���� and N−Nc give access to a different
singly unstable FP which is expected to control the transi-
tion. Both methods give qualitatively similar pictures of the
FRG flows: the critical and attractive FPs merge in some
dimension dlc

* �N��dlc that is therefore the lower critical di-
mension of the QLRO-disordered transition. For the RF O�2�
model, both methods predict approximately the same lower
critical dimension dlc

* �3.8�1�, and thus, suggest that there is
no Bragg glass phase in d=3. However, one has to take
caution when extrapolating results obtained for small ����
and N−Nc. Moreover, in contrast to the model of Refs. 20
and 26 which belongs to the so-called hard-spin models, the
system studied in Ref. 22 corresponds to “soft spins,” and
thus, is expected to belong to a different universality class. In
terms of vortices, the soft-spin RF model allows for topo-
logical defects which destroy the Bragg glass.

Most studies of the RF and RA models are restricted to
either short-range �SR� correlated disorder or uncorrelated
pointlike defects. However, real systems often contain long-
range �LR� correlated disorder or extended defects in the
form of linear dislocations, planar grain boundaries, three-
dimensional cavities, etc. Systems with anisotropic orienta-
tion of extended defects can be described by a model in
which all defects are strongly correlated in �d dimensions
and randomly distributed over the remaining d−�d dimen-
sions. The case �d=0 is associated with uncorrelated point-
like defects, while extended columnar or planar defects are
related to the cases �d=1 and 2, respectively. The critical
behavior of the O�N� model with random-temperature-like
extended defects was studied in Refs. 27–30 using a pertur-
bative RG analysis in conjunction with a double expansion in
�=4−d and �d.

In the case of an isotropic distribution of disorder, power-
law correlations are the simplest example with the possibility
for a scaling behavior with new FPs and new critical expo-
nents. The critical behavior of systems with random-
temperature disorder correlated as 1/xd−� for large separation
x was studied in Refs. 31–33. The power law can be ascribed
to extended defects of internal dimension �, distributed with
random orientation in d dimensional space. In general, one
would probably not expect a pure power-law decay of corre-
lations. However, if the correlations of defects arise from
different sources with a broad distribution of characteristic
length scales, one can expect that the resulting correlations
will, over several decades, be approximated by an effective
power law.31 Power-law correlations with a noninteger value
� can be found in systems containing defects with fractal
dimension �.34 For example, the behavior of 4He in aerogels

is argued to be described by an XY model with LR correlated
defects.35 This is closely related to the behavior of nematic
liquid crystals enclosed in a single pore of aerosil gel which
was recently studied in Ref. 36, using the approximation in
which the pore hull is considered a disconnected fractal. The
FRG was used to investigate the statics and dynamics of
elastic manifolds in media with LR correlated disorder in
Ref. 37. The critical behavior of the O�N� model with LR
correlated RF was studied in Refs. 38–40. However, the
methods used in these works fail to describe properly the
case of SR correlated RF. Therefore, there is a necessity to
reexamine the critical behavior of the LR RF model using
methods which are successful in the SR case.

In the present paper, we study the LR correlated RF and
RA O�N� models using the FRG to one-loop order. The paper
is organized as follows. In Sec. II, we introduce the LR RF
and RA models, and derive the FRG equations. In Sec. III,
we study the LR RF model. In Sec. IV, we consider the LR
RA model and discuss the application to superfluid 3He in
aerogels. The final section summarizes our results.

II. MODEL AND FRG EQUATIONS

The large-scale behavior of the O�N� symmetric spin sys-
tems at low temperatures can be described by the nonlinear �
model with the Hamiltonian

H�s�� =	 ddx
1

2
��s��2 + V�x,s��� , �1�

where s��x� is the N-component classical spin with a fixed-
length constraint s�2=1. V�x ,s�� is the random disorder poten-
tial, which can be expanded in spin variables as follows:

V�x,s�� = �
�=1

�

�
i1¯i�

− hi1¯i�
��� �x�si1

�x� ¯ si�
�x� . �2�

The corresponding coefficients have simple physical inter-
pretation: hi

�1� is a random field, hij
�2� is a random second-rank

anisotropy, and h��� are general �th tensor anisotropies. As
was shown in Ref. 14, even if the system has only finite
number of nonzero h���, the RG transformations generate an
infinite set of high-rank anisotropies, preserving the symme-
try with respect to rotation s�→−s� if it is present in the bare
model. For instance, starting with only second-rank aniso-
tropy corresponding to the RA model, all even-rank anisotro-
pies will be generated by the RG flow. We will reserve the
notation RA for the systems which have this symmetry and
the notation RF for the systems which do not. In the present
work, we consider the case of Gaussian distributed long-
range correlated disorder with zero mean and cumulants
given by

hi1¯i�
��� �x�hi1¯j�

��� �x�� = 	��	i1j1
¯ 	i�j�

�r1
���	�x − x�� + r2

���g�x

− x��� , �3�

with g�x−x���1/ �x−x��d−�. For the sake of convenience, we
fix the constant in Fourier space, taking g�q�=1/q�.

To average over disorder, we introduce n replicas of the
original system and compute the replicated Hamiltonian
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Hn =	 ddx 1

2�
a

��s�a�2 −
1

2T
�
a,b

R1�s�a�x� · s�b�x��

−
1

2T
�
a,b
	 ddx�g�x − x��R2�s�a�x� · s�b�x���� , �4�

where Ri�z�=��ri
���z�. The properties of the original disor-

dered system �1� and �2� can be extracted in the limit n→0.
According to the above definition of the RF and RA models,
the functions Ri�z� are arbitrary in the case of the RF and
even for the RA. Power counting suggests that dlc=4+� is
the lower critical dimension for both models.40

At criticality or in the QLRO phase, the correlation func-
tions of the order parameter exhibit scaling behavior. In con-
trast to the models with temperaturelike disorder in the mod-
els under consideration, the connected and disconnected
correlation functions may scale with different exponents.
This reflects metastability and the breaking of the DR. For
instance, the connected two-point function behaves as

�s��q� · s��− q�� − �s��q�� · �s��− q�� � q−2+
, �5�

while the disconnected function scales as

�s��q�� · �s��− q�� − �s��q�� · �s��− q�� � q−4+
̄. �6�

Here, s��q� is the Fourier component of the order parameter
and the angle brackets stand for the thermal averaging.
Schwartz and Soffer41 proved that the exponents of the RF
model obey the inequality 2
�
̄. Since in the RA case the
coupling to disorder is bilinear, the Schwartz-Soffer inequal-
ity cannot be applied directly to 
 and 
̄. In the RA case, it
is convenient to introduce the correlation functions of the
form Eqs. �5� and �6� not for s�, but for the field mi= �si�2

−1/N, and define exponents 
2 and 
̄2 which satisfy the
Schwartz-Soffer type inequality: 2
2�
̄2.26 Vojta and
Schreiber42 generalized this inequality to correlated RF and
obtained a more restrictive bound 2
−��
̄ since ��0. For
RA models, similar arguments lead to 2
2−��
̄2.

To derive the one-loop FRG equations, we straightfor-
wardly generalize the methods developed in Refs. 14, 26,
and 37 to model �4�. We express the order parameter s�a as a
combination26

s�a�x� = n�a�x��1 − �� a
2�x� + �� a�x� �7�

of a fast field �� a fluctuating at small scales ��q��0 which
is orthogonal to a slow field n�a of unit length, changing at
scales q��. Here, �0 is the UV cutoff and ��0. The field
n�a can be considered as the coarse-grained order parameter
�local magnetization� whose fluctuations at low temperature
are small, ��� a

2�1. Integrating out the fast variables �� a, we
rescale in such a way that the effective Hamiltonian of the
slow fields n�a would have the structure of the bare Hamil-
tonian �4�. It is convenient to change variable to z=cos �.
The FRG equations to first order in � and � are given by43

��R1��� = − �R1��� +
1

2
�R1���� + R2�����2 − AR1���� − �N − 2�

�2AR1��� + AR1����cot � −
1

2 sin2 �
�R1����

+ R2�����2� , �8a�

��R2��� = − �� − ��R2��� − ��N − 2��2R2��� + R2����cot ��

+ R2�����A , �8b�

where ��ª−� /� ln �. We have absorbed the factor of
1 / �8�2� in redefinition of R and introduced

A = R1��0� + R2��0� . �9�

In terms of the variable �, the functions Ri��� become peri-
odic with period 2� in the RF case and � in the RA case.
The flow equation for the temperature to one-loop order
reads

�� ln T = − �d − 2� − �N − 2�A . �10�

According to Eq. �10�, the temperature is irrelevant for d
�2 and sufficiently small A. Although we expect A
=O�� ,	� in the vicinity of a FP, one has to take caution
whether the found FP survives in three dimensions.26 The
scaling behavior of the system is controlled by a zero-
temperature FP of Eqs. �8a� and �8b� �R1

* ,R2
* ,A*�, such that

��Ri
*=0. An attractive FP describes a phase, while a singly

�unidirectionally� unstable FP describes the critical behavior.
The critical exponents are determined by the FRG flow in the
vicinity of the FP and to one-loop order are given by


 = − A*, 
̄ = − � − �N − 1�A*, �11a�


2 = − �N + 2�A*, 
̄2 = − � − 2NA*. �11b�

It is convenient to introduce the following reduced variables:

ri��� = Ri���/�� − �� , �12a�

a = A/�� − �� , �12b�

�̂ = �/�� − �� . �12c�

To check the stability of the FP �r1
* ,r2

* ,a�, we linearize the
flow equations around this FP: ri���=ri

*���+yi��� and ob-
tain

�y1��� = − �̂y1��� + �r1
*���� + r2

*������y1���� + y2�����

− ay1���� − a0r1
*���� − �N − 2��2a0r1

*���

+ a0r1
*����cot � + 2ay1��� + ay1����cot � − �r1

*����

+ r2
*������y1���� + y2�����/sin2 �� , �13a�

�y2��� = − y2��� − a0��N − 2��2r2
*��� + r2

*����cot ��

+ r2
*����� − a��N − 2��2y2��� + y2����cot ��

+ y2����� , �13b�

LONG-RANGE CORRELATED RANDOM FIELD AND… PHYSICAL REVIEW B 75, 174206 �2007�

174206-3



where we have introduced the eigenvalues � �measured in
units of �−�� and defined a0=y1��0�+y2��0�. The FP is attrac-
tive if all �i fulfill the inequality ��−���i�0. A singly un-
stable FP has only one eigenvalue �1 such that ��−���1

�0, which determines the third independent exponent

� = 1/��1�� − ��� . �14�

This exponent characterizes the divergence of the correlation
length in the vicinity of transition.

III. LONG-RANGE RANDOM FIELD O„N… MODEL

We now focus on the phase diagram and critical behavior
of the LR RF O�N� model. Kardar et al.38 studied the critical
behavior of the LR RF O�N� model using a �̄=duc−d expan-
sion around the upper critical dimension duc=6+�. They
found that, to lowest order in �̄, the critical properties are that
of a pure system in d−2−� dimensions; however, this gen-
eralized DR was found to fail at higher orders. Chang and
Abrahams39 applied to the LR RF O�N� model a low-
temperature version of the RG. Expanding around the lower
critical dimension dlc=4+�, they obtained the RG recursion
relations for the three parameters T, �1, and �2, which in our
notation correspond to �i=−Ri��0�. As we have shown in the
previous section, the truncated RG neglects an infinite num-
ber of relevant operators. They found the nontrivial zero-
temperature FP, which in our notation 	i=�i / ��−�� reads

	1
* =

1

��̂ − 1��N − 3�2 , 	2
* =

�̂�N − 3� − N + 2

��̂ − 1��N − 3�2 . �15�

The correlation length exponent � is determined by Eq. �14�,
with the relevant eigenvalue �1 given by

�1
T =

N − 2

N − 3
−

�̂

2
+

�̂

2
�1 +

4�N − 2 − �̂�N − 3��
�̂2�N − 3�2 . �16�

Note that the expression for the relevant eigenvalue reported
in Ref. 39 is incorrect and gives values which are several
times larger than that computed using Eq. �16�. Although the
truncated RG scheme when applied to the model with only
SR correlated RF ��2=0� results in the DR FP �1DR

* =� / �N
−2� and exponent �DR=1/�, the exponent �16� differs from
the generalized DR prediction �DR=1/ ��−��. Nevertheless,
one may doubt about the applicability of the truncated RG to
the LR RF O�N� model even if the DR is broken.

We now reexamine the long-distance behavior of the LR
RF O�N� model by means of the full one-loop FRG derived
in Sec. II. Equation �8b� is linear in the function r2��� and
can be solved analytically. The FP solution fulfilling the RF
boundary condition, i.e., 2� periodicity, is given by

r2
*��� = − r2

*��0�cos � , �17�

which is an analytic function. Note that the analyticity of the
LR part of the disorder correlator was also revealed in the
elastic manifold problem.37 This also gives us the FP value
of a,

aLRRF
* = −

1

N − 3
, �18�

which, following Eq. �11a�, completely fixes the values of
the critical exponents 
 and 
̄,


LR =
� − �

N − 3
, 
̄LR =

2� − �N − 1��
N − 3

. �19�

Exponents �19� satisfy the generalized Schwartz-Soffer in-
equality at equality. This is at variance with the SR RF mod-
els, where the Schwartz-Soffer inequality was found to be
strict,19 but in agreement with the results for the LR RF
spherical model with long-range interactions.42 One may
conjecture that the generalized Schwartz-Soffer inequality is
satisfied as equality for any N including the LR RF Ising
model,42 but there is no argument that this persists in higher
orders of loop expansion.

Let us first discuss the critical behavior of the LR RF
model above the lower critical dimension, ���. Note that
−aLRRF

* exactly coincides with 	1
*+	2

* given by Eq. �15�.
Therefore the truncated RG would give the same values of 

and 
̄ as the full FRG, at least to first order, in � and � if
these exponents would be computed in Ref. 39. To obtain the
function r1

*��� and the amplitude r2
*��0�, we integrate Eq.

�8a� numerically. Since the coefficients of Eq. �8a� are sin-
gular at �=0 and �, to compute the solution in the vicinity
of these points, we use expansions of r1

*��� in powers of ���
and ��−��2, respectively. The expansion around 0 is com-
pletely determined by the value of r1

*��0�,

r1
*��� =

2�N2 − 4N + 3�r1
*��0� + N − 1

2�N − 3���N − 3��̂ − 2�N − 2��

+
r1

*��0��2

2
±

�r1
*��0���̂ − 1��N − 3�2 + 1

3�N − 3��N + 2
���3 + O��4� ,

�20�

while to get the explicit expansion around � we need know
r1

*��0� and r1
*����:

r1
*��� = �N − 1�

�
��r1

*��0� + r1
*������N − 3� + 1�2 + 2r1

*�����N − 3�
2�N − 3���N − 3��̂ − 2�N − 2��

+
r1

*������ − ��2

2
+ O��� − ��4� . �21�

From Eq. �20�, we see that the SR part of the disorder cor-
relator is nonanalytic at small �, so that we have to distin-
guish the left and right derivatives. In what follows, we
adopt r1

�n��0��r1
�n��0+�. We use numerical integration to con-

tinue the solutions given by expansions �20� and �21� inside
the interval �0,�� and match them by adjusting the shooting
parameters r1

*��0� and r1
*����. Only the series with “�” in

Eq. �20� can be matched with the solution computed using
expansion �21�. Following the third term of Eq. �20�, the FP
solution exists only if −r1

*��0��	1
*. We found that this in-

equality is always strict, however, the difference r1
*��0�
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− �−	1
*� becomes smaller in the limit of large N. Thus the

truncated RG fails to give the correct values of r1
*��0� and

r2
*��0� although it gives the correct sum. Consequently, the

relevant eigenvalue �1 and the exponent � obtained from the
truncated RG are also expected to be incorrect. The com-
puted values of r1

*��0� and r1
*���� are shown in Table I.

Let us check the stability of FPs. First, we examine the
stability of the SR FP �rSR

* , r2=0, aSR
* =rSR

*� �0�� found numeri-
cally in Ref. 26. Linearized about the FP, Eq. �13b� can be
solved analytically giving y2=cos � and �=−1−aSR

* �N−3�.
The SR FP is stable against the introduction of LR disorder if
��−����0. Taking into account that 
SR=−��−��aSR

* and

̄SR=−�− �N−1���−��aSR

* , we can rewrite the criterion of
the SR FP stability in the following form:

� � 2
SR − 
̄SR, �22�

which was derived using general RG scaling arguments in
Ref. 40. The regions of stability of the LR and SR FPs are
shown in Fig. 1. Tissier and Tarjus �TT� argued that for N
�18, the cuspy SR FP becomes more than once unstable, but
a different critical �singly unstable� SR TT FP arises with the
function R1

*��� being only p�N times differentiable at the
origin.21 Although this weak nonanalyticity should reflect
some metastability in the system,20 it leads to the DR critical
exponents. According to Eq. �22�, the SR TT FP is stable
with respect to the LR correlated disorder for N�18 and

1 � �̂ � �N − 2�/�N − 3� . �23�

We now check the stability of the LR RF FP �r1
*���, r2

*���,
a=−1/ �N−3��. Substituting the LR FP in Eqs. �13a� and
�13b�, we obtain y2���=cos � and

a0 = −
�

1 + r1
*��0��N − 3�

. �24�

To compute the eigenfunction y1��� and eigenvalue �, we
solve Eq. �13a� numerically using shooting and imposing the
2�-periodic boundary condition. The obtained values of �1
are shown in Table I. As one can see from the table, the
relevant eigenvalues �1 computed using the full FRG, and

consequently, the exponent �, differ significantly from that
obtained using the truncated RG. The critical exponents are
expected to be continuous functions of �, �, and N. In the
region controlled by the SR FP the correlation length expo-
nent is �SR=1/�, independent of N.21 The first line in Table I
corresponds to a point on the borderline separating the re-
gions of stability �see Fig. 1�, and thus, on the borderline we
indeed have �SR=�LR. We checked that the second eigen-
value �2 computed at the LR FP vanishes exactly on the
borderline, indicating that the LR FP becomes twice unstable
in the region dominated by the SR FP. We also looked for an
analog of the TT phenomena in the presence of LR corre-
lated disorder and found that for

TABLE I. LR RF model above the lower critical dimension dlc=4+�. The FP values of r1
*��0�, r1

*���� and
the relevant eigenvalue �1 computed numerically for different N and �̂. The last column is the relevant
eigenvalue �1

T obtained from the truncated RG scheme of Ref. 39 and computed using Eq. �16�.

N �̂ r1
*��0� r1

*���� �1 �1
T

4 1.271 −1.0000 0.5811 1.271 2.429

2 −0.4657 0.0891 1.218 2.000

3 −0.3320 0.0041 1.198 1.618

4 −0.2668 −0.0207 1.192 1.414

5 2 −0.1743 0.0192 1.167 1.366

3 −0.1132 −0.0073 1.160 1.225

4 −0.0819 −0.0138 1.144 1.158

6 2 −0.0941 0.0080 1.145 1.215

3 −0.0549 −0.0058 1.127 1.135

FIG. 1. The stability regions of various FPs corresponding to
different patterns of the critical behavior above the lower critical
dimension, ���. The borderline between the SR and LR FPs is
computed numerically using Eq. �22�; the borderline between the
SR TT and LR TT regions is given by Eq. �23� and that between the
LR and LR TT regions by Eq. �25�. Inset: Schematic phase diagram
on the �� ,�� plane for a particular value of N� �3,18�. The solid
line is �=�; the dashed and dotted lines are given by Eqs. �22� and
�25�, respectively.
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�̂ �
2�N + 7 + 6

N − 3
�25�

there is a crossover to a different singly unstable LR FP of a
TT type with the function R1

*��� being only p�N times dif-
ferentiable at the origin and R2

*����cos �. The values of
R1��0� and R2��0� at the LR TT FP are simply given by Eq.
�15�. Thus, the LR TT FP leads to the critical exponents �19�
and the relevant eigenvalue �16� obtained from the truncated
RG.

Finally, we discuss the LR RF O�N� model below the
lower critical dimension, ���. For N�3, the FRG equa-
tions have two attractive FPs: the SR and LR, which describe
the SR QLRO and LR QLRO phases, respectively. The
phase diagram computed from the stability analysis of differ-
ent FPs is depicted in Fig. 2. The exponents characterizing
the power-law behavior of the connected and disconnected
correlation functions in the LR QLRO phase are given by
Eq. �19�. The physically interesting case N=2 describing the
Bragg glass phase in the presence of the LR correlated dis-
order was considered by one of the authors in Ref. 37. In the
Bragg glass, the displacements u�x� of a periodic structure
�e.g., vortex lattice� grow logarithmically as (u�x�−u�0�)2

=Ad ln�x�. Note that in Ref. 37 the period was fixed to 1
while in the present work it is 2�, so that the relation be-
tween the universal amplitude Ad and the exponent 
 is
given by 
=2�2Ad. For N=2, the crossover from SR QLRO
with the critical exponents 
SR= ����2 /9 and 
̄SR= ����1
+�2 /9� to LR QLRO with the exponents 
LR= ���+� and

̄LR=2���+� happens for �̂�9/�2 �see Fig. 2�.

IV. LONG-RANGE RANDOM ANISOTROPY O„N… MODEL

In this section, we study the LR RA case which corre-
sponds to �-periodic functions ri���. Equation �8b� has a
family of �at most� �-periodic solutions which can be ex-
pressed as polynomials in cos � of power p with

ap
* =

1

4p2 + 2�p − 1��N − 2�
, p = 1,2, . . . . �26�

For instance, for p=1, we have

r2
*��� =

1

8N
�4r1

*��0� − 1��Ncos2 � − 1� , �27�

aLRRA
* =

1

4
, �28�

and for p=2, we have a2
*=1/ �2N+12� and

r2
�2� =

2�N + 6�r1
�2���0� − 1

8�N + 1��N + 2��N + 6�
�3 − 6�N + 2�cos2 � + �N + 2�

��N + 4�cos4 �� .

The stability analysis shows that due to the inequality ap
*

�a1
*�aLRRA

* for p�2 and N�2, all FPs with p�2 are un-
stable. It can be easily seen for N=2 when the functions r2

�p�

�p�2� become �/p-periodic, and thus, are unstable with re-
spect to a �-periodic perturbation. Henceforth we consider
only the LR FP determined by Eqs. �27� and �28�, which give
the following values of the critical exponents


LR =
� − �

4
, 
̄LR =

�

4
�N − 1� −

�

4
�N + 3� , �29�


2LR =
�� − ���N + 2�

4
, 
̄2LR = − � +

N

2
�� − �� . �30�

Exponents �30� satisfy the generalized Schwartz-Soffer in-
equality 2
2−��
̄2 also at equality. Analogously to the LR
RF model, in order to obtain the function r1

*���, we solve Eq.
�8a� numerically using shooting and imposing the �-periodic
boundary condition. Since the coefficients of Eq. �8a� are
singular at �=0, we use an expansion of r1

*��� in powers of
��� which reads

r1
*��� =

�N − 1��1 − 8r1
*��0��

16�N − 2 + 2�̂�

+
r1

*��0��2

2
±�1 +

16r1
*��0���̂ − 1�

N + 2

���3

12
+ O��4� .

�31�

As one can see from Eq. �31�, the SR disorder correlator
r1

*��� has a cusp at the origin. Only the solution with “�” in
Eq. �31� fulfills all conditions.

We now check the stability of the SR RA FP with respect
to the LR correlated disorder. Analogously to the RF case,
linearized around the FP, Eq. �13b� allows for an analytical
solution giving y2=N cos2 �−1 and �=−1+4aSR. The SR
FP is stable if ��−����0, which can be rewritten as

� � 2
2SR − 
̄2SR. �32�

Above the lower critical dimension, ���, inequality �32�
holds for all N�Nc=9.4412 so that the SR FP is stable with
respect to the weak LR correlated disorder. Although the LR

FIG. 2. Phase diagram of the RF model below the lower critical
dimension, d�4+������.
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correlated disorder does not change the critical behavior for
N�Nc, it can modify the critical behavior which should exist
for N�Nc but which is not accessible in the one-loop
approximation.19,20

Below dlc, the LR RA model cannot develop a true long-
range order, but there can exist different types of QLRO. The
SR QLRO phase is controlled by the SR RA FP, with
r1

*���=rSR
* ��� and r2

*���=0 computed in Ref. 26. It was
found to be stable in the subspace of the SR correlated dis-
order for N�Nc=9.4412. We find that it is also stable with
respect to the LR correlated disorder for � fulfilling inequal-
ity �32�. The LR QLRO phase is controlled by an attractive
LR RA FP with �-periodic functions r1

*�0 and r2
*�0, which

we computed numerically by integrating Eq. �8a� with the
initial condition given by Eq. �31� and using r1

*��0� as a
shooting parameter. The exponents describing the correlation
functions in the LR QLRO phase are given by Eqs. �29� and
�30�. Note that below dlc we have 
�0. To check the stabil-
ity of the LR RA FP, we substitute it in Eq. �13b� and obtain
y2=N cos2 �−1 and

a0 =
2�N

4r1
*��0� − 1

. �33�

The eigenfunction y1��� and eigenvalue � are computed nu-
merically using shooting. This allows us to determine the
stability regions for different QLRO phases, which are
shown in Fig. 3. As one can see from Fig. 3, in contrast to
SR QLRO, LR QLRO can exist even for 4�d�4+� and
N�Nc.

The above results may be relevant for the behavior of 3He
in aerogels. It has recently been observed in NMR experi-
ments that the phase A of 3He confined in aerogel exhibits
two different types of magnetic behavior called c and f
states.44 Depending on the cooling, one can obtain either a
nearly pure c state or a mixed f +c state, which gives two
overlapping lines c and f in the transverse NMR spectrum.
Although the pure f state has not been observed, there is an
evidence that the f +c state is inhomogeneous and consists of
regions with two different magnetic orders c and f .44 The

order parameter of the 3He-A can be parametrized by the

complex vector � and the real unit vector d̂, which charac-
terize the orbital and magnetic anisotropy, respectively.45

Only the orbital part of the order parameter given by the real

unit vector l̂= �i /2��� ,�*� interacts with the aerogel matrix,
which can be treated as quenched random anisotropy disor-

der. The spin part d̂ is not coupled directly to the disorder,

but there is a weak spin-orbit �dipole� interaction between l̂
and d̂ which generates the NMR frequency shift. In Ref. 46,
the existence of the two states was interpreted in terms of

different “random textures” of the field l̂ in the Larkin-
Imry-Ma state �QLRO phase in our notation�. The measured
dependencies of the transverse NMR signal on the tipping
angle can be explained if one assumes that in the c state the

vectors l̂ and d̂ are almost uncorrelated, while in the f state
they are partially locked. This is possible if in the c state the
characteristic length of the texture, i.e., the Larkin length, is
much smaller than the characteristic length of the dipole in-
teraction, L�D, while in the f state they are of the same
order.46 However, the nature of different random textures ex-
hibiting different characteristic length scales is not clear. Al-
ternatively, one can try to interpret the f state as a network of
topological defects pinned by the aerogel.46 We argue that
these two different states may be the SR and LR QLROs
found above in the LR RA model. Indeed, aerogel is a porous
medium formed by tangled silicon strands which exhibit a
fractal mass distribution. NMR and small-angle x-ray scat-
tering experiments give the mass-to-distance relation M
�xdf, with the fractal dimensions df varying in the range of
1.4–2.4 depending on the fabrication process. This scaling
holds up to the fractal correlation length, which can exceed
100 nm.47 Thus, the effective RA disorder is expected to be
long-range correlated with �=df up to the scale of the fractal
correlation length or even more.35 As a result the SR QLRO
phase is unstable to formation of islands with LR QLRO �see
Fig. 3�. To compute the Larkin length, one has to solve the
flow equations �8a� and �8b� starting from a particular bare
disorder correlator and looking for the scale at which the
cusp is developing.37 We can estimate the Larkin length us-
ing Flory-type arguments.26 Assuming that J is an elastic
constant and R is a strength of disorder, we obtain LSR
��J /R�2/� and LLR��J /R�2/��−�� for the SR and LR disor-
ders, respectively. For aerogel, we have �=1 and �
�1.4, . . . ,2.4 so that the Larkin lengths in both phases may
differ significantly. This can explain the experimentally ob-
served coexistence of regions with different spin states. Fur-
ther investigations, however, are clearly needed.

V. SUMMARY

In this work, we investigated the long-distance properties
of the O�N� model with random fields and random anisotro-
pies correlated as 1/xd−� for large separation x. We derived
the functional renormalization group equations to one-loop
order, which allows us to describe the scaling behavior of the
models below and above the lower critical dimension dlc
=4+�. Using a double �=d−4 and � expansion, we ob-

FIG. 3. Phase diagram of the RA model below the lower critical
dimension, d�4+������.
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tained the phase diagrams and computed the critical expo-
nents to first order in � and �. For the LR RF model, we
found that the truncated RG developed in Ref. 39 to study
the critical behavior above the lower critical dimension is
able to give the correct one-loop values of exponents 
 and

̄, but not the phase diagram and the critical exponent �
except for the region controlled by the weakly nonanalytic
LR TT FP. Thus, although the truncated RG overcomes the
dimensional reduction, it fails to reproduce all properties
which can be obtained using the functional renormalization
group. We found a different LR QLRO phase existing in the
LR RF model below the lower critical dimension for N�3
and determined the regions of its stability in the �� ,� ,N�
parameter space. We obtained that the weak LR correlated
disorder does not change the critical behavior of the RA
model above dlc for N�Nc=9.4412, but can create a differ-
ent LR QLRO phase below dlc. The existence of two QLRO
phases in LR RA systems may explain the two different

states of 3He-A in aerogel observed recently in NMR
experiments.44 However, many questions are still open. In
particular, the paramagnetic-ferromagnetic transition should
exist also for N�Nc, though it was not found in the one-loop
approximation. Even for the SR correlated disorder, it is still
unclear whether it remains perturbative.19,20 It would also be
interesting to find a connection with the replica symmetry-
breaking picture.48
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