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We analyze nonlocal effects in electron transport across three-terminal normal-superconducting-normal
�NSN� structures. Subgap electrons entering the S electrode from one N metal may form Cooper pairs with their
counterparts penetrating from another N metal. This phenomenon of crossed Andreev reflection—combined
with normal scattering at SN interfaces—yields two different contributions to nonlocal conductance which we
evaluate nonperturbatively at arbitrary interface transmissions. Both these contributions reach their maximum
values at fully transmitting interfaces and demonstrate interesting features which can be tested in future
experiments.
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At sufficiently low temperatures Andreev reflection1 �AR�
dominates charge transfer through an interface between a
normal metal and a superconductor �NS�: An electron propa-
gating from the normal metal with energy below the super-
conducting gap � enters the superconductor at a length of
order of the superconducting coherence length �, forms a
Cooper pair together with another electron, while a hole goes
back into the normal metal. As a result, the net charge 2e is
transferred through the NS interface which acquires nonzero
subgap conductance.2

In hybrid NSN structures with two N terminals, electrons
may penetrate into a superconductor through both NS inter-
faces. Provided the superconductor size �distance between
two NS interfaces� L strongly exceeds �, AR processes at
these interfaces are independent. If, however, the distance L
is smaller than or comparable with �, two additional nonlocal
processes come into play �see Fig. 1�. First, an electron with
subgap energy propagating from one N metal can penetrate
through the superconductor into another N electrode with the
probability �exp�−L /��. Secondly, an electron penetrating
into the superconductor from the first N terminal may form a
Cooper pair by “picking up” another electron from the sec-
ond N terminal. In this case a hole will go into the second
�not the first� N metal and, hence, AR turns into a nonlocal
effect. The probability of this process—usually called
crossed Andreev reflection3,4 �CAR�—also decays as
�exp�−L /�� and, in combination with direct electron trans-
fer between normal electrodes, determines nonlocal conduc-
tance in hybrid multiterminal structures which can be di-
rectly measured in experiment.

CAR has recently become a subject of intensive investi-
gations both in experiment5–7 and in theory8–12 �see also fur-
ther references therein�. Although a nonlocal conductance
was observed in all these experiments, an unambiguous and
detailed interpretation of the existing experimental data still
remains a challenge, to a certain extent because in addition to
the above processes a number of other physical effects may
considerably influence the observations. Among such effects
we mention, e.g., charge imbalance �relevant close to the
superconducting critical temperature5,7� as well as zero-bias
anomalies in the Andreev conductance due to both disorder-
enhanced interference of electrons13–15 and Coulomb

effects.15–17 CAR is also sensitive to magnetic properties of
normal electrodes. Although theoretical investigation of the
above physical effects is certainly of interest and may help to
account for some experimental observations, we believe that,
beforehand, it is important to reach quantitative understand-
ing of CAR in simpler situations when �at least some of� the
above effects can be disregarded.

As in most cases metallic interfaces are not fully transpar-
ent, AR is usually combined with normal electron scattering
at such interfaces. The relative “weights” of these two pro-
cesses are determined by interface transmission. In the case
of multiterminal hybrid structures normal reflection, tunnel-
ing, local AR and CAR combine in a complicated and non-
trivial manner. For instance, it was demonstrated8,9 that in
the lowest order in the interface barrier transmission and at
T=0 CAR contribution to cross-terminal conductance is ex-
actly cancelled by that from elastic electron cotunneling,18

while no such cancellation is expected in higher orders in the
transmission.10 However, complete theory of nonlocal phe-
nomena in question which would fully describe an interplay
between all scattering processes to all orders in the interface
transmissions and set the maximum scale of the effect re-
mains unavailable. Such a theory requires nonperturbative
methods and is the main subject of the present work.

The model and formalism. Consider the three-terminal
NSN structure depicted in Fig. 2. We will assume that all
three metallic electrodes are nonmagnetic and ballistic, i.e.,
the electron elastic mean free path is large. Transmissions D1
and D2 of two SN interfaces �with cross sections A1 and A2�
may take any value from zero to one. The distance between
the two interfaces L as well as other geometric parameters

FIG. 1. Two elementary processes contributing to nonlocal con-
ductance of an NSN device: �1� direct electron transfer and �2�
crossed Andreev reflection.
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are assumed to be much larger than �A1,2, i.e., effectively
both contacts are metallic constrictions. In this case the volt-
age drops only across SN interfaces and not inside large me-
tallic electrodes. Hence, nonequilibrium �e.g., charge imbal-
ance� effects related to the electric field penetration into the S
electrode can be neglected. In what follows we will also
ignore Coulomb effects.15–17

For convenience, we will set the electric potential of the S
electrode equal to zero, V=0. In the presence of bias voltages
V1 and V2 applied to two normal electrodes �see Fig. 2� the
currents I1 and I2 will flow through SN1 and SN2 interfaces.
These currents can be evaluated with the aid of the quasi-
classical formalism of nonequilibrium Green-Eilenberger-
Keldysh functions ĝR,A,K.19 In the ballistic limit the corre-
sponding equations take the form

���̂3 + eV�r,t� − �̂�r,t�, ĝR,A,K�pF,�,r,t��

+ ivF � ĝR,A,K�pF,�,r,t� = 0, �1�

where �â , b̂�= âb̂− b̂â, � is the quasiparticle energy, pF

=mvF is the electron Fermi momentum vector, and �̂3 is the
Pauli matrix. The functions ĝR,A,K also obey the normaliza-
tion conditions �ĝR�2= �ĝA�2=1 and ĝRĝK+ ĝKĝA=0. Here and
below the product of matrices is defined as time convolution.

The matrices ĝ and �̂ have the standard form

ĝR,A,K = �gR,A,K fR,A,K

f̃R,A,K g̃R,A,K�, �̂ = � 0 �

− �* 0
� , �2�

where � is the BCS order parameter. The current density is
related to the Keldysh function ĝK as

j�r,t� = −
eN0

4
	 d�
vFSp��̂3ĝK�pF,�,r,t��� , �3�

where N0=mpF /2�2 is the density of state at the Fermi level
and angular brackets 
¯� denote averaging over the Fermi
momentum directions.

The above equations should be supplemented by appro-
priate boundary conditions. In order to match quasiclassical
Green functions at the N and S sides of the SN1 interface
�respectively, ǧN1

and ǧS� we will make use of Zaitsev

boundary conditions20 for matrices ǧ= � ĝR

0
ĝK

ĝA �:

ǧa = ǧN1

+ − ǧN1

− = ǧS
+ − ǧS

−, �4�

ǧa�R1�ǧ+�2 + �ǧ−�2� = D1ǧ−ǧ+, �5�

where ǧ±= ǧN1

+ + ǧN1

− ± ǧS
+± ǧS

−, ǧS
±= ǧS�±px� �see Fig. 3�a��,

R1�px1
��1−D1�px1

�, px1
is the component of pF normal to

the SN1 interface. Green functions at SN2 interface are
matched analogously. Deep inside metallic electrodes S, N1,
and N2 the Green functions should approach their equilib-

rium values ĝR,A= ± ���̂3− �̂� /�R,A in a superconductor and
ĝR,A= ± �̂3 in normal metals, �R,A=���± i	�2−�2. For the

Keldysh functions far from interfaces we have ĝK= ĝR� h+

0
0
h−

�
− � h+

0
0
h−

�ĝA, where h±=tanh��
±eV� /2T�. Voltage in above
expression equals to V=0, V1 and V2 respectively in S, N1
and N2 electrodes. The parameter � is chosen to be real.

Relevant trajectories. Electron trajectories which contrib-
ute to the current I1 through SN1 interface are shown in Fig.
3. Trajectories presented in Fig. 3�a� do not enter the termi-
nal N2 and yield the standard BTK contribution2 to I1. In
addition there exist trajectories �Fig. 3�b�, 3�c�� involving all
three electrodes. They fully account for all scattering
processes—both normal and AR—to all orders in the inter-
face transmissions and determine nonlocal conductance of
our NSN device. As follows from Figs. 3�b�, 3�c� for each
direction of px one can distinguish four different contribu-
tions to non-local conductance corresponding to different tra-
jectory combinations.

Note that applicability of the above quasiclassical formal-
ism with boundary conditions �5� to hybrid structures with
two �or more� barriers is, in general, a nontrivial issue21

which requires a comment. Electrons scattered at different
barriers may interfere and form bound states �resonances�
which cannot be correctly described within a formalism em-
ploying Zaitsev boundary conditions.20 In our geometry,
however, any relevant trajectory reaches each interface only
once whereas the probability of multiple reflections at both
interfaces is small in the parameter A1A2 /L4�1. Hence,
resonances formed by multiply reflected electron waves can
be neglected, and our formalism remains adequate for the
problem in question.

Quasiclassical Green functions. The above equations can
be conveniently solved introducing parametrization of the
matrix Green functions ĝR,A,K by four Riccati amplitudes and
two “distribution functions.”22 This parametrization allows
one to transform Eq. �1� to a set of decoupled equations. It is

FIG. 2. Schematics of our NSN device.

FIG. 3. Quasiclassical trajectories contributing to local �a� and
nonlocal ��b� and �c�� currents.
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also important that nonlinear Zaitsev boundary conditions
�4�, �5� can be rewritten in terms of Riccati amplitudes and
“distribution functions” in a rather simple form.22 Integration
of the resulting equations along the trajectories shown in Fig.
3 is straightforward. Finally we arrive at the following ex-
pression for the Keldysh Green function gN1

K at SN1 interface
�on the N-metal side�

gN1

K = g1,a
K �V1� + g1,b+c

K �V1� + g12,b+c
K �V2� . �6�

Here g1,a
K �V1� comes from the trajectories of Fig. 3�a� respon-

sible for the BTK current at SN1 interface, while two other
terms come from the trajectories of Figs. 3�b�, 3�c� which
also involve N2 electrodes. The term g1,b+c

K �V1� yields a cor-
rection to the BTK term which will be discussed later. The
last contribution g12,b+c

K �V2� accounts for nonlocal conduc-
tance of our device. For positive px1

�0 we have

g12,b+c
K �V2� = 2D1D2

1 − tanh2iL�/vF

P�R1,R2�

� �cR1R2a4 tanh
� + eV2

2T

+ bR2a2 tanh
� − eV2

2T
+ cR1a2 tanh

� − eV2

2T

+ b tanh
� + eV2

2T
� , �7�

where we defined ���R, P�R1 ,R2�= 1−R1R2a2−Q���1
+R1R2a2�+�a�R1+R2��2, Q=�−1tanh iL� /vF, a= ��
−�� /�, b and c equal to unity for trajectories of, respec-
tively, Figs. 3�b� and 3�c� and to zero otherwise. As expected,
Eq. �7� identifies four different contributions entering with
the corresponding amplitudes and reflection coefficients.
Note that only one out of these contributions survives in the
case of reflectionless interfaces. In contrast, for weakly trans-
mitting barriers �R1,2→1� and ��� all four terms enter with
equal prefactors.

As for the function g̃K, at SN1 interface it does not depend
on V2 for positive px1

�0. The values of gK and g̃K for nega-
tive px1

�0 are easily recovered by means of the relation
gK�−pF ,−� ,r , t�= g̃K�pF ,� ,r , t�.

Nonlocal conductance. Substituting the results �6�, �7�
into Eq. �3� we obtain

I1 = I11�V1� + I12�V2� , �8�

I2 = I21�V1� + I22�V2� . �9�

Here I11 and I22 consist of the standard BTK currents2,20 and
CAR terms to be specified later and

I12�V� = I21�V� = −
GN12

2e
	 d��tanh

� + eV

2T
− tanh

�

2T
�

��1 − R1a2��1 − R2a2�
1 − tanh2iL�/vF

P�R1,R2�
, �10�

where D1,2�1−R1,2=D1,2�pF�1,2� and pF�1�2� is normal to

the first �second� interface component of the Fermi momen-
tum for electrons propagating straight between the interfaces

GN12
=

8�1�2N1N2D1D2

RqpF
2L2 �11�

is the nonlocal conductance in the normal state, N1,2
= pF

2A1,2 /4� define the number of conducting channels of
the corresponding interface, Rq=2� /e2 is the quantum resis-
tance unit. Equation �10� represents the central result of our
paper. This expression fully determines nonlocal conduc-
tances of our NSN device at arbitrary transmissions of SN
interfaces.

The differential nonlocal conductance evaluated with the
aid of Eq. �10� at T=0 is presented in Fig. 4 at sufficiently
high interface transmissions. We observe that this quantity
increases sharply around eV�� and approaches the
L-independent �normal� limit at eV��. In the limit
T ,V1,2�� only subgap quasiparticles contribute and the dif-
ferential conductance becomes voltage independent. We have
I12=−G12V2, where

G12

GN12

=
D1D2�1 − tanh2L�/vF�

�1 + R1R2 + �R1 + R2�tanh L�/vF�2 . �12�

The value G12 �12� gets strongly suppressed with
decreasing D1,2 and increasing L, as also seen in Fig. 4.
Note, that the dependence of G12 on L reduces to purely
exponential at all L only in the lowest nonvanishing order
in the transmission of at least one of the barriers, e.g.,
G12�D1

2D2
2 exp�−2L� /vF� for D1,2�1, whereas in general

this dependence is slower than exponential at smaller L and
approaches the latter only at large L�vF /�.

For a given L the nonlocal conductance reaches its maxi-
mum in the case of reflectionless interfaces D1,2=1. Interest-

FIG. 4. �Color online� Differential nonlocal conductance at T
=0 as a function of voltage for D1=0.5, D2=0.8, and different L.
Inset: the same for eV��.

BRIEF REPORTS PHYSICAL REVIEW B 75, 172503 �2007�

172503-3



ingly, in this case for small L�vF /� the conductance G12
identically coincides with its normal state value GN12

at any
temperature and voltage. This result can easily be understood
bearing in mind that for D1,2=1 only trajectories indicated by
horizontal lines in Figs. 3�b�, 3�c� contribute to G12. For L
→0 there is “no space” for CAR to develop on these trajec-
tories and, hence, CAR contribution to G12 vanishes,
whereas direct transfer of electrons between N1 and N2 re-
mains unaffected by superconductivity in this limit.

The situation changes provided at least one of the trans-
missions is smaller than one. In this case scattering at SN
interfaces mixes up trajectories connecting N1 and N2 termi-
nals with ones going deep into and coming from the super-
conductor. As a result, CAR contribution to G12 does not
vanish even in the limit L→0 and G12 turns out to be smaller
than GN12

.
Finally, we would like to briefly address the nonlocal cor-

rection to G11 which arises from the CAR process described
by the term g1,b+c

K �V1� in Eq. �6�. At T ,V1,2�� we have
I11=G11V1, where G11=G1

BTK+	G11. Here G1
BTK is the stan-

dard BTK term

G1
BTK =

8N1

Rq
� vx1



vF

D1
2�px1

�

�1 + R1�px1
��2� , �13�

and for the nonlocal term we obtain

	G11

GN12

=
2�1 + R2��1 − tanh2L�/vF�

�1 + R1R2 + �R1 + R2�tanh L�/vF�2

+
D1��1 + R2 tanh L�/vF�2 + 3�R2 + tanh L�/vF�2�

D2�1 + R1R2 + �R1 + R2�tanh L�/vF�2 .

�14�

As compared to the BTK conductance �13� the CAR correc-
tion �14� contains an extra small factor A2 /L2 and, hence, in
many cases can be neglected. On the other hand, since CAR
involves tunneling of one electron through each interface, for
small D1�1 and D2�1 we have 	G11�D1, i.e., for D1
� �A2 /L2�exp�−2L� /vF� the CAR contribution �14� may
well exceed the BTK term G1

BTK�D1
2.

In summary, we have developed a theory of nonlocal elec-
tron transport in ballistic NSN structures with arbitrary inter-
face transmissions. Nontrivial interplay between normal scat-
tering, local and nonlocal Andreev reflection at SN interfaces
yields a number of interesting properties of nonlocal conduc-
tance which can be tested in future experiments.
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