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It is shown that the von Neumann entropy, a measure of quantum entanglement, does have its classical
counterpart in thermodynamic systems, which we call partial entropy. Close to the critical temperature, the
partial entropy shows perfect finite-size scaling behavior even for quite small system sizes. This provides a
powerful tool to quantify finite-temperature phase transitions as demonstrated on the classical Ising model on
a square lattice and the ferromagnetic Heisenberg model on a cubic lattice.
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Recently, it is found that quantum phase transitions can be
quantified from the inflections of the quantum entanglement
measures.1–10 Close to the quantum critical point, the von
Neumann entropy, a measure of the quantum entanglement,
shows finite-size scaling behavior. This method is quite pow-
erful and straightforward for finding quantum phase transi-
tions in quantum models because one needs neither a preas-
sumed order parameter nor a considerably large system size.
A natural question arises: Is it possible to generalize this
method to quantify finite-temperature phase transitions in
thermodynamic systems?

There are several established methods to investigate the
finite-temperature phase transitions, such as exact solutions,
mean-field approach, series expansion, renormalization-
group analysis, and numerical evaluation of the partition
function or correlation functions. However, each known
method has its shortcomings. Only few models are exactly
soluble. The mean-field approach needs a preassumed order
parameter and may not be reliable. All the numerical meth-
ods and the renormalization-group analysis need to study
large system sizes with complicated computation processes.
Therefore, it is highly desirable to find an efficient and gen-
eral method to characterize finite-temperature phase transi-
tions in both quantum and classical systems.

In this Brief Report, we point out that the partial entropy,
a counterpart of the von Neumann entropy for thermody-
namic systems, captures the common feature of all phase
transitions, i.e., the information on critical fluctuations. With
two models �one classical and one quantum�, we show that
close to the critical temperature, the derivative of the partial
entropy shows perfect finite-size scaling behavior even for
quite small system sizes. The critical temperature and critical
exponents can be determined by the inflection or the scaling
law of the partial entropy. This provides a powerful tool to
quantify finite-temperature phase transitions in a variety of
interesting models in condensed matter physics.

In the study of quantum phase transitions, one is con-
cerned with the ground-state properties as described by the
density matrix ��0���0�. Crucial information on quantum
correlation or entanglement between a subsystem p and the
rest p̄ exists in the reduced density matrix �p���
� trp̄��0���0�, as is captured in the von Neumann entropy,

Ev=−tr �p ln �p. It has been shown that singular behavior in
the von Neuman entropy occurs as a function of control pa-
rameters as the system goes through a quantum phase
transition.11

The concept of von Neumann entropy can be straightfor-
wardly generalized to thermodynamic systems at finite
temperatures T. The density matrix now reads ��T�
=exp�−H /T� /Z, where H is the Hamiltonian and Z is the
partition function. One can similarly define a reduced ther-
mal density matrix �p�T�=trp̄��T� and consider the partial
entropy Sp�T��−tr �p�T�ln �p�T�=−�n=1

DH pn ln pn, where DH

is the dimension of the Hilbert space of the subsystem p, and
pn are the eigenvalues of �p�T�. For a classical system, the
trace operation is replaced by summing over the classical
states. The partial entropy is determined by the probability
distribution of the subsystem. It also measures the quantum
and classical correlations between the subsystem and the rest
of the system. As is shown below, the partial entropy, in fact,
captures the main feature of the critical fluctuation and there-
fore shows singular behavior close to the critical tempera-
ture. Its inflection gives the information on the critical point.

As our first example, we study the two-dimensional �2D�
Ising model. It is well known that this system is exactly
soluble, undergoing a second-order phase transition12 at Tc
=2/arcsinh�1��2.26919, and its critical behaviors have
been studied very well. It is therefore an ideal system to test
our method. The Hamiltonian is H=−��ij��i

z� j
z, where �i

z

= ±1 is the spin along the z direction on site i and �ij� indi-
cates bonds between nearest-neighbor sites. We consider the
L�L square-lattice case and use the periodic boundary con-
dition. We focus our attention on the subsystem of two
nearest-neighbor sites. The reduced density matrix is ob-
tained by tracing all the spins except those two. Since the
system is translational invariant,13 �p�T� is independent of
the choice of the bond and takes the form �p�T�
= 	1+��T��1

z�2
z
 /4 by a simple symmetry analysis, where

��T� is a parameter depending on the temperature and system
size L. Then we obtain the partial entropy as

Sp�T� = 2 ln 2 −
1

2
�� ln

1 + �

1 − �
+ ln	1 − �2
� . �1�
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Thermal fluctuations increase with temperature, so does
the partial entropy. When T→0, the spins are ordered either
up or down. The parameter ��0�=1 and the partial entropy
takes the minimum value of ln 2. At extremely high tempera-
tures, T→�, all the four states have the same probability to
occur. In this case ����=0, and the partial entropy takes the
maximum value 2 ln 2.14 The partial entropy increases
monotonically between these two extreme values which are
independent of L. More interestingly, the derivative of the
partial entropy Sp��T� has a maximum, corresponding to the
fastest growth of the partial entropy. The peak at the maxi-
mum sharpens as the system size increases �Fig. 1�, and the
maximum value diverges logarithmically with the system
size �Fig. 2�. This singular behavior indicates a critical point
of our system.

Exact calculations are performed for system sizes L
=3–6, and Monte Carlo simulations are done for large sizes

up to L=50. The straight line fit in Fig. 2, Sp��Tm�
=0.420 34 ln L+const, is from the first four points, and it is
also followed nicely by the Monte Carlo data. The tempera-
ture Tm at the peak of Sp��T� shows a size dependence linear
in 1/L �Fig. 3�. Just from the first four points, we find the fit
Tm=2.278 02−0.589 95L−1, which turns out to be also well
followed by the Monte Carlo data for larger sizes. A critical
temperature, Tc=2.278 02, is extracted from the above fit as
the limiting value of Tm at L→�. This is very close to the
exact value of 2.269 19. We have thus seen the effectiveness
of the partial entropy method in providing accurate informa-
tion on the critical point from fairly small system sizes.

We can also study the scaling behavior of the partial en-
tropy as a function of both the system size and temperature.
We observe that Sp��T�−Sp��Tm�
Q	L�T−Tm�
, where the
scaling function Q�x�
C� ln x for large x, and Q�x�
0 for
very small x.15 We find that all the data from different system
sizes L converge to a single curve, which is shown in Fig. 4.
These results establish that finite-size scaling is present in the
partial entropy.

There is a direct relationship between the partial entropy
and thermodynamic quantities, which explains why singular
behavior of the partial entropy can be used to characterize
the critical point and associated scaling properties. We ob-
serve that the density of internal energy may be found as
u�T�=L−2 tr H��T�=−2 trp�p�T���1

z�2
z�=−2��T�. Therefore,

the partial entropy Eq. �1� can be determined uniquely by the
internal energy density u. Moreover, the derivative of the
partial entropy can be found as Sp��T�=Tds�T�ln	�2−u� /
�2+u�
 / �4dT�, where s�T� is the density of entropy of the
whole system and we have used the thermodynamic relation
du /dT=Tds /dT. In the neighborhood of the critical point,
the internal energy density u lies somewhere in the middle of
the interval �−2,0� and varies smoothly with temperature
�with continuous first derivative�. Therefore, the singular

FIG. 1. The derivative of the partial entropy Sp��T� versus tem-
perature for L=3–6 are plotted. A maximum appears at certain
temperature Tm for a given L. On increasing L, the peak becomes
more pronounced and Tm shifts accordingly to the critical tempera-
ture of the 2D Ising model, Tc=2.269 19.

FIG. 2. The maximum values of the derivative of the partial
entropy Sp��Tm� for L=3–6 �black dots� depend linearly on ln L
�dotted line�. Monte Carlo results for larger L=10, 20, 30, 40, and
50 �circles� fall on this straight line, confirming the logarithmic
divergence for a second-order phase transition.

FIG. 3. The peak temperature Tm versus logarithm of the system
size is depicted to quantify the phase transition temperature Tc. The
black dots for L=3–6 are from the exact numerical calculation,
while the circles for larger L=10, 20, 30, 40, and 50 are from the
Monte Carlo simulation. The dotted line is a fit with the formula
Tm=2.278 02−0.589 95L−1 from the L=3–6 data only. The L→�
limit is very close to the exact value of 2.269 19.
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point of Sp��T� coincides with that of the derivative of the
global entropy density s�T�. Therefore, one can indeed use
the partial entropy to quantify thermodynamic phase transi-
tions.

Moreover, the partial entropy is a quantity more suitable
for finite-size studies than standard thermodynamic quanti-
ties, in that scaling behavior sets in much earlier in the
former than in the latter. This allows precise determination of
the critical temperature, for example, from relatively small
system sizes using our method. In contrast, we performed
finite-size calculations for ds /dT, finding that its maximum
in the temperature dependence diverges as a polynomial
rather than a linear function of ln L. Also, the peak tempera-
ture Tm of ds /dT is nonlinear in 1/L. The data for L=3–6
can be nicely fitted �with an error less than 0.001� by the
function Tm=2.3373−1.504 37L−2.493. However, its extrapo-
lation �2.3373� to infinite size is far from the true critical
temperature. One may take this to mean that the coefficients
and the exponent of such a fit are modulated slowly in L
�such as logarithmic�. Another interpretation is that there are
subdominant terms in finite-size scaling which do not decay
quickly with the system size. In any case, it is very clear that
one cannot obtain useful results from thermodynamic quan-
tities when the system sizes are not very large. On the other
hand, the partial entropy does seem to be free from such
complications.

So far we have been concerned with a classical system;
we consider next a quantum Heisenberg model on a cubic
lattice. In this model, the critical fluctuation is much weaker
than that in the 2D Ising model, because the critical diver-
gence follows a power law in the former while it follows a
logarithmic law in the latter. However, the partial entropy
method still works very well in this quantum system. The

Heisenberg Hamiltonian reads, H=−2��ij�S� i ·S� j, where S� i

=�� i /2 is the spin-1 /2 operator and �ij� indicates bonds be-
tween nearest-neighbor sites. This model has a second-order
phase transition at the critical temperature Tc=1.6778

±0.0002, as determined by high-accuracy quantum Monte
Carlo simulation and phenomenological renormalization-
group analysis.16

The reduced density matrix for a nearest-neighbor pair of
sites can again be found in a simple form, �p�T�=1/4
− 	2u�T� /9
S�1 ·S�2, based on a symmetry analysis.17,18 Its co-
efficient is related to the internal energy density u�T� by
tracing the reduced density matrix with the Hamiltonian.
The partial entropy can then be expressed as Sp�T�
=−��9−2u�	ln�9−2u�−2 ln 6
+ �3+2u�	ln�3+2u�−ln 12
� /
12. These expressions remain valid for finite system sizes
under periodic boundary conditions. We use quantum Monte
Carlo simulation with a stochastic series expansion
algorithm19 to calculate the density of internal energy and
then to obtain the partial entropy from the above formula.

We will show that this critical temperature can be ob-
tained accurately by using the partial entropy method with
the calculation for small-size system.

As before, the partial entropy is monotonically increasing
with T, while its derivative Sp��T� arrives at a maximum at

FIG. 4. The finite-size scaling of the partial entropy is per-
formed. The deviation of the first derivative of the partial entropy
from its maximum is only a function of L�T−Tm�. All the data from
L=3 to L=6 fall on a single curve, indicating a perfect scaling
behavior of the partial entropy around the critical temperature.

FIG. 5. �a� The derivative of partial entropy shows a peak at
certain temperature. �b� The finite-size scaling of the derivative of
partial entropy.
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certain temperature. The peaks of Sp��T� for linear sizes of
L=4–12 are shown in detail in Fig. 5�a�. The peaks sharpen
with increasing L and are supposed to become singular at
L→�. The different curves can be collapsed onto a single
one, shown in Fig. 5�b�, by the following scaling relation:

Sp���� = Sp��L� + gL�/�,

	Sp��t,L� − Sp����
�t�� = f�tL1/�� , �2�

where t=1−T /Tc, f is a universal function, and g is a con-
stant. Our result yields the critical exponents �=−0.1116
±0.0005, �=0.705±0.003, and the critical temperature Tc
=1.677±0.001, which agree very well with those obtained
earlier.16,20

More remarkably, the finite-size scaling for the partial en-
tropy starts to work from relatively small system sizes. If we
use data only from L=4–8, the fitting to a scaling function
then yields �=−0.1196±0.0005, �=0.703±0.003, and Tc

=1.678±0.002, which are already very good. On the other
hand, thermodynamic quantities, such as the specific heat,
show good scaling behavior only for L	8.21

In conclusion, we suggest that the partial entropy is quite
an effective tool to quantify the finite-temperature phase
transitions. It remains to be explained why the partial en-
tropy is superior to the global entropy in finite-size scaling.
At this moment, we do not have a clear answer, but offer the
following observation which may shed some light to this
question. The partial entropy captures the essence of critical
fluctuations of the system and therefore shows a perfect
“fixed-point” with finite-size rescaling. The detailed nature
of this behavior of course needs further study.
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