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We employ correlated density-matrix theory of strongly correlated Bose fluids to analyze the structural
properties of quantum Boltzmann liquids. The constituents of such a normal quantum system are distinguish-
able as in a classical fluid since the interparticle forces prevent any exchange of identical bosons at short
relative distances. Our study focuses on this particle-screening effect and on its consequences for the properties
of various correlation functions, structure functions, momentum distributions, and quasiparticle and collective
excitations. The formalism of the adopted microscopic theory is applied to a detailed numerical investigation
of particle-screening properties and the quantum behavior of liquid para-hydrogen close to the triple point
temperature. The theoretical results are compared with numerical data of path-integral Monte Carlo simulations
and with available experimental results of recent cross-section measurements by neutron scattering.
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I. INTRODUCTION

The structure of correlated quantum fluids is determined
by the effects of dynamical correlations, particle exchange,
and interparticle phase correlations. Theoretical information
on these correlations and other equilibrium properties of in-
terest is stored in the N-body density matrix that completely
describes the thermodynamic state of the fluid. Correlated
density-matrix �CDM� theory1,2 is a powerful and efficient
tool to extract such information from the associated one-
body and two-body reduced density-matrix elements and the
corresponding Fourier transforms.

CDM theory is, in spirit, nonperturbative and therefore
able to deal with quantum correlations of arbitrary strengths.
At zero temperature, the CDM approach specializes to the
correlated basis-functions theory3,4 that has been very suc-
cessfully applied to analyze correlated ground states of quan-
tum liquids such as liquid helium5 and quantum spin
lattices.6

In the present study, we perform a CDM analysis of a
special class of strongly correlated normal Bose fluids that
may be called quantum Boltzmann liquids. A prototype of
such a system is liquid para-hydrogen close to the triple
point temperature. At appropriate temperatures and particle
densities, the strongly repulsive interactions existing at short
relative distances between and among the constituents are
capable of screening their exchange. As a consequence, the
particles of such a system remain distinguishable as they are
at high temperatures in the classical thermodynamic regime,
although the liquid exhibits significant quantum-mechanical
effects.

Moving the correlated Bose system closer to the normal-
phase boundary, the screening of particle exchange becomes
incomplete and the particles no longer follow the classical
exchange behavior. Finally, at the Bose-Einstein transition
line, the bosonic exchange correlations develop long-range
order in coordinate space and the particles are completely
indistinguishable.

CDM theory of the normal phase of a boson fluid is built
on a systematic construction of the associated Helmholtz free

energy F as a functional of the static liquid structure function
S�k�, the quasiparticle momentum distribution nqp�k�, and the
occupation-number density ncoll�k� of the collective excita-
tions. These functions are subsequently optimized by exploit-
ing a minimum principle for the thermodynamic potential F.
They may be calculated as solutions of three corresponding
Euler-Lagrange equations. The optimal functions S�k�,
nqp�k�, and ncoll�k� may then serve as input quantities to cal-
culate associated functions of interest such as the radial dis-
tribution function g�r�, the one-body reduced density-matrix
elements, excitation energies, etc. The development of this
CDM formalism has been reported in Refs. 1 and 2.

We employ and specialize the CDM theory for a formal
analysis of the structure and excitations of quantum Boltz-
mann liquids. The formalism is then applied to a numerical
study of the properties of liquid para-hydrogen. We concen-
trate on the calculation of the radial distribution function
g�r�, the structure function S�k�, the exchange correlation
functions, and, in particular, the cyclic exchange structure
function Scc�k� at a temperature T=16.5 K and at three dif-
ferent particle-number densities corresponding to experimen-
tal pressures of 1, 40, and 80 bar. We extend the numerical
analysis by calculating the collective excitation energy, the
quasiparticle energy, and the momentum distribution as func-
tions of wave number k. A detailed numerical analysis is
presented on the one-body reduced density matrix n�r�, the
corresponding momentum distribution n�k� of a hydrogen
molecule in the liquid, and the phase-phase correlation func-
tion P�r�.

The numerical study confirms that liquid para-hydrogen
close to the triple point temperature is a typical quantum
Boltzmann liquid. We demonstrate this property by a com-
parison between the numerical results derived within CDM
theory �i� without any assumptions on possible screening ef-
fects and �ii� assuming complete screening of particle ex-
change from the outset. We further demonstrate the existence
of significant quantum effects in the hydrogen liquid. The
total kinetic energy is much larger than classical theory pre-
dicts. This well-known property is caused by the presence of
strong phase-phase correlations in the liquid induced by the
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particle-particle interactions. Moreover, there are distinct de-
viations of the kinetic-energy distribution in momentum
space from the classical Maxwell distribution.7 These theo-
retical results are compared with experimental results of re-
cent measurements of neutron-scattering cross sections.8 To
check the accuracy of the CDM results on the radial distri-
bution function g�r� of liquid para-hydrogen, we have also
performed path-integral Monte Carlo �PIMC� simulations9,10

at the same temperature and pressures. We found excellent
numerical agreement at the low pressure of 1 bar. At high
pressures, we found minor differences between the results of
both methods for g�r� at relative distances r�4 Å. We at-
tribute them to the neglect of spatial triplet-correlation ef-
fects within the present realization of CDM theory.2

We begin our study with a general formal CDM analysis
of function g�r� and the corresponding liquid structure func-
tion S�k� of a strongly correlated normal Bose fluid �Sec. II�.
Assuming complete screening of particle exchange by
strongly repulsive interactions at short relative distances, we
specialize the formalism to deal with quantum Boltzmann
liquids. Both algorithms are then applied to a numerical
study of liquid para-hydrogen. Here and in Sec. III, we dis-
cuss the suppression of quantum-mechanical exchange ef-
fects and its consequences on the quasiparticle momentum
distribution and excitation spectra. In Sec. IV, we investigate
the off-diagonal elements of the one-body reduced density
matrix, their spatial structure, and the interplay between par-
ticle exchange and phase-phase correlations. We further ana-
lyze the momentum distribution, the total kinetic energy, and
the kinetic-energy distribution in momentum space. The for-
mal CDM results are supported by numerical results on the
hydrogen system. We conclude the paper with a summary
and a brief outlook in Sec. V.

II. RADIAL DISTRIBUTION FUNCTION

The radial distribution function of a homogeneous normal
system of N free or interacting bosons �in the thermodynamic
limit, i.e., N and volume V to infinity, with particle-number
density �=N /V kept constant� may be decomposed into1

g�r� = 1 + Gdd�r� + 2Gde�r� + Gee�r� . �1�

The terms Gdd�r�, Gde�r�, and Gee�r� in Eq. �1� represent the
direct-direct �or dynamical� correlations, the direct-
exchange, and the exchange-exchange portions, respectively.
These components are induced by the interactions between
and among the constituents of the fluid and by the particle
exchange. CDM theory1,2 provides explicit expressions and
hypernetted-chain �HNC� relations for these correlation func-
tions.

The sum �1� may be cast in the product form

g�r� = �1 + Gdd�r��F�r� �2�

that gives a clean separation of dynamic and exchange ef-
fects. The exchange factor F�r� involves the classical statis-
tical factor �cc�k� and �in diagrammatic HNC notation� nodal
and elementary pieces associated with the exchange-
correlation functions appearing in Eq. �1�. CDM theory gives
the explicit relation

F�r� = Fcc
2 �r� + �1 + Nde�r� + Ede�r��2 + Nee�r� + Eee�r� ,

�3�

with the cyclic exchange component

Fcc�r� = �cc�r� + Ncc�r� + Ecc�r� . �4�

The optimization of all these functions for a specific nor-
mal Bose system within CDM theory may be achieved by
solving the Euler-Lagrange equation �cf. Eq. �19� of Ref. 2�

�−
�2

m
�2 + v�r� + w�r� + vcoll�r� + vqp�r���g�r� = 0. �5�

This equation may be interpreted as an effective Schrödinger
equation for the square root of the radial distribution function
with energy eigenvalue zero at given temperature T and den-
sity �. Input quantity is the interparticle potential v�r�. Equa-
tion �5� involves the induced potential w�r� and the effective
potentials vcoll�r� and vqp�r�, which account for the coupling
to the phonon and/or roton field and to the quasiparticle ex-
citations, respectively. These components are functionals of
the structure function S�k� and of the occupation numbers
ncoll�k� of the collective excitations and nqp�k� of the quasi-
particle excitations. In momentum space, the induced poten-
tial and the Fourier transform of the coupling term vcoll�r�
read, respectively,

w�k� = −
1

2
�0�k��1 + 2S�k���1 − S−1�k��2 �6�

and

vcoll�k� = −
1

2
�0�k���1 + 2ncoll�k��2 − 1	S−2�k� , �7�

where �0�k�=�2k2 /2m is the kinetic energy of a single boson
of mass m. The effective potential vqp�r� can be evaluated
with the help of the CDM algorithm.1,2

For free bosons, portions Gdd�r� and Gde�r� are identically
zero and the quantum-mechanical exchange-correlation func-
tion Gee�r� is completely determined by the cyclic exchange
correlations described by the spatial distribution Gcc�r�.
Thus, the decompositions �1�–�4� specialize to

g�r� = F�r� = 1 + Gee�r� = 1 + Fcc
2 �r� �8�

and

Fcc�r� = �cc�r� + Ncc�r� . �9�

In this case, the Schrödinger equation �5� can be analytically
solved since the potentials v�r� and vcoll�r� are identically
zero. The optimal functions g�r� and Fcc�r� are determined
by the familiar Bose distribution

Fcc�k� = �cc�k��1 − �cc�k��−1, �10�

with

�cc�k� = exp�− ���0�k� − �0�	 . �11�

The corresponding chemical potential �0 follows from the
condition Fcc�r=0�=1 that takes account of the total number
N of constituents of the Bose gas. Thus, a normal free Bose
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gas is completely characterized by circular exchange corre-
lations. The radial distribution function g�r� coincides with
function F�r� and is positive at any finite relative distance.
There is no screening of exchange effects, since for nonin-
teracting particles the first factor in Eq. �2� is unity. However,
in dynamically correlated systems, this factor can be substan-
tially altered depending on the short-range properties of the
interaction potential since the correlation function Gdd�r�
may be negative and not small. For example, the potential
v�r� for liquid para-hydrogen11 is strongly repulsive at rela-
tive distances r	2 Å, and thus, one has practically Gdd�r�
=−1 in this region of coordinate space. The repulsion be-
tween and among the H2 molecules in the liquid prevents
close encounters and, consequently, the exchange of particles
is suppressed since the function F�r�−1 is also of short
range. It practically vanishes outside the repulsive region at
temperatures close to the triple point. Under such thermody-
namic conditions, the Bose system can be characterized by

�1 + Gdd�r���F�r� − 1� 
 0. �12�

The expressions �1� and �2� for the radial distribution func-
tion specialize, therefore, to

g�r� = 1 + Gdd�r� . �13�

Liquid para-hydrogen close to the triple point tempera-
ture is a typical member of this class of quantum Boltzmann
liquids. More explicitly, we may characterize these quantum
systems within CDM theory by the properties Gde�r�
0,
Gee�r�
0, F�r�
1, and vqp�r�
0. With these specializa-
tions, the application of the CDM formalism reduces to a
rather elementary numerical task. The Euler-Lagrange equa-
tion �5� may be solved by employing the techniques devised
in Ref. 12.

We have performed a detailed numerical calculation of
the radial distribution function g�r� and the associated struc-
ture function S�k� for the hydrogen liquid at T=16.5 K and
pressures of 1, 40, and 80 bar. The corresponding particle-
number densities are interpolated experimental data13 and are
listed in Table I. We have solved Eq. �5� by adopting the
Silvera-Goldman potential11 as input without assuming the
presence of particle-screening effects. In a separate calcula-
tion, we have assumed at the outset that the hydrogen system
is a perfect quantum Boltzmann liquid; i.e., we have set F�r�
to unity and vqp�r� to zero. The numerical results of the two
differing procedures agree excellently. The agreement, there-
fore, confirms that liquid para-hydrogen has, indeed, the
properties of a quantum Boltzmann liquid.

Figures 1 and 2 represent our numerical results on func-
tion g�r� at T=16.5 K and pressures of 1 and 80 bar. We see
that the repulsive part of the Silvera-Goldman potential pro-

hibits the molecules from entering the hard-core region, r
	2 Å, where the exchange factor F�r� differs from unity. As
expected, at high pressures �up to 80 bar�, the shell structure
of the spatial correlations is distinctly more pronounced than
the structure found at low pressure.

To check the accuracy of the CDM results, we have per-
formed PIMC simulations9,10 for the radial distribution func-
tion at the same temperature and pressures. For comparison,
these results on function g�r� are also displayed in Figs. 1
and 2. At the pressure of 1 bar, there is very good agreement
between the results by CDM and the simulation results. At
higher pressures, small differences begin to appear. At
80 bar, the stochastic results show somewhat larger ampli-
tudes of the oscillations in the shell structure beyond the
main maximum at about r=3.5 Å. The very small differ-
ences may be caused by, at present, the neglected elementary
contribution in the adopted HNC/0 approximation and/or by
ignoring triplet factors in the employed ansatz for the gen-

TABLE I. Listed are interpolated experimental data �Ref. 13� of
particle-number densities � of liquid para-hydrogen corresponding
to the temperature T=16.5 K and three different pressures.

Pressure �bar� 1 40 80

Density �Å−3� 0.02235 0.02327 0.02413

FIG. 1. Numerical results on the radial distribution function g�r�
of liquid para-hydrogen at temperature T=16.5 K and pressure of
1 bar: calculated by CDM theory �broken line� and compared with
results by PIMC simulations �solid line�.

FIG. 2. Same as Fig. 1 but at high pressure �80 bar�. The PIMC
results show a more pronounced shell structure beyond the main
maximum at about 3.5 Å than the results of CDM theory.
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eration of the N-body density matrix.1,2 To study this subtle
matter systematically, one has to generalize the CDM for-
malism by replacing the currently employed Jastrow ansatz
for the N-body density matrix with a trial Feenberg form.14,15

We point out that our results on function g�r� are compa-
rable with PIMC results reported in Ref. 16.

To demonstrate the complete screening of exchange cor-
relations in liquid para-hydrogen, we have plotted our CDM
results on functions F�r�−1 and g�r�=1+Gdd�r� at the pres-
sure of 1 bar in Fig. 3. The broken �dotted� line displays the
results on the exchange function F�r� assuming Bose �Bolt-
zmann� statistics. The dynamical �de� and �ee� contributions
to this function do not increase the screening range since
they are extremely small at distances r�2.5 Å. We recog-
nize, in agreement with Eq. �12�, that for all practical con-
siderations F�r�−1 and g�r� do not overlap as it should be
for a quantum Boltzmann liquid.

The liquid structure function S�k� is evaluated in CDM
theory as well as in the PIMC procedure by numerical inte-
gration of the results for g�r�,

S�k� = 1 + �� �g�r� − 1�e−ikrdr . �14�

The numerical results on S�k� for the hydrogen liquid at T
=16.5 K and high pressure of 80 bar are displayed in Fig. 4.
The PIMC results on function �14� are calculated without
adopting any standard tail corrections.17 The large oscilla-
tions of the stochastic data compared with the results by
CDM are artifacts of the simulations which have to be done
in a box of relatively small size. This restriction is dictated
by the methodological limitations of the stochastic method.
To eliminate the spurious oscillations, the PIMC approach
utilizes Verlet’s recipe17 by smoothly extrapolating the radial
distribution function g�r� to large enough relative distances r
via a damped oscillatory function.16 No extrapolation is

needed in CDM theory since the Euler-Lagrange equation �5�
can and has been solved in a sufficiently large interval of
relative distances 0
r
330 Å. We note that the PIMC data
for the structure function S�k� given in Ref. 16 display a
main peak of magnitude S�kmax�
2.17 at kmax
2.1 Å−1.
These data agree very well with our numerical results on
S�k� by CDM and PIMC.

CDM theory is therefore an efficient and accurate tool for
investigating microscopic properties of quantum Boltzmann
liquids. In particular, we may derive reliable theoretical data
on the isothermal compressibility and sound velocity of the
system by calculating S�k� in the limit of vanishing wave
number k �for further discussions see Sec. IV�.

The dependence of the liquid structure function of the H2
liquid at temperature T=16.5 K on the particle density �or
pressure� is represented in Fig. 5. Plotted are CDM results at
three pressures �1, 40, and 80 bar�. The main peak increases
with increasing pressure as expected.

FIG. 3. CDM results on the exchange factor F�r�−1 of Eq. �3�
for liquid para-hydrogen at T=16.5 K and pressure of 1 bar com-
pared with the corresponding dynamical factor 1+Gdd�r� �Eq. �13��.
The exchange functions do not overlap with function g�r�, thus
confirming the validity of the Boltzmann condition �Eq. �12��.

FIG. 4. Theoretical structure function S�k� of liquid para-
hydrogen at T=16.5 K and high pressure �80 bar�. The broken line
shows numerical results by CDM. They are compared with results
of PIMC simulations �solid line� without adopting the standard tail
corrections prescribed in Ref. 16 �see text�.

FIG. 5. CDM results on the liquid structure function S�k� at
pressures of 1, 40, and 80 bar. The peak height increases with in-
creasing pressure as expected.
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III. QUASIPARTICLES AND COLLECTIVE EXCITATIONS

Cyclic exchange correlations in normal Bose systems de-
velop long-range order at sufficiently low temperatures and
trigger the transition to a Bose-Einstein condensed phase.
These correlations play, therefore, a particular role in the
CDM formalism. They are embodied in the cyclic correlation
function Gcc�r� and the associated exchange structure func-
tion Scc�k�. CDM theory provides the product
decomposition1,2

Gcc�r� = �1 + Gdd�r��Fcc�r� , �15�

with the cyclic exchange factor Fcc�r� defined in Eq. �4�. Its
dimensionless Fourier transform represents function Scc�k�.
Formal analysis reveals that we may write in momentum
space �cf. Eqs. �4.8� and �4.10� of Ref. 1�

Scc�k� = ��cc�k� + Xcc�k���1 − �cc�k� − Xcc�k��−1. �16�

The explicit form �16� involves the statistical factor �cc�k�
and the non-nodal portion Xcc�k� of the exchange structure
function. For free Bose gases, Xcc�k� is identically zero and
expression �16� specializes to the familiar result �10� with the
statistical factor �11�. At the Bose-Einstein transition, the
Bose function diverges at vanishing wave number k, signal-
ing the onset of long-range order of particle exchange in
coordinate space. For correlated normal Bose fluids, function
Xcc�k� differs from zero and the transition to the condensed
phase is indicated by the property �cc�0�+Xcc�0�=1 at k=0.

In thermodynamic phase space, a correlated Bose liquid
must, therefore, be sufficiently far from the region of the
condensed states in order to exhibit the properties of a quan-
tum Boltzmann liquid. The cyclic exchange correlations in
coordinate space must be of appropriate short range, other-
wise they cannot be screened by the repulsive particle-
particle interaction at short relative distances. Complete
screening is achieved if the condition

�1 + Gdd�r��Fcc�r� 
 0 �17�

is met. In this case, the cyclic exchange-correlation function
Gcc�r� and the structure function Scc�k� vanish or must be
negligibly small compared to unity. According to Eq. �16�,
we can further conclude that the non-nodal dynamic correla-
tions completely cancel the kinematic statistical distribution,
�cc�k�+Xcc�k�=0.

CDM theory addresses the quasiparticle concept for cor-
related normal Bose fluids by introducing the associated mo-
mentum distribution1,2

nqp�k� = �cc�k��1 + Scc�k�� . �18�

Evidently, for quantum Boltzmann liquids, expression �18�
reduces to

nqp�k� = �cc�k� . �19�

Since the optimal statistical function �cc�k� turns out to be of
Gaussian form, the quasiparticle momentum distribution of a
quantum Boltzmann liquid is represented by the familiar
classical expression

nqp�k� = ��3 exp�− ��0�k�� , �20�

with the thermal wavelength �= �2���2 /m�1/2. For liquid
para-hydrogen at T=16.5 K, its value is �=3.03 Å. The
Fourier transform

nqp�r� = exp�− �� r

�
2� �21�

may be appropriately called the one-body reduced density
matrix that corresponds to the quasiparticle momentum dis-
tributions �19� and �20�. Thus, the quasiparticles are distin-
guishable and noninteracting objects with a kinetic energy
�0�k� and obey classical Boltzmann statistics. The average
kinetic energy of all N quasiparticles is, therefore, given by
the classical result E0= 3

2NkBT. These properties distinctively
differ from those of the actual constituents in a quantum
liquid. For example, the momentum distribution n�k� of a H2

molecule in liquid para-hydrogen differs from expression
�20�. The particle properties will be analyzed in Sec. IV.
There we show that the quasiparticle energy E0 is only one
portion that contributes to the total kinetic energy of the
fluid.

In addition to the quasiparticle excitations just discussed,
a correlated Bose liquid may also support collective excita-
tions with zero chemical potential and energy coll�k� at mo-
mentum �k. Their occupation-number density in momentum
space is1,2

ncoll�k� = �exp��coll�k�� − 1	−1. �22�

At the present level of development of CDM theory, we de-
termine the dispersion law of the collective excitations via
the generalized Feynman equation1,12,18

coll�k� = �0�k�S−1�k�coth�1

2
�coll�k�� �23�

in conjunction with the renormalized Bogoliubov equation

coll
2 �k� = �0�k���0�k� + 2vph�k�� . �24�

This equation involves the Fourier transform vph�k� of the
so-called particle-hole potential12

vph�r� = g�r�v�r� + �g�r� − 1��w�r� + vcoll�r�� +
�2

m
���g�r��2,

�25�

where the Fourier transforms w�k� of w�r� and vcoll�k� of
vcoll�r� are given by Eqs. �6� and �7�, respectively. Expres-
sion �25� and the Bogoliubov equation �24� are then em-
ployed within a systematic iteration procedure to calculate
the numerical dependence of the energy spectrum coll�k� on
wave number k. Relation �23� ignores the so-called backflow
effects at atomic wavelengths. However, for liquid para-
hydrogen, such backflow corrections are of little interest,
since the experimentally observed collective excitations at
large wave numbers k are strongly damped.19

Figure 6 displays the numerical results on the energy
branch coll�k� for the hydrogen liquid at T=16.5 K and
pressures of 1, 40, and 80 bar. The theoretical results are
compared with available experimental data.19 The theoretical
dispersion law is of the typical phonon and/or roton form. It
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is completely determined by the dynamical correlations and
not affected by particle exchange in the hydrogen fluid. This
is apparent from Eq. �23�, since the spectrum has a simple
relationship with the liquid structure function S�k� and there-
fore also with the radial distribution function g�r� that only
depends on the dynamical correlations Gdd�r� �Eq. �13��.
However, it may be that the theoretical results presented
have to be corrected if so-called backflow effects are incor-
porated in the CDM approach. They are neglected in the
present realization of the CDM theory.

A comparison between the theoretical results and the ex-
perimental findings is rather intricate. Reference 19 provides
a detailed discussion of the inherent problems from the ex-
perimental point of view. It is clear that the CDM results and
the data extracted from measurements should be close to
each other at wave numbers k where damping effects are
minimal, i.e., near the roton minimum and in the hydrody-
namic regime of small k. In the other momentum ranges, the
experimental data are not comparable to the present theoret-
ical results, since the former data describe quantities that are
dressed by the damping and the latter ones correspond to
deltalike peaks.

Concentrating on the properties at low wave numbers, we
see from Fig. 5 of Ref. 19 that our CDM results agree well
with the theoretical results of simulations reported in Ref. 19
�open circles in Fig. 5 therein�. The linear phonon spectrum
coll�k�=�cTk calculated by CDM yields the theoretical iso-
thermal speed of sound cT��� �see Table II�.

We refrain from a detailed comparison of our theoretical
results with experimental data extracted from neutron-
scattering measurements since the hydrodynamic regime,
where cT��� could be well determined, is far below the
smallest wave number, k=0.3 Å−1, reached by experiment.

We have also listed in Table II the corresponding theoret-
ical results on the isothermal compressibility �T= �mcT

2��−1 in
the hydrodynamic regime of liquid para-hydrogen. Thermo-
dynamic relations further permit extracting numerical data

on S�k=0� from the phonon speed in the hydrodynamic re-
gion via S�0�=�T�T and also from the particle-hole potential
�25� through the generalized Bogoliubov equation �24� in the
limit of vanishing wave number, namely, S�0�=T /vph�k=0�.
These data are also reported in Table II as results �a� and �b�,
respectively. The difference of about 10%–15% is presum-
ably due to the accumulation of small numerical inaccuracies
in our numerical iteration procedure. Data reported in Ref.
16 on S�0� are smaller than our present results. These theo-
retical and experimental problems deserve further studies in
their own right. Here, they would lead us away from the
primary topic of the structural effects of particle exchange in
quantum fluids.

IV. PHASE-PHASE CORRELATION FUNCTION

In contrast to the diagonal elements of the two-body re-
duced density matrix, the off-diagonal elements of the one-
body density depend not only on dynamical correlations and
particle exchange but also on spatial correlations between
and among the phase factors of the single-particle wave
functions which contribute to the full N-body density matrix
of the system. The latter correlations are, of course, absent in
free Bose gases since the phases are uncorrelated in an
N-particle state represented by a product of N single-particle
factors.

The spatial phase-phase correlations existing in a corre-
lated Bose fluid, in particular, in a quantum Boltzmann liq-
uid, are characterized within the CDM algorithm by the dis-
tribution function P�r� normalized to unity at r=0. The
magnitude of these correlations is measured by the strength
parameter p0. Their relation to the off-diagonal elements n�r�
of the one-body reduced density matrix reads20

n�r� = N0�r�exp�p0�P�r� − 1�	 . �26�

The product �26� represents a generic decomposition that has
been analyzed in detail in Ref. 20 by employing a diagram-

FIG. 6. Theoretical energy coll�k� of the collective excitations
in liquid para-hydrogen at T=16.5 K and pressures of 1, 40, and
80 bar calculated from Eq. �23� within CDM theory. The results are
compared with available experimental data of Ref. 19 measured at
1 bar �vertical lines indicate experimental error bars�.

TABLE II. Theoretical results by CDM theory on the isothermal
speed of sound cT, the isothermal compressibility �T, and the value
S�0� of the structure function S�k� at zero wave number k. Numbers
are calculated at temperature T=16.5 K and three pressures. Results
on S�0� are derived by employing two different numerical proce-
dures, �a� and �b�. For comparison, we have also listed numerical
data at T=17.1 K reported in Ref. 16. For a detailed discussion, see
the corresponding text.

T=16.5 K

Pressure �bar� 1 40 80

cT �m/s� 772 872 957

�T �1/bar� 224 169 135

S�0� �a� 0.1221 0.1005 0.0909

S�0� �b� 0.1143 0.0896 0.0743

T=17.1 K

Pressure �bar� 16.2 29.9

S�0� from Ref. 16 0.065 0.059
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matic classification algorithm. Function N0�r� is entirely de-
scribed by cyclic �cc� contributions. For noninteracting
bosons, its Fourier transform is represented by the familiar
Bose distribution function �cc�k��1−�cc�k�	−1 with a Gauss-
ian form �cc�k�=exp����0−�0�k��	. For an interacting Bose
system, the cyclic exchange factor N0�r� is, of course,
dressed by dynamical insertions. The exponential factor, in
contrast, is represented by dynamical direct-direct diagrams
and generated by the particle-particle interactions. Reference
20 gives an explicit account of the �dd� contributions to func-
tion Q�r�=Q�0�P�r� with ln nc=Q�0�=−p0. Functions N0�r�
and P�r� are suitably normalized to unity at r=0.

The cyclic exchange function N0�r� may be calculated by
employing the CDM and/or HNC decomposition

N0�r� = �cc�r� + Nc�r� + Ec�r� . �27�

Reference 20 reports a detailed diagrammatic derivation of
expression �27� in terms of the statistical function �cc�r�, the
nodal component Nc�r�, and the elementary portion Ec�r�.
Similarly, the short-ranged correlation function P�r� may be
expressed by CDM in the form

− p0P�r� = Npdd�r� + Epdd�r� . �28�

The momentum distribution n�k� of a single particle in the
liquid may be calculated as the Fourier transform of expres-
sion �26�. The kinetic-energy distribution in momentum
space is given by the product �0�k�n�k�. The total kinetic
energy Ekin of the fluid then follows by summing over all
momenta. However, it is more illuminating to employ the
equivalent relation

Ekin

N
= −

�2

2m
��2n�r��r=0. �29�

Inserting the structural result �26� in Eq. �29� and assuming
that functions N0�r� and P�r� depend quadratically on r at
small relative distances, we arrive at the energy decomposi-
tion

Ekin = E0 + p0Ep, �30�

with the portions

E0

N
= −

�2

2m
��2N0�r��r=0 �31�

and

Ep

N
= −

�2

2m
��2P�r��r=0. �32�

Equations �31� and �32� provide a clean separation of ex-
change effects from phase-phase correlation effects.

Before turning to an analysis of function n�r� and related
quantities �27�–�32� for the class of quantum Boltzmann liq-
uids, we look for comparison at the case of a free normal
Bose gas. Here, the strength p0 vanishes identically and the
exchange factor N0�r� specializes to the Fourier transform of
function �10� with the statistical factor �cc�k� of Eq. �11�.
Thus, the one-body reduced density matrix �26� coincides
with the quasiparticle analog nqp�r�. The total kinetic energy

per particle is then completely given by the energy portion
�31�.

By screening of particle exchange in quantum Boltzmann
liquids, the short-ranged quantities Nc�r� and Ec�r� in decom-
position �27� may be ignored. Thus, we are left with

N0�r� 
 �cc�r� 
 exp�− �� r

�
2� . �33�

Consequently, quantity �31� just yields the familiar classical
result for the total energy of distinguishable free Boltzmann
particles,

E0

N
=

3

2

�2

m

2�

�2 =
3

2
kBT . �34�

We can, therefore, conclude that the increase in kinetic en-
ergy of a quantum Boltzmann liquid compared with its clas-
sical counterpart originates from the presence of quantum-
mechanical phase-phase correlations.

Table III lists numerical results on the total kinetic energy
per particle, Ekin /N, and the energy contribution per particle,
p0Ep /N, associated with the phase-phase correlations in liq-
uid para-hydrogen at T=16.5 K and at the pressures of 1, 40,
and 80 bar. The theoretical data on the total kinetic energy
are results of PIMC simulations. The classical energy portion
�34� has the numerical value E0 /N=24.75 K. The correlation
component p0Ep is given by the difference Ekin−E0. The the-
oretical results may be compared with experimental results
extracted from recent neutron cross-section data by an appro-
priate fitting procedure at the same temperature and
pressures.8 The results differ typically by about 10%–15%.
Our theoretical results on the total kinetic energy per particle
are close to the results given for this quantity in Ref. 21.

TABLE III. Theoretical results by CDM and experimental re-
sults of Ref. 8 on various quantities characterizing quantum prop-
erties of liquid para-hydrogen at T=16.5 K and pressures of 1, 40,
and 80 bar. Shown are data for the total kinetic energy per particle,
Ekin/N, the quantum component p0Ep /N, the correlation strength
p0, the correlation length �p, the wavelength �G of the classical
thermal Gauss distribution, and the total energy shift �− induced by
the phase-phase correlation embodied in the kinetic-energy
distribution.

Theoretical data fit �CDM�
Pressure �bar� 1 40 80

Ekin/N �K� 62.7±0.4 65.5±0.5 69.6±0.5

p0Ep /N �K� 37.9±0.4 40.7±0.5 44.9±0.5

p0 1.83 1.91 2.06

�p �Å� 3.31 3.31 3.31

�G �Å� 1.90 1.86 1.81

�− �K� −9.4 −9.5 −9.8

Experimental data fit �cf. Ref. 8�
Ekin/N �K� 67.78±0.26 73.49±0.40 77.51±0.39

p0Ep /N �K� 43.03±0.26 48.74±0.40 52.76±0.39

�G �Å� 1.84 1.76 1.71

�− �K� −6.0 −5.0 −5.0
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The phase-phase correlation function P�r� for the hydro-
gen liquid is calculated by employing the CDM algorithm of
Ref. 20 in conjunction with the HNC/0 approximation that
neglects the elementary contribution Epdd�r� appearing in ex-
pression �28�. The numerical results are plotted in Fig. 7.
Function P�r� is almost independent of pressure and well
represented at short relative distances by a Gaussian distri-
bution with a correlation length �p,

P�r� 
 exp�− �� r

�p
2� as r → 0. �35�

For liquid para-hydrogen at T=16.5 K, we find the numeri-
cal value �p�3.31 Å. Thus, the phase-phase correlations
have a larger spatial range compared with the thermal wave-
length �=3.03 Å associated with the quasiparticles. With Eq.
�35� the total kinetic energy �30� may be cast in the explicit
form

Ekin

N
=

E0

N
�1 + p0� �

�p
2� . �36�

Equation �36� permits a straightforward calculation of the
strength factor p0 by inserting our numerical results on the
energies Ekin and E0 and on the parameters � and �p. The
theoretical results are presented in Table III. We note that the
numerical results on the parameters �p and p0 depend sensi-
tively on the numerical determinations of the curvature of
function P�r� at short relative distances r.

We may extract more detailed information on quantum
effects in a quantum Boltzmann liquid by a formal and nu-
merical analysis of the distribution of the kinetic energy in
momentum space. The dependence of function �0�k�n�k� on
wave number k for liquid para-hydrogen is represented in
Fig. 8. The theoretical results �upper frame� may be com-
pared with the corresponding experimental results �lower
frame� taken from Ref. 8. The CDM calculations yield a

slightly higher maximum of the theoretical energy distribu-
tion of approximately 2.4 K at a wave number kmax

1.5 Å−1 than is experimentally derived �
2.3 K� at kexp


1.7 Å−1. The maxima are almost independent of pressure.
However, as expected, the theoretical results as well as the
experimental data show an increase of kinetic energy at
larger wave numbers if the pressure is raised toward the so-
lidification point.

We stress that this analysis of particle-exchange effects
and its comparison with experimental data require a numeri-
cal calculation and an experimental determination of the mo-
mentum distribution

n�k� = �� n�r�e−ikrdr . �37�

Knowledge of the value of the total kinetic energy of the
system is, therefore, not enough. For this reason, we compare
the results of CDM theory with available data on n�k� from
Ref. 8 and also employ, for consistency, the results on the
total kinetic energy reported in this publication. There are
some published experimental values for the kinetic energy
that are closer to our theoretical results. Reference 21 reports
�see Tables II–IV therein� three “model-dependent” determi-
nations Ekin /N=63.5±0.4, 65.0±0.2, and 64.2±0.3 K. Fur-
ther experimental and PIMC data for a dense hydrogen sys-
tem are presented in Ref. 22.

The quantum effects embodied in function �37� become
apparent by comparing with the corresponding classical
Maxwell-Gauss kinetic-energy distribution, �0�k�nG�k�. The
classical momentum distribution nG�k� is of the familiar
Gaussian form

nG�k� = ��G
3 exp�− ��0�k�� , �38�

with an effective wavelength �G defined by

FIG. 7. Results by CDM theory on the phase-phase correlation
function P�r� of liquid H2 at temperature T=16.5 K. The correla-
tions are practically independent of pressure and well represented at
short relative distances by a Gaussian function with correlation
length �p. The dotted curve displays the results for P�r� obtained
from the limit �35� with �p=3.31 Å �Table III�.

FIG. 8. Kinetic-energy distribution �0�k�n�k� of liquid H2 at
temperature T=16.5 K and pressures of 1, 40, and 80 bar. Upper
frame displays the results by CDM theory; lower frame shows cor-
responding experimental data of Ref. 8.
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�G = � E0

Ekin
1/2

� . �39�

Relation �39� ensures that the total kinetic energy EG associ-
ated with the classical Gaussian distribution �38� is equal to
the total kinetic energy �29� and �30� of the correlated Bolt-
zmann liquid. Insertion of the theoretical values for the quan-
tities E0, Ekin, and � for the hydrogen liquid at T=16.5 K
yields the data shown in Table III at pressures of 1, 40, and
80 bar.

The difference

��k� = �0�k��n�k� − nG�k�� �40�

provides a quantitative measure of the deviation from the
classical Maxwell-Gauss distribution for a quantum Boltz-
mann liquid. Numerical results on function �40� calculated
for the hydrogen liquid by CDM are displayed in Fig. 9
�upper frame�. Experimental results are also shown in this
figure �lower frame�.

CDM theory and experiment demonstrate significant de-
viations from the classical energy distribution characterized
by ��k�=0. In both cases, quantum-mechanical zero-point
fluctuations shift kinetic-energy portions from an intermedi-
ate region of momenta centered at wave number k

2.5 Å−1 and where ��k�	0 to smaller wave numbers lo-
cated around k
1 Å−1. The effect is less pronounced in the
results extracted from experiment. At the pressure of 1 bar,
the total energy shift from the negative region, ��k�	0,
amounts to �−
−9.4 K as calculated by CDM, in contrast to

a value of about �−
−6.7 K extracted from experimental
data �Table III�. At the present level of numerical accuracy as
well as of the experimental precision of measurement, this
discrepancy is acceptable but should await more refined in-
vestigations in the future.

V. CONCLUSIONS AND OUTLOOK

CDM theory of strongly correlated normal Bose fluids has
been employed to analyze the spatial correlations and struc-
ture of quantum Boltzmann liquids. The general formalism
has been properly specialized to deal with such quantum
many-body systems. The theory has been applied to a de-
tailed numerical study of microscopic properties of liquid
para-hydrogen close to the triple point temperature.

We have investigated dynamical correlations, statistical
correlations, particle-exchange effects, phase-phase correla-
tions, momentum distributions, kinetic-energy distributions,
and properties of excitations. The results demonstrate that
liquid para-hydrogen, in the region of phase space consid-
ered, behaves like a typical quantum Boltzmann liquid.

Such systems exhibit characteristic properties: �i� com-
plete screening of particle-exchange correlations in the diag-
onal elements g�r� of the two-body reduced density matrix,
�ii� distinguishability of quasiparticles moving with kinetic
energy �0�k�, �iii� classical Gaussian dependence on relative
distance of the exchange factor N0�r� appearing in the one-
body reduced density-matrix elements n�r�, �iv� an increase
of the total kinetic energy Ekin caused by phase-phase corre-
lations, and �v� quantum-mechanical deviations of the
kinetic-energy distribution in momentum space from the
classical Maxwell-Gauss dependence �0�k�nG�k� on wave
number k.

Reported here are detailed numerical results on the most
interesting physical properties of the hydrogen liquid at a
temperature T=16.5 K and in a range of particle densities.
The numerical results on the kinetic-energy distribution and
related functions have been compared with experimental data
measured under the same thermodynamic conditions.

CDM theory may be employed to study the properties of
other strongly correlated Bose systems and, in particular, of
the more specialized quantum Boltzmann liquids such as liq-
uid deuterium or helium under appropriate thermal condi-
tions. In the case of liquid helium, we could further analyze
the transition from complete screening of particle exchange
to partial screening at lower temperatures and the disappear-
ance of screening close to the Bose-Einstein condensation
line.

Some efforts are required to proceed with CDM theory to
a quantitatively reliable analysis of strongly correlated Bose
liquids in the Bose-Einstein condensed phase at elevated
temperatures close to the transition to the normal phase.
CDM theory provides adequate analytic tools for this
task.2,23 Encouraging numerical studies on superfluid helium
toward this goal have been reported in Refs. 2 and 24.

FIG. 9. Displayed are numerical results of CDM theory on the
difference ��k� �cf. Eq. �40�� that measures the quantum-
mechanical deviation from the corresponding classical Maxwell-
Gauss energy distribution for the hydrogen system at T=16.5 K and
pressures of 1, 40, and 80 bar. Upper frame: Theoretical results by
CDM; lower frame: experimental data of Ref. 8 �see the discussion
in Sec. IV�.
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