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We present the analytical solution of the wave function and energy dispersion of armchair graphene nanor-
ibbons �GNRs� based on the tight-binding approximation. By imposing the hard-wall boundary condition, we
find that the wave vector in the confined direction is discretized. This discrete wave vector serves as the index
of different subbands. Our analytical solutions of wave function and associated energy dispersion reproduce the
results of numerical tight-binding and the solutions based on the k ·p approximation. In addition, we also find
that all armchair GNRs with edge deformation have energy gaps, which agrees with recently reported first-
principles calculations.
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I. INTRODUCTION

Graphene, as a promising candidate of future nanoelec-
tronic components, has recently attracted intensive research
attention.1–6 Graphene consists of a single atomic layer of
graphite, which can also be viewed as a sheet of unrolled
carbon nanotube. Several anomalous phenomena ranging
from half integer quantum Hall effect, nonzero Berry’s
phase,3 to minimum conductivity2 have been observed in ex-
periments. These unusual transport properties may lead to
novel applications in carbon-based nanoelectronics. In addi-
tion, the carriers in graphene behave as massless relativistic
particles with an effective “speed of light” c*�106 m/s
within the low-energy range ���0.5 eV�.3 These massless
Dirac fermions in graphene manifest various quantum elec-
trodynamics �QED� phenomena in the low-energy range
such as the Klein paradox phenomenon.6 Ribbons with a
finite width of graphene, referred to as graphene nanoribbons
�GNRs�, have also been studied extensively.7–14 Recent ex-
periments by using the mechanical method3,2 and the epitax-
ial growth method4,15 show it is possible to make GNRs with
various widths.

The carbon atoms on the edge of GNRs have two typical
topological shapes, namely armchair and zigzag. The analyti-
cal wave function and energy dispersion of zigzag nanorib-
bons have been derived by several research groups.16,17 For
armchair GNRs, the analytical forms of wave functions
within the low-energy range have been worked out based on
the effective-mass approximation.14 It is predicted that all
zigzag GNRs are metallic with localized states on the
edges,8,9,16,17 while armchair GNRs are either metallic or in-
sulating, depending on their widths.7–10,14,16 To date, there is
no general expression of the wave function in armchair
GNRs. In this paper, we derive a general analytical expres-
sion of wave function and eigenenergy in armchair GNRs
applicable to various energy ranges. In Sec. II, we focus on
perfect armchair GNRs without any edge deformation and
derive the energy dispersion by imposing the hard-wall
boundary condition. Due to the quantum confinement, the
spectrum breaks into a set of subbands and the wave vector
along the confined direction becomes discretized, which is
similar to the case of carbon nanotubes.20 We observe that

the electronic structure of perfect armchair GNRs strongly
depends on the width of the ribbon. The system, for instance,
is metallic when n=3m+2 and is insulating otherwise, where
m is an integer.7–10,14,16 Furthermore, we study the low-
energy electronic structure. The linear dispersion relation is
observed in armchair GNRs. In Sec. III, we evaluate the
effect of deformations on the edges on the electronic struc-
ture of armchair GNRs. Calculation results based on the de-
rived analytical wave function show that all armchair GNRs
have nonzero energy gaps due to the variation of hopping
integral near the edges. This observation is in line with the
recently reported first-principle calculations.11

II. PERFECT ARMCHAIR GRAPHENE NANORIBBON

The structure of armchair GNRs consists two types of
sublattices A and B as illustrated in Fig. 1. The unit cell
contains n A-type atoms and n B-type atoms. Based on the

FIG. 1. �Color online� Structure of an armchair graphene
nanoribbon, consisting of sublattices A and B. The width of the
armchair GNR is n. Every unit cell contains n numbers of A and B
sublattices. Two additional hard walls �j=0, n+1� are imposed on
both edges.
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translational invariance, we choose the plane-wave basis
along the x direction. Within the tight-binding model, the
wave functions of A and B sublattices can be written as

���A =
1

NA
�
i=1

n

�
xAi

eikxxAi�A�i��Ai� ,

���B =
1

NB
�
i=1

n

�
xBi

eikxxBi�B�i��Bi� , �1�

where �A�i� and �B�i� are the components for A and B sub-
lattices in the y direction, which is perpendicular to the edge.
�Ai� and �Bi� are the wave functions of the pz orbit of a carbon
atom located at A and B sublattices, respectively. To solve
�A�i� and �B�i�, we employ the hard-wall boundary condi-
tion

�A�0� = �B�0� = 0,

�A�n + 1� = �B�n + 1� = 0. �2�

Choosing �A�i�=�B�i�=sin� �3qya
2 i� and substituting them into

Eq. �2�, we get

qy =
2

�3a

p�

n + 1
, p = 1,2, . . . ,n . �3�

qy is the discretized wave vector in the y direction and a
=1.42 Å is the bond length between carbon atoms. To obtain
the normalized coefficients, NA and NB, we introduce the
normalization condition

A�����A = B�����B = 1.

It is straightforward to obtain NA=NB=�Nx�n+1�
2 , where Nx is

the number of unit cells along the x direction. The total wave
function of the system can be constructed by the linear com-
bination of �A and �B,

��� = CA	� 2

Nx�n + 1��i=1

n

�
xAi

eikxxAi sin
�3qya

2
i��Ai��

+ CB	� 2

Nx�n + 1��i=1

n

�
xBi

eikxxBi sin
�3qya

2
i��Bi�� .

�4�

Under the tight-binding approximation, the Hamiltonian of
the system is

H = �
i

�i�i��i� − �
�i,j�

ti,j��i��j�� , �5�

where �i , j� denotes the nearest neighbors.
In perfect armchair GNRs, we set ti,j = t and �i=�. By

Substituting Eqs. �4� and �5� into the Schrodinger equation,
we can easily obtain the following matrix expression:


 � �

�* �
�
CA

CB
� = E
CA

CB
� , �6�

where �=A���H���B=−t
2eikxa/2 cos� �3a
2 qy�+e−ikxa�. Solving

Eq. �6�, we get the energy dispersion and wave function as

E = � ± ��� ,

���± =
�2

2

���A ±��*

�
���B� . �7�

Here, � denotes the conduction and valance bands, respec-
tively. − �

2 �
3kxa

2 �
�
2 is required within the first Brillouin

zone �BZ�. These results are valid for various energy ranges.
Figure 2 shows the energy dispersion for perfect armchair

GNRs with width n=6, 7 and 8. Here, we set �=0. The
results are the same as those obtained by using the numerical
tight-binding method. The electronic structures of armchair
GNRs depend strongly on their widths. When n=8, the low-
est conduction band and the upmost valence band touch at
the Dirac point, which leads to the metallic behavior of n
=8 armchair GNRs. Armchair GNRs, however, are insulating
when n=6 and n=7. Armchair GNRs with the width of n
=3m+2 �m is an integer� are generally metallic and other-
wise are insulating.8,14 In addition, we observe several inter-
esting features in the band structures of armchair GNRs.

�i� A flat conduction or valence band �p=4� exists, if n
=7 as shown in Fig. 2�b�. Such a flat band generally corre-
sponds to p

n+1 = 1
2 or equivalently cos p�

n+1 =0. The energy dis-
persion becomes independent of kx and the eigenenergy al-
ways equals ±�t�. A flat band, in general, exists only when n
is odd.

�ii� The subbands can be labeled by the quantum number
p. Combined with the wave number kx along the x direction,
the quantum number p can be used to define the chirality of
the electrons in quasi-one-dimensional �1D� graphene rib-
bons similar to that in 2D graphene. To identify different
subbands, we need the quantum number pi of the ith conduc-
tion or valence band. Here, the definition of the sequence of
subbands is referred to as the value of eigenenergy EC in the
center of first Brillouin zone �kx=0�,

EC = ± t�2 cos
p�

n + 1
+ 1� . �8�

For the metallic armchair GNRs with width n=3m+2
when p�

n+1 = 2�
3 or equivalently p=2m+2, the energy gap be-

tween conduction and valence bands is zero. Therefore p1
=2m+2 corresponds to the first conduction or valence band
in n=3m+2 GNRs. For the second conduction or valence
bands, EC should have the minimal nonzero value compared
to the third or even higher band. After analyzing the value of
EC, we find that p2=2m+3, p3=2m+1 for metallic armchair
GNRs �n=3m+2�. By similar analysis, for n	10, we can
obtain p1=2m+1, p2=2m, p3=2m+2 for n=3m armchair
GNRs and p1=2m+1, p2=2m+2, p3=2m for n=3m+1 arm-
chair GNRs, respectively. For all subbands, there is no gen-
eral rule of the subband index p.
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�iii� Lots of research interest have been focusing on the
energy dispersion and wave function of 2D graphene and 1D
GNRs within the low-energy range.3,11,14 Low-energy elec-
trons behave as massless relativistic particles in a 2D infinite
graphene system.1–3,6,14 Whether electrons keep their relativ-
istic property when they are confined in quasi-1D graphene
nanoribbons is an interesting issue. In what follows, we will
focus on the expansion of our analytical expressions to the
low-energy limit. When p�

n+1 → 2
3� and

3kxa
2 →0, we rewrite

the eigenenergy in Eq. �7� as

E � ±
3

2
at�kx

2 + q̃y
2 � ± 
vFk , �9�

where q̃y�p�= 2
�3a

� p�
n+1 − 2

3��, p is the subband index. This low-
energy expansion generates the E�k linear dispersion, with
Fermi velocity vF�106 m/s. This expression reproduces the
result of k ·p approximation.14 Note that the wave vector in
the confined direction �q̃y� is discretized, corresponding to
different subbands. What is worth mentioning is that this
energy dispersion works well only at the low-energy limit.
By substituting the value of p1 into Eq. �9�, we get the low-
energy expansion of the first conduction or valence band for
armchair GNRs as

E1�3m� �
kx→0

±
3

2
at�kx

2 + 
 2�

3�3�3m + 1�a
�2

,

E1�3m + 1� �
kx→0

±
3

2
at�kx

2 + 
 2�

3�3�3m + 2�a
�2

,

E1�3m + 2� �
kx→0

±
3at

2
kx. �10�

Figure 3 shows the quality of low-energy approximation.
For large width armchair GNRs, low-energy approximation
seems to work well except at the edge of first Brillouin zone.
As the width gets larger, the quantum confinement due to the
edge becomes less important and the 1D nanoribbons tend to
behave like 2D graphene. For large n, as expected, the band
structure generates the linear dispersion relationship, E�k, in
the low-energy limit.

In addition, from the expression of the wave function, we
also obtain the local density of electronic states in perfect
armchair GNRs, PA�i�= PB�i��sin2� p�

n+1 i�. Figure 4 shows the
squared wave functions of the lowest conduction band at the
center of first Brillouin zone. Note that Figs. 4�a� and 4�c�
reproduce the results of the k ·p approximation.14 The state
density oscillates as a function of the lattice position. The
oscillation period is related to n+1

p . For n=3m+2 armchair
GNRs, the oscillation period is just 3, which is shown clearly
in Fig. 4�a�. For n=3m, 3m+1 armchair GNRs, we should
write n+1

p into irreducible form �

 . The oscillation period is

then �, which is the numerator of the irreducible form of n+1
p .

To match the results presented in Ref. 14 we choose n=51
and n=52 as an example. We get �=51 and �=52, respec-
tively. As shown in Figs. 4�b� and 4�c�, the oscillation period
of state density for n=51 and n=52 armchair GNRs equals
their width.

III. ENERGY GAP AND WAVE FUNCTION
FOR EDGE-DEFORMED GNR

Because every atom on the edge has one dangling bond
unsaturated, the characteristics of the C-C bonds at the edges
can change GNRs’ electronic structure dramatically.10,19 To
determine the band gaps of GNRs on the scale of nanometer,
edge effects should be considered carefully. The change of
edge bond length and angle can lead to considerable varia-

FIG. 2. �Color online� Electronic structures of perfect armchair
GNRs with various widths, �a� n=6, �b� n=7, and �c� n=8, respec-
tively. The wave vector is normalized based on the primitive trans-
lation vector of individual GNRs. The value of p for each subband
is labeled in the figure.
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tions of electronic structure, especially within the low-energy
range.11,12 In previously reported work, the edge carbon at-
oms of GNRs are all passivated by hydrogen atoms or other
kinds of atoms or molecules.10–12,14,19 The bonds between
hydrogen and carbon are different from those C-C bonds.
Accordingly, the transfer integral of the C-H bonds and on-
site energy of carbon atoms at the edges are expected to
differ from those in the middle of GNRs. The bond lengths
between carbon atoms at the edges are predicted to vary

about 3–4% when hydrogenerated.11 Correspondingly, the
hopping integral increases about 12% extracted from the
analytical tight-binding expression.18,11 To evaluate the effect
of various kinds of edge deformation, we carried out general
theoretical calculation and analysis with our analytical solu-
tion of armchair GNRs. In general, we can set the variation
of the transfer integral and on-site energy as �ti,j, �i for the
ith A-type or B-type carbon atom. The Hamiltonian of the
GNRs with deformation on the edge can be rewritten as

H = �
i

�i�i��i� − �
�i,j�

�t + �ti,j��i��j� . �11�

The energy dispersion and wave function are readily ob-
tained by solving the Schrodinger equation with the pertur-
bation approach

FIG. 3. �Color online� The first conductance and valence bands
within the first Brillouin zone: exact solutions from Eq. �7� �red
solid line� and low-energy approximation from Eq. �10� �blue dash
line� for armchair GNRs with various widths, �a� n=21, �b� n=22,
�c� n=23, respectively. The wave vector is normalized based on the
primitive translation vector of individual GNRs.

FIG. 4. Local density of the states in the first conduction or
valence band at kx=0 for armchair GNRs with various widths, �a�
n=50, �b� n=51, and �c� n=52, respectively. �The n is so chosen to
match the results in Ref. 14�.
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E = � ± �� + ��� ,

���± =
�2

2

���A ±��� + ���*

� + ��
���B� , �12�

where �= 2
n+1�i=1

n �i sin2� p�
n+1 i� is the energy shift originating

from the variation of on-site energy, while the shift from the
hopping integral variation is

�� = −
2

n + 1�
i=1

n 	�ti�A�i�B� sin2
 p�

n + 1
i�e−ikxa

+ �ti�A�i−1�B� sin
 p�

n + 1
i�sin
 p�

n + 1
�i − 1��eikxa/2

+ �ti�A�i+1�B� sin
 p�

n + 1
i�sin
 p�

n + 1
�i + 1��eikxa/2� .

�13�

Such a general expression could include various kinds of
small edge deformations, ranging from the quantum confine-
ment effect due to the finite width, to the effect of saturated
atoms or molecules attached to edge carbon atoms. This re-
sult shows that the deformation leads to a considerable de-
viation of the energy dispersion relation and wave function
of the deformed system from those in perfect armchair
GNRs. The local density of states on both kinds of sublat-
tices, however, remains the same as that in perfect armchair
GNRs. The reason is that the wave functions of sublattices A
and B change their relative phases, but keep the magnitudes
unchanged. The variations from both the on-site energy and
hopping integral contribute to the energy shift, while the
change of on-site energy has no contribution to the wave
function as shown in Eq. �12�.

To show the impact caused by structural deformation, we
model the deformation by using an exponential distribution
function as an example. The hopping variations between ith
A and ith B atoms are

�ti�A�i�B� = �ti = �t0e−
L/2−�y�i���/�L,

�ti�A�i−1�B� = �ti�A�i+1�B� = 0, �14�

where y�i�=
�3
4 a�2j−n−1� is the coordinate of the ith atom in

the y direction, L=
�3
2 a�n−1� is the width of the GNRs. The

deformation characteristic length �L is used to indicate the
extent of the deformation from the edge to the middle of the
GNRs. For example, when �L→�, �ti=�0 for any i, the de-
formation is uniform from the edge to the middle; when
�L→0, �t1=�tn=�t0, �ti=0 for i�1 or n, the deformation is
only localized on the edge bonds.11 Typically, we set the
hopping integral variation �t0=12% t and the hopping inte-
gral of perfect GNRs t=2.7 eV.11 Our perturbation results
are valid only when the deformation is small. For example,
we have compared the analytical perturbation results with
those obtained through numerical diagonalization and found
the difference becomes quite large when �t0	15% �the en-
ergy gaps obtained from both methods differ by more than
10% when �t0	15%�. For larger deformation, we should

employ the numerical diagolization method or the density-
functional theory �DFT� to explore the electronic structure of
GNRs.

By introducing the deformation, we observe considerable
changes of energy gaps compared to those of perfect arm-
chair GNRs. For example, for n=6,7 ,8, the energy gaps are
1.11, 1.54, and 0.22 eV, respectively, when �L=0.01L. They
are much larger than those of perfect armchair GNRs �0.49,
0.47, and 0 eV, respectively�. All armchair GNRs become
semiconducting. The energy gaps between the lowest con-
duction band and the highest valence band become the func-
tion of ribbon width as indicated by three separate curves in
Fig. 5. When �L=L, the energy gaps fluctuate for large n and
three curves cross over. When �L=0.1L, the deformation is
localized near the GNR edges and the energy gap for n
=3m+1 GNR is always larger than those of n=3m and n
=3m+2 GNRs. When �L=0.01L, the characteristic length is
so small that the deformation is localized along two edges,
which has been discussed in Ref. 11. The corresponding en-
ergy gaps for different width ribbons are as follows:

FIG. 5. �Color online� The energy gaps between the lowest con-
duction band and the highest valence band as a function of width n
with the characteristic length �a� �L=L, �b� �L=0.1L, and �c� �L

=0.01L.
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�3m = �3m
0 −

8�t

3m + 1
sin2 m�

3m + 1
,

�3m+1 = �3m+1
0 +

8�t

3m + 2
sin2 �m + 1��

3m + 2
,

�3m+2 = �3m+2
0 +

2�t

m + 1
, �15�

where �3m
0 , �3m+1

0 , and �3m+2
0 are the energy gaps of perfect

armchair GNRs. Their values can be extracted from Eq. �8�:
2t�2 cos

�2m+1��

3m+1 +1�, 2t�2 cos
�2m+1��

3m+2 +1�, and 0. This result
suggests that all armchair graphene ribbons with edge defor-
mation have nonzero energy gaps and are insulators and
�3m+1	�3m	�3m+2 for any m.

IV. CONCLUSION

In this paper, we study the electronic states of armchair
GNRs analytically. By imposing the hard-wall boundary con-
dition, we find the analytical solution of wave function and
energy dispersion in armchair GNRs based on the tight-
binding approximation. Our results reproduce the numerical
tight-binding calculation results and the solutions using the

effective-mass approximation. We also derive the low-energy
approximation of the energy dispersion, which matches the
exact solution except for the edge of first Brillouin zone. The
linear energy dispersion is observed in armchair GNRs in the
low-energy limit. In addition, we also evaluate the impact of
the edge deformation on GNRs and derive a general expres-
sion of wave function and energy dispersion. We can repro-
duce the energy gap for hydrogenerated armchair GNRs pre-
sented in Ref. 11. When we consider the edge deformation,
all armchair GNRs have nonzero energy gaps and thus are
insulting. Overall, the derived analytical form of the wave
function can be used to quantitatively investigate and predict
various properties in armchair graphene ribbons.
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