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A generalization of the semiempirical microscopic model of hardness is presented and applied to currently
studied borides, carbides, and nitrides of heavy transition metals. The hardness of OsB, OsC, OsN, PtN, RuC,
RuB2, ReB2, OsB2, IrN2, PtN2, and OsN2 crystals in various structural phases is predicted. It is found that none
of the transition metal crystals is superhard, i.e., with hardness greater than 40 GPa. The presented method
provides materials researchers with a practical tool in the search for new hard materials.
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Hardness is a measure of a material’s resistance to being
scratched or dented, a measure to resist penetration, defor-
mation, abrasion, and wear. These properties, important in a
variety of industrial applications, drive the contemporary ef-
fort focused on the synthesis and characterization of hard or
superhard materials.1–15 However, the physical processes
connected with hardness are very complex, involving frac-
ture, deformation, and destruction of material, and a rigorous
quantum mechanical description of these processes is ex-
tremely complicated. It is therefore very valuable to develop
simple approximate methods that yield physical insight into
the fundamental nature of hardness, elucidate the main fea-
tures of the phenomenon in a semiquantitative way, and can
help to identify materials that are hard or superhard.

Potential candidates for hard materials should meet the
following conditions:15 a three-dimensional network com-
posed of short bonds, highly directional bonding, and a high
density of valence electrons in covalent bonds. These basic
conditions were quantitatively included in a semiempirical
model for the calculation of hardness of covalent and ionic
crystals,16 and the atomistic point of view of the model,
based on the concept of bond strength sij, was successfully
tested on 30 binary compounds with the zinc blende and
rocksalt structures. However, the laborious first-principles
calculations and the application of the formulas presented in
Ref. 16 limit the practical use of the model.

The purpose of this work is �i� to generalize the previous
method and to present a different approach avoiding first-
principles calculations, �ii� to explicitly demonstrate how to
apply a simplified microscopic model of hardness even for
complex structures, and �iii� to predict the hardness of re-
cently studied materials.

First, let me generalize the basic quantities and equations
of the model. For the crystals where atoms i and j have
different coordination numbers, the bond strength sij of the
individual bond between atoms i and j reads

sij = ��eiej�/�ninjdij� , �1�

ei = Zi/Ri, �2�

where ni and nj are coordination numbers of atoms i and j,
respectively, dij is the interatomic distance of atoms i and j,
and Zi is the valence electron number of the atom i. For each
atom i, the radius Ri is chosen so that the sphere centered at

atom i in a crystal contains exactly the valence electronic
charge Zi. For the purpose of the determination of Ri, the
standard total energy calculation within density functional
theory was applied.

In the case of two atoms 1 and 2 forming one bond of
strength s12 in a unit cell of volume �, the expression for
hardness H has the form

H = �C/��b12s12e
−�f2 �3�

where

f2 = � e1 − e2

e1 + e2
�2

= 1 − �2��e1e2�/�e1 + e2��2, �4�

and the number b12 counts interatomic bonds between atoms
1 and 2 in the unit cell; C and � are constants.

The essential physics of this model is in the bond strength
sij, consisting of two terms �see Eq. �1��. The first, the square
root of eiej divided by the interatomic distance, is related to
the intensity of the electrostatic field in the range of the first
coordination sphere. The second, the reciprocal of ninj, char-
acterizes the sharing of the valence electrons in bonds.
Shorter interatomic distances increase the intensity of the
field, and a smaller number of nearest neighbors increases
the valence electron density in bonds, and vice versa. Con-
sequently, a three-dimensional network, short bonds, and a
small number of nearest neighbors are the conditions for
high hardness. It is obvious that the concept of bond strength
can be applied only in cases where the bond charge lies
between the atoms. In the case of a metallic bond it is mean-
ingless.

From Eqs. �1�–�4� above we see that the calculation of
hardness needs structural data and the radii Ri. In fact, the
estimate of hardness does not need structure constants deter-
mined by first principles; the experimental data are more
then satisfactory. The difficulty in practical use lies in the
determination of the radii Ri.

First, let us look at the radii Ri hidden in the quantities ei
presented in Table I of Ref. 16 and compare the Ri of the
same element in different compounds. All distances in this
work are given in angstroms.

For example, the radius of carbon in diamond Ri�C�
=Zi /ei=0.97. In a similar way we obtain radii of carbon
Ri�C�=1.02, 1.06, 1.07, 1.06, and 1.07 for SiC, VC, TiC,
WC, and NbC, respectively. We see that all Ri�C� of carbon
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can be approximated by R�C�=1.05 with an accuracy of 3%.
In the case of boron in BN, BP, and BAs we obtain Ri�B�
=1.02, 1.09, and 1.14, respectively, and R�B�=1.08.

In an analogous way we obtain the radii Ri and approxi-
mate values R for nitrogen: in BN, AlN, GaN, TiN, and NbN,
the Ri�N� are 0.95, 0.99, 1.01, 1.02, and 1.02; R�N�=0.99.
For aluminum: in AlN, AlP, and AlAs the Ri�Al� are 1.38,
1.53, and 1.55; R�Al�=1.47. For silicon: in Si and SiC the
Ri�Si� are 1.475 and 1.360; R�Si�=1.42. For phosphorus: in
BP, GaP, and AlP we have Ri�P� of 1.37, 1.46, and 1.44;
R�P�=1.42. For gallium: in GaP, GaAs, and GaSb the Ri�Ga�
are 1.48, 1.51, and 1.54; R�Ga�=1.51; and finally for arsenic:
in BAs, GaAs, and AlAs the Ri�As� are 1.46, 1.54, and 1.52;
R�As�=1.50.

We observe that the radii Ri are not very sensitive to �i�
the partner atom in the covalent bond, or �ii� the interatomic
distance. Therefore, we can approximate the radii Ri by an
average value R that differs from the corresponding first-
principles value usually by less than 5%. In this way, a list of
the radii R could be obtained and applied; nevertheless, even
such a simplified calculation is still beyond the reach of a
pocket calculator.

Second, let us compare the radii R listed above with the
atomic radii r of the elements17 published also in Kittel’s18

textbook and presented here in parentheses:

R�B� = 1.08 �0.98�, R�C� = 1.05 �0.92� ,

R�N� = 0.99 �0.88� ,

R�Al� = 1.47 �1.43�, R�Si� = 1.42 �1.32� ,

R�P� = 1.42 �1.28� ,

R�Ga� = 1.51 �1.41�, R�Ge� = 1.52 �1.37� ,

R�As� = 1.50 �1.39� .

Of course, the numerical values differ; however, we see that
the radii R are about 4−14 % larger than the atomic radii r of
the elements. Therefore, it is very tempting to apply the
atomic radii r published in the textbook instead of the aver-
ages R obtained from first-principles calculations.

If we use quantitatively different values for the atomic
radii r taken from Pearson’s17 or Kittel’s18 tables, the two
constants C and � in Eq. �3�, previously determined for the
Ri calculated from first principles, have to be changed to new
values. First, the new value for the constant C is determined
so that the calculated hardnesses of covalent silicon and dia-
mond are close to experimental values; the exponential fac-
tor in Eq. �3� equals 1 identically and C=1400 is found.
Then the value of the constant � is chosen so that the calcu-
lated hardness fits the experimental value for KCl.

The usual method to get the experimental value of the
hardness is to measure the depth or area of an indentation left
by an indenter of a specific shape, with a specific force ap-
plied for a specific time. Different loads, different shapes of
indenters, the orientational effect of the crystal, etc,. do not
provide the same experimental numerical data. The experi-

mental value of hardness is the result of a defined measure-
ment procedure; therefore, any comparison with the theoret-
ical values is limited in principle. In light of the variations of
experimental data there is no sense in optimizing the fit of C
and � to obtain a better accordance between theory and ex-
periment; for the purpose of the estimate of hardness, this
simple determination of the constants C and � is sufficient.
In the rest of the paper, the values C=1450, �=2.8, and the
atomic radii of elements from Kittel’s textbook18 or the origi-
nal source19 are used; the structural data and interatomic dis-
tances are taken from Ref. 20. The resulting values of hard-
ness are in the units of gigapascals.

First, however, we should test this atomic radii method,
by comparison with the results of first-principles
calculations.16

The hardness of crystals having one bond strength sij in
the unit cell � is given by Eqs. �1� and �4�.

�a� The zinc blende structure, ZnS arrangement, contains
four molecules in its conventional unit cell, i.e., a fcc cube;
each atom has around it four equally distant atoms. The
structural parameters in Eqs. �1� and �3� are: b12=16,
n1�Zn�=4, and n2�S�=4.

Using the atomic radii for r�B�=0.98, r�C�=0.92, r�N�
=0.88, r�Al�=1.43, r�Si�=1.32, r�P�=1.28, r�Ga�=1.41, and
r�As�=1.39, we get the following hardness values:

H�dia� = 90.4 �95.4�, H�BN� = 63.6 �63.2� ,

H�SiC� = 31.1 �31.1�, H�BP� = 26.2 �26.0� ,

H�BAs� = 21.0 �19.9�, H�AlN� = 17.6 �17.6� ,

H�Si� = 11.7 �11.3�, H�GaAs� = 7.4 �7.4� .

The first-principles results16 are given in parentheses.
�b� The rock salt structure, NaCl arrangement, contains

four molecules in its conventional unit cell, i.e., a fcc cube;
each atom has around it six equally distant atoms. The struc-
tural parameters in Eqs. �1� and �3� are: b12=24, n1�Na�=6,
and n2�Cl�=6. Using the atomic radii r�V�=1.35 and r�Ti�
=1.46, we get the following hardness values:

H�VC� = 25.0 �27.2�, H�TiN� = 16.8 �18.7� ,

H�TiC� = 16.6 �18.8� .

As above, the first-principles results16 are given in parenthe-
ses.

The atomic radii results are in reasonable accordance with
the first-principles calculations; however, the most important
outcome of this test is the ability of this atomic radii method
to clearly distinguish soft, hard, or superhard crystals. In fact,
this is the preeminent knowledge for materials scientists in
the quest for new superhard compounds.

To demonstrate the practicality of this approach by ex-
plicit numerical examples, the hardness of the currently in-
vestigated materials is calculated. Available experimental
data that I know of are presented in parentheses.

�i� PtN, OsC, and OsN crystals in the rocksalt structure
were studied by Patil et al.1 �PtN�, and Zheng2 �OsC and
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OsN�. Using their theoretical values for lattice constants,
a0�PtN�=4.40, a0�OsC�=4.33, a0�OsN�=4.34, and the
atomic radii r�Os�=1.353, r�Pt�=1.387, r�N�=0.88, Eqs.
�1�–�4� yield H�PtN�=24.3, H�OsC�=24.1, and H�OsN�
=26.3.

�ii� The cubic fluorite structure, CaF2 arrangement, con-
tains four molecules in its conventional unit cell, i.e., a fcc
cube. Each Ca atom is at the center of eight F atoms; each F
atom has around it a tetrahedron of Ca atoms. The structural
parameters in Eqs. �1� and �3� are: b12=32, n1�Ca�=8, and
n2�F�=4. For example, for OsN2 studied by Fan et al.,3 we
have: r1�Os�=1.35, Z1�Os�=6, Z2�N�=5, and d12=2.09 The
value Z1=6 corresponds to the valency given by Pearson,17

and leads to H�OsN2�=29.8; however, the value Z1=8,
which correlates with the position of osmium in the periodic
table, yields H�OsN2�=35.9. The hardness in Eq. �3� is a
result of two counteracting factors, the bond strength s12 and
the exponential factor. With increase of Z1, s12 increases;
however, the exponential factor decreases. Consequently,
hardness is not very sensitive to the value of Z1 in this case.
This insensitivity is advantageous, taking into account that
we do not know how many valence electrons of Os partici-
pate in the bonding, since some of them only screen the core
charge. The same holds for the heavy transition metals Ru,
Rh, Re, and Pt, forming carbides, borides, and nitrides.
Therefore, in the following examples, we use the valencies Z
from Pearson’s work.17 For IrN2 and PtN2 studied by
Yu et al.4 we have: r1�Ir�=1.357, Z1�Ir�=6, Z2�N�=5,
d12=2.10, and H�IrN2�=29.2; and for PtN2 r1�Pt�=1.387,
d12=2.13, and H�PtN2�=27.1.

�iii� The tungsten carbide structure WC is hexagonal with
a unimolecular cell. OsC and OsN crystals were studied
theoretically by Zheng2 and OsB by Gou et al.5 The struc-
tural parameters in Eqs. �1� and �3� are: b12=6, n1�W�=6,
n2�C�=6. The atomic radii and interatomic distances are
r1�W�=1.41, r1�Ru�=1.34, r1�Os�=1.35, d12�WC�=2.197,
d12�RuC�=2.193, d12�OsB�=2.18, d12�OsC�=2.17, and
d12�OsN�=2.22. The resulting hardnesses are H�WC�=22.9
�24.0 �Ref. 5��, H�RuC�=23.6, H�OsB�=18.5, H�OsC�
=24.3, and H�OsN�=25.9.

�iv� In a hexagonal structure with the ZnO arrangement
�two-molecule hexagonal unit� each atom has around it a
tetrahedron of atoms of the opposite sort just as in a cubic
ZnS arrangement: n1�Zn�=4, n2�S�=4; however, b12=8. For
aluminum nitride AlN we use r1�Al�=1.43, r2�N�=0.88,
d12=1.90, and �=41.7; we get the hardness H�AlN�=17.4.
For SiC r1�Si�=1.32, r2�C�=0.92, d12=1.89, and �=41.3;
H�SiC�=30.8.

In the case of more than one bond strength sij, more than
one bijsij product has to be calculated. Then the hardness of
a compound is calculated as the geometrical sum of all prod-
ucts bijsij, bklskl, etc. Therefore, the hardness of crystals hav-
ing two different bond strengths in the unit cell � is given by
the following expression:

H = �C/��2�b12s12b34s34�1/2e−�f4, �5�

f4 = 1 − �4�e1e2e3e4�1/4/�e1 + e2 + e3 + e4��2. �6�

�i� Tetragonal hypothetical BC3 has the diamondlike
structure,6,7 where two atoms of carbon in the conventional
fcc cube have been substituted by boron atoms. Each boron
atom has four carbon neighbors; each carbon atom has four
neighbors, three carbon and one boron atoms. The number of
bonds in the fcc cube are: b12�B-C�=8, b34�C-C�=8, and
n1�B�=n2�C�=n3�C�=n4�C�=4.

Using r1�B�=0.98, r2�C�=0.92, d12�B-C�=1.63,
d34�C-C�=1.52, �=47.72, e1=Z1 /r1, e2=Z2 /r2, and e4=e3

=e2, the hardness calculated by Eqs. �5� and �6� is H�BC3�
=72.3.

�ii� Nitride spinel materials, Si3N4 and C3N4 crystals,8

have b12�Si-N�=32, b34�Si-N�=96, n1�Si�=4, n2�N�=4,
n3�Si�=6, and n4�N�=4.

For Si3N4, r1�Si�=1.32, r2�N�=0.88, r3=r1, r4=r2,
d12�Si-N�=1.83, d34�Si-N�=1.88, �=445.9; and the hard-
ness H�Si3N4�=31.8 �30.0 �Ref. 9��.

For C3N4, r1�C�=0.92, r3=r1, r4=r2, d12=1.59, d34

=1.68, �=324.3; and H�C3N4�=73.5.
�iii� The aluminum boride structure, AlB2 and TiB2

crystals, is hexagonal with a unimolecular cell. The param-
eters for Eqs. �5� and �6� are b12�Al-B�=12, b34�B-B�=3,
n1�Al�=12, n2�B�=9, n3�B�=3, and n4�B�=3.

For AlB2, r1�Al�=1.43, r2�B�=0.98, e4=e3=e2,
d12�Al-B�=2.378, d34�B-B�=1.735; and H�AlB2�=28.1; the
experimental value is 25.0.21

For TiB2 , r1�Ti�=1.46, r2�B�=0.98, d12�Ti-B�=2.379,
d34�B-B�=1.748; and H�TiB2�=31.6 �33.7 �Ref. 21��.

�iv� The rhenium diboride structure ReB2 studied by Hao
et al.10 is hexagonal, each rhenium atom has eight boron
neighbors, n1�Re�=8, and each boron atom has four rhenium
neighbors and three boron neighbors, n2�B�=7. The boron
atoms are in puckered layers normal to the c0 hexagonal axis
with each boron atom 1.82 Å distant from three others,
n3�B�=n4�B�=3. The bond strengths s12 and s34 correspond
to Re-B and B-B bonds, respectively. The parameters in Eqs.
�5� and �6�are b12=16, b34=6, n1=8, n2=7, n3=3, n4=3,
d12=2.255, d34=1.822, r1�Re�=1.375, r2�B�=0.98,
Z1�Re�=6, Z2�B�=3, �=54.5, e1=Z1 /r1, e2=Z2 /r2, e4=e3

=e2; and H�ReB2�=35.8.
�v� The osmium diboride structure, the OsB2 crystal stud-

ied in Refs. 5, 11, and 12, is orthorhombic; however, the
nearest neighbors give the same parameters as for the ReB2
structure, i.e., b12=16, b34=6, n1=8, n2=7, n3=3, n4=3. In
contrast to the ReB2 structure, the osmium-boron distances
are not the same, d12�Os-B�=2.16−2.31; the averaged bond
lengths d12=2.23 and d34�B-B�=1.85 are used. Applying
r1�Os�=1.35, r2�B�=0.98, Z1�Os�=6, Z2�B�=3, e1=Z1 /r1,
e2=Z2 /r2, e4=e3=e2, and �=55.1, we get H�OsB2�=35.2.
For the RuB2 crystal studied by Chiodo et al.11 with d12
=2.22, d34�B-B�=1.84, and �=54.0, we get H�RuB2�=36.1.

�vi� The osmium dinitride crystal OsN2, studied in various
structural phases by Fan et al.,3 Young et al.,13 and Chen et
al.,14 was shown to have a very large bulk modulus. In the
pyrite structure, supposing interatomic distances d12�Os-N�
=2.142 and d34�N-N�=1.365 and lattice constant a0=4.925,3

the structural parameters are b12=24, b34=4, n1�Os�=6,
n2�N�=n3�N�=n4�N�=4. Using the atomic data r1�Os�
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=1.35, r2�N�=0.88, Z1�Os�=6, and Z2�N�=5, the hardness in
this pyrite structure is H�OsN2�=36.7. For the PtN2 crystal
with d12�Pt-N�=2.09, d34�N-N�=1.42, and a0=4.804, we get
H�PtN2�=38.8.

The generalization of the equations for more than two
different bond strengths follows from comparison of Eqs. �3�
and �4� and Eqs. �5� and �6�, respectively.

The results show that none of the transition metal borides,
carbides, and nitrides calculated in this work are superhard,
i.e., with hardness greater than 40 GPa. The intensity of the
electric field of the atomic ions and the density of valence
electrons, the essentials of hardness, crucially depend on the
interatomic distances; very large transition metal atoms need
more space for bonding compared to B-, C-, and N-based
compounds. For example, let us hypothetically synthesize
the NC2 crystal in the ReB2, OsB2, or a similar structures. If
such a crystal were stable, the calculation shows that its
hardness could exceed the hardness of cubic boron nitride or
even diamond.

In summary, a semiempirical microscopic model of hard-

ness is presented and applied to currently studied borides,
carbides, and nitrides. It was found that none of the transition
metal crystals studied here is superhard, i.e., with hardness
greater than 40 GPa. It was demonstrated that �i� the hard-
ness of covalent or polar covalent crystals can be estimated
with considerable accuracy using only atomic radii and
structural data of the crystal, and �ii� even for complex ma-
terials, the technique can be applied without laborious calcu-
lations. The simple computational method presented here
clearly distinguishes soft, hard, and superhard crystals,
which is an essential basis for materials scientists in the quest
for new superhard materials.
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