
Theory of integer quantum Hall effect in graphene

Igor F. Herbut
Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

�Received 5 January 2007; published 18 April 2007�

The observed quantization of the Hall conductivity in graphene at high magnetic fields is explained as being
due to the dynamically generated spatial modulation of either the electron spin or the density, as decided by the
details of Coulomb interaction on the scale of lattice constant. It is predicted that at a large in-plane component
of the magnetic field such ordering may be present only at the filling factor f = ±1 and absent otherwise. Other
experimental consequences of the theory are outlined.

DOI: 10.1103/PhysRevB.75.165411 PACS number�s�: 73.43.�f, 71.10.Fd, 71.10.Pm, 71.70.Di

Graphene is a two-dimensional semimetal with gapless
Dirac-like excitations near two points in the Brillouin
zone.1,2 When placed in the uniform magnetic field of several
tesla, it exhibits plateaus in the Hall conductivity at integer
filling factors f =4n+2,3,4 just as implied by the Landau-level
�LL� spectrum of the single-particle Dirac equation,5 with
each LL being fourfold degenerate in spin and sublattice in-
dices. Although the strength of the Coulomb interaction be-
tween the conducting electrons in graphene is similar to the
bandwidth, the semimetallic ground state at zero magnetic
field indicates that it is below the critical value needed for
insulation.6,7

At magnetic fields above �10 T, however, additional
quantum Hall �QH� states at f =0, ±1, ±4 appear.8 Plateaus
in the Hall conductivity at other integers, such as at f = ±3 or
f = ±5, for example, are at the same time conspicuously ab-
sent, even at the highest magnetic field of 45 T. The
experiment8 also suggests that the activation gaps at f = ±4
are likely to be due to the Zeeman splitting of the first LL.
The quantization at f = ±1, however, implies that the fourfold
degeneracy of the zeroth LL has been completely lifted,
which calls for the inclusion of the Coulomb interactions into
consideration. The theory of the integer QH effect in
graphene would thus have at least to provide answers to the
following questions: �a� why has the fourfold degeneracy of
only the n=0 LL been completely lifted at the magnetic
fields and samples under study, �b� why do new incompress-
ible states at f =0, ±1, ±4 require higher magnetic fields to
appear than those at f =4n+2, and finally, �c� what is the
nature of the interacting ground states at different filling fac-
tors?

The first question may be immediately answered by pos-
tulating that the Dirac fermions have acquired an effective
gap in a form of a “relativistic mass” due to the Coulomb
interaction.9 Such a gap reduces the degeneracy of only the
zeroth LL. Including the Zeeman splitting then leads to the
spectrum of the effective single-particle Hamiltonian pre-
cisely as required by the observed pattern of quantization of
Hall conductivity. It is unclear, however, under which cir-
cumstances and which one of the multitude of such gaps that
could exist, as discussed below, is generated dynamically.
This problem is addressed here within the extended Hubbard
model on a honeycomb lattice, with both on-site and nearest-
neighbor repulsions. This is the simplest Hamiltonian that
mimics the effect of Coulomb repulsion and which contains
the possibilities of charge-density-wave �CDW� and antifer-

romagnetic �AF� orders. Previous work indicated7,10 that
these two are in direct competition at zero magnetic field and
when the interaction is strong. Here we solve the model in
the physical weak-coupling regime and in an external mag-
netic field, allowing only for the simplest AF state with the
staggered magnetization parallel to the magnetic field. The
results are summarized as the phase diagrams in Figs. 1 and
2. At half-filling and for a weak enough Zeeman energy the
system could be either a CDW or an AF, depending on which
coupling dominates �Fig. 2�. For a larger Zeeman energy the
ground state at f =0 becomes magnetic with full lattice sym-
metry. Nevertheless, even in the latter case increasing the
chemical potential produces an incompressible state at f =1,
with the activation gap becoming equal to the “relativistic”
gap �Fig. 1�. In contrast, at weak Zeeman coupling we find a
direct transition between f =0 and f =2 states. At f �2 the
relativistic gap vanishes. Experiments that would test the
presented against other theories12–15 are discussed.

We define the extended Hubbard model as H=H0+H1,
where

H0 = − t �
A� ,i,�=±

u�
†�A� �v��A� + b� i� + H.c., �1�

H1 = U�
X�

n+�X� �n−�X� � +
V

2 �
A� ,i,�,��

n��A� �n���A
� + b� i� . �2�

The sites A� denote one triangular sublattice of the honey-
comb lattice, generated by linear combinations of the basis
vectors a�1= ��3,−1��a /2� and a�2= �0,a�. The second sublat-

tice is then at B� =A� +b� , with the vector b� being either b�1

= �1/�3,1��a /2�, b�2= �1/�3,−1��a /2�, or b�3= �−a /�3,0�. a
�2.5A is the lattice spacing, and t�2.5 eV, U�5–12 eV,
and U /V�2–3.10

The spectrum of H0 becomes linear in the vicinity of the

two Dirac points at ±K� , with K� = �1,1 /�3��2� /a�3�.1,2 Re-

taining only the Fourier components near ±K� one can write,
in continuum notation,

H0 =� dx��
�

��
†�x��i�0�iDi���x�� �3�

and

PHYSICAL REVIEW B 75, 165411 �2007�

1098-0121/2007/75�16�/165411�5� ©2007 The American Physical Society165411-1

http://dx.doi.org/10.1103/PhysRevB.75.165411


��
†�x�� = �� dq�

�2�a�2e−iq� ·x��u�
†�K� + q��,v�

†�K� + q��,u�
†�− K�

+ q��,v�
†�− K� + q��	 , �4�

i=1,2, where it was convenient to rotate the reference frame

so that q1=q� ·K� /K and q2= �K� �q���K� /K2, and set 	=e /c
=vF=1, where vF= ta�3/2 is the Fermi velocity. Here
i�0�1=�z � �x, i�0�2=−I2 � �y, with I2 as the 2�2 unit ma-
trix and �� as the Pauli matrices. ��1/a is the ultraviolet
cutoff over which the linear approximation for the dispersion
holds. The orbital effect of the magnetic field is included by
defining Di=−i�i−Ai, with its component perpendicular to
the graphene’s plane being B�=�1A2−�2A1.

Consider an auxiliary single-particle Hamiltonian H̃:

H̃ = mM + i�0�iDi, �5�

where M is a Hermitian 4�4 matrix. When m=0, H̃=H0,
for each spin state. Also, if M2−1= 
M ,�0�i�=0,

H̃2 = Di
2 + B��z � �z� + m2. �6�

This is the case if either

M = M1 = a�I2 � �z� + b��x � �x� + c��y � �x� �7�

with real a ,b ,c, which satisfy a2+b2+c2=1, or

M = M2 = �z � �z. �8�

In either case the eigenvalues of H̃2 are at 2nB+m2, with n
=0,1 ,2 , . . .. For n
0 this immediately implies that eigen-

values of H̃ itself are at ±�2nB+m2, with the degeneracies of
B /� per unit area being the same as for m=0. For n=0, on
the other hand, an elementary calculation gives that the ei-

genvalues of H̃, �a� for any M1, are at ±�m�, each with halved
degeneracy of B /2� �per unit area�, and �b� for M2, are at m,
still with the full degeneracy of B /�. The invariance of the
spectrum in the first case under rotations of the unit vector
�a ,b ,c� is the consequence of the “chiral” SU�2� symmetry
of H0 generated by 
�35,�3 ,�5�, where �3=�x � �y, �5=�y

� �y, and �35= i�3�5, for example.7,11 Any specific choice of

M1 in H̃ breaks this SU�2� down to U�1� and leads to the
same eigenvalues. M2 preserves the chiral symmetry and
hence implies a different spectrum.

Assuming that such an effective chiral-symmetry-
breaking gap m becomes generated by interactions and then
splitting the resulting energy levels further by the standard
Zeeman effect could thus lead to the QH states at all even f ,
f =0, and f = ±1, in accordance with experiment.8 Here the
filling factor is f =2�N /B, with N as the number of electrons
measured from a half-filled band. This still, however, leaves
a complete freedom of choice of the vector �a ,b ,c�. In par-
ticular, this choice may differ for the two spin states as well.
For example, at B=0 and at strong V, one expects the inter-
actions to prefer a=1 for both projections of spin—i.e., the
CDW.2 For strong U and at B=0, on the other hand, it is a
=�—i.e., the AF—that has lower energy.7 a=0 would corre-
spond to the competing “Kekule” ordering.16 Which direc-
tion on the chiral manifold is actually chosen by the system
is thus obviously a question of dynamics, to which we turn
next.

The low-energy Lagrangian for the extended Hubbard
model may be written as7

L = i�
�

�̄���D��� − �
�

�r + �gzB���
†�� − gc�

�

�̄����2

− ga�
�

��̄����2
, �9�

where �̄�=��
†�x� ,���0, D0=−i��, with � as the imaginary

time, �=0,1 ,2, and �0= I2 � �z, �1=�z � �y, and �2= I2

� �x. Here ga�Ua2 /8, gc��3V−U�a2 /8, gz is the �dimen-
sionless� effective g factor of the electron, and B= �B�

2

+B�
2�1/2, with B� as the field’s in-plane component. We have

retained only the two least irrelevant short-range interactions
among those present in the full effective Lagrangian at B
=0.7 This will prove justified at the magnetic fields of inter-
est, as discussed shortly. We have also set the mass of the
electron me to unity.

Performing the Hubbard-Stratonovich transformation and
neglecting the quantum fluctuations the free energy per unit
area and at T=0 may be written as

FIG. 1. The proposed phase diagram of graphene in the mag-
netic field. Dz=gzB is the Zeeman energy, r is the chemical poten-
tial, and m0=2gxB� /� is the characteristic size of the “relativistic”
many-body gap m. gx is the larger of the couplings in the CDW and
AF channels �see the text�.

FIG. 2. The phase diagram at half-filling �r=0�. The translation-
ally symmetric magnet exists for gc ,ga�gzB /2B�.
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F�mc,ma� − F�0,0� =
mc

2

4gc
+

ma
2

4ga

+
B�

4�3/2�
0

� ds

s3/2 �
�=±

�e−sm�
2

− 1�f��s,m�� ,

�10�

where m�=mc+�ma and the function

f��s,m� = ���m� − �r + �gzB�� + C�s�2��coth�sB�� − 1� .

�11�

Here mc /gc=����̄���� and ma /ga=�����̄���� are the
CDW and AF order parameters,7 respectively. C�x� is the
cutoff function that satisfies C�x→��=1 and C�x→0�=0.
Summing over the LLs below a sharp cutoff in energy, for
example, yields C�x�=1−e−x. The first term in Eq. �11� rep-
resents the crucial zeroth LL contribution and the second the
remaining LLs. Zeeman energy is taken to always be smaller
than the separation between the zeroth and the first LL—i.e.,
gzB�2B�.

Let us first consider the system at r=0. The free energy is
minimized by the solution of

m+

g+
+

m−

g−
=

4B�m+

�3/2 �
0

� ds

s1/2e−sm+
2
f+�s,m+� , �12�

m−

g+
+

m+

g−
=

4B�m−

�3/2 �
0

� ds

s1/2e−sm−
2
f−�s,m−� , �13�

where g±
−1=gc

−1±ga
−1. Assume both gc and ga to be weak,

�gc,a�1, and positive, and gc
ga, for example. There are
then three types of solutions:

�i� If m+�m−
gzB, then m+=m−—i.e., ma=0 and mc
=2gcB� /�. This is the CDW. It exists when gc

�gzB /2B�. For ga
gc, of course, one finds mc=0 and
ma=2gaB� /�—i.e., the AF �Fig. 2�. This, in particular, in-
cludes the case of the pure Hubbard model with V=0. The
linear dependence on B� reflects the proportionality of either
m to the degeneracy of the LLs.

�ii� For gzB
m+�m− one finds a paramagnet with mc
=ma=0, unless the stronger coupling exceeds the B=0 criti-
cal value of � /8�, which lies outside the weak-coupling
regime.

�iii� Finally, when m+
gzB
 �m−�, the solution is mx
=gxB� /�, where x=c ,a. Both the CDW and AF order pa-
rameters are finite, which would corresponds to a ferrimag-
net. This solution exists for gc+ga
�gzB /B� and �gc−ga�
�gzB /B�.

At weak coupling only the first term, representing the
zeroth LL in Eq. �11�, actually matters for the gap m. The
second term would become important only at strong cou-
plings, or in the limit B�→0. Comparing the energies of the
four possible solutions, we find only three stable phases rep-
resented in Fig. 2. All three have the filling factor f =0. Even
if both gc and ga are positive it is always energetically favor-
able to open a single but larger gap that corresponds to the
dominant coupling. The aforementioned ferrimagnet, which

would have f =1, is thus never the minimum of the energy at
r=0. This may also be understood as follows. At low mag-
netic fields, such that lB�a where lB=1/�B� is the magnetic
length in our units, the flow of the couplings implied by the
invariance of the gaps in Eqs. �12� and �13� with respect to
change of the cutoff �, in the regime ��1/ lB, is the same as
at B�=0.17 All weak couplings are thus irrelevant at inter-
mediate length scales between the lattice constant and the
magnetic length.7 At B��0 the flow of the interaction cou-
plings towards the stable Gaussian fixed point is terminated
at the cutoff �1/ lB, with the least irrelevant coupling being
left as dominant in the low-energy theory. This single surviv-
ing coupling then selects and generates the “relativistic” gap
at B��0. All other more irrelevant couplings can be ne-
glected, as we partially did in Eq. �9�, from the outset. Inci-
dentally, this also justifies the Hartree approximation to the
free energy utilized in Eq. �10�: as long as the ground state is
semimetallic and gapless at B�=0, for a weak enough mag-
netic field the low-energy theory at the cutoff �1/ lB�1/a is
indeed weakly interacting, as assumed.

It is useful to display explicitly the relevant energy scales
in the problem. First, the relativistic gap is m��U /8�
��B� /B0�, where B0=1/a2�105 T is the characteristic
scale for the magnetic field set by the lattice constant. As-
suming U�10 eV gives m�1 meV for B��10 T. The LL
separation, on the other hand, is DL� t�B� /B0�1/2 and thus
by roughly two orders of magnitude larger. The Zeeman en-
ergy, on the other hand, for gz�1 is Dz��B /104 T� eV and
thus of a similar size as m. Since the widths of the plateaus at
f =0, ±1, ±4 are proportional to either m or Dz, both much
smaller than DL, this would naturally explain why these QH
states require higher magnetic fields to become discernible in
presence of some fixed disorder-induced broadening of the
LLs.

The above discrepancy between the kinetic and the inter-
action energy scales is only the first in a general hierarchy of
energy scales that is implied by the stability of the semime-
tallic fixed point at zero magnetic field. As discussed above,
the magnetic field affects the flow of the interaction cou-
plings only at the length scales above the magnetic length l.
The development of an order parameter mx in some channel
may be understood as the divergence of the corresponding
coupling constant x at the length scale Lx=1/mx� l. This is
determined by x, via essentially dimensional analysis, by the
relation mxl�xl−n, where xl−n is the dimensionless coupling,
with 1/ l now playing the role of the ultraviolet cutoff. For
x=g and n=1 this way we reproduce the above relation for
the interaction gap m, and for x= t and n=0 we get the char-
acteristic kinetic energy scale DL. The crucial point is that
more irrelevant interactions at B=0, with higher negative
dimensions n, translate at B�0 into energy scales that de-
pend on higher powers of B /B0: mx��B /B��n+1�/2. In particu-
lar, this is what justifies the replacement of a realistic finite-
range interaction with the simpler � function in Eq. �9�.

At r=0 there are thus two fundamentally different ground
states: one at larger interactions that breaks the A-B sublat-
tice symmetry, either in the charge �CDW� or the spin �AF�
channel, with vanishing magnetization, and the other mag-
netic, at weaker interactions, with the full translational sym-
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metry of the lattice. Both are incompressible and yield the
plateau in the Hall conductivity at f =0. If the parameters are
such to place the system for B� =0 into the former, increasing
B� would eventually cause the transition into the latter state.
This certainly holds for the CDW, as well as for the AF with
its Néel order directed along the magnetic field, as we as-
sumed here.18

Hereafter, we will thus retain only the larger quartic cou-
pling, call it gx, and its corresponding order parameter in Eq.
�10�, m. At small m the free energy then becomes

�F =
m2

4gx
�1 + O��gx�	 + O�m4� −

B��m�
2�

����m� − �r + Dz��

+ ���m� − �r − Dz��	 , �14�

where Dz=gzB. The nonanalytic term ��m� comes from the
zeroth LL. In the weak-coupling regime possible local
minima are then at m /m0=0 ,1 /2 ,1, with m0=2gxB� /�. De-
termination of the global minimum of the free energy at a
finite chemical potential then leads to the phase diagram pre-
sented in Fig. 1. Let us determine the filling factor when m
=m0 /2 solution is stable—i.e., in the strip r+Dz
m0 and
�r−Dz�m0 /2 in Fig. 1. From the first inequality we see that
r+Dz
m, and thus r
m−Dz
−m−Dz, so the values of
two out of four spin- and sublattice-degeneracy-resolved en-
ergies of the zeroth LLs lie below the chemical potential. The
second inequality implies that between the two remaining
energies one is above and the other below the chemical po-
tential. To see this, first assume r
Dz. Then Dz−mr
Dz+m, as announced. If rDz, on the other hand, Dz
+m
r
Dz−m again, so in either case f =1. The determina-
tion of the filling factor for the remaining states is even sim-
pler and follows analogously.

For f �2 the relativistic gap is m=0, and there is a direct
transition between f =0 to f =2 at Dz /m01/4. For a fixed
and larger Dz, by increasing the chemical potential the sys-
tem always passes through the intermediate f =1 QH state,
which is magnetic and breaks the discrete sublattice symme-
try. The width of f =1 state is 2Dz− �m0 /2� for Dz /m03/4,
or m0 for Dz /m0
3/4. All transitions are discontinuous. As
the ratio Dz /m0 can be changed by varying B�, it follows that
at a large enough B� the width and the activation energy of
the f = ±1 state become �B� and independent of B�, which
should be experimentally testable. Since in the experiment8

the width of the plateau at f =0 appears to be somewhat
larger than at f = ±1 and f = ±4, the latter being always 2Dz,
we speculate that 1 /4Dz /m01/2. If this is indeed the
case, the activation energy at f =0 should first decrease be-
fore increasing with B�, whereas that of f =1 would increase
and saturate.

The mechanism of “magnetic catalysis” of the ‘relativis-
tic’ gap9 utilized here has also been considered recently as an
explanation of the integer QH effect in graphene in Ref. 12.
The crucial difference from the present work is that only
�1/r tail of the Coulomb interaction was included, which
could produce only the CDW, and that with the large gap
m��B��DL. To have m much smaller from the LL sepa-
ration, as observed experimentally, requires then what ap-
pears to be an unrealistically strong screening of the Cou-

lomb interaction by the substrate.12 In this theory the gap is
also always inhibited by a finite chemical potential and thus
cannot exist at f =1 if it did not already at f =0. This would
imply that the activation gap in Ref. 12 at f =1 is always the
Zeeman energy. Both results are in sharp contradiction with
ours.

The QH effect in graphene was also recently discussed in
Ref. 13. The principal difference from the present work
is that the AF ordering was entirely neglected, so that the
existence of the QH state at f =1 in Ref. 13 is always due
to the CDW, which then requires a large enough V. In con-
trast, in the present theory f =1 state can exist even for V
=0 when it is due to the AF ordering. In particular, setting
V=gz=0 we find the pure �V=0� weakly coupled Hubbard
model at half filling and in magnetic field to be an AF, and
not the Stoner’s ferromagnet, as assumed in Ref. 13. This is
because a finite AF order parameter, unlike the magnetiza-
tion, besides splitting the zeroth LL, also lowers the energy
of all other occupied LLs. Put differently, in considering the
dynamics within only the zeroth LL, the couplings need to be
renormalized up to the length scale of the magnetic length lB
first. Then ga�lB��gf�lB� always, where gf is the coupling in
the ferromagnetic channel,7 for this reason omitted in Eq.
�9�. Retaining such a ferromagnetic coupling may be shown
to only increase the activation energy when m=0 to Dz
+2gfB� /�.

CDW formation due to lattice distortion has been pro-
posed as a mechanism behind the QH effect in graphene in
Ref. 14. This explanation differs from the present and all the
other ones in that Coulomb repulsion plays essentially no
role in it. In particular, an f =1 incompressible state would in
that scenario appear with increase of the chemical potential
for any Zeeman energy, in contrast to our Fig. 1, where for
weak Zeeman energy there is a direct transition from f =0 to
f =2.

Finally, the present mechanism differs essentially from
the recent proposal15 in which disorder is invoked to explain
the absence of QH states at odd f � ±1.

In this paper we have neglected entirely the effect of dis-
order. As usual, it will broaden the LLs and thus provide an
intrinsic energy scale that needs to be exceeded in order for
an incompressible state to be resolved. We believe that this is
why the states at f =0, f = ±1, and f = ±4 become visible only
at higher fields than the main sequence at f =4n+2, since
their energy gaps according to our scenario are inherently
smaller. They may be therefore understood as the fine struc-
ture of the QH effect in graphene.

To summarize, we assumed that the principal effect of the
Coulomb interaction in graphene is to introduce the on-site
and nearest-neighbor repulsion for electrons on a honeycomb
lattice. Postulating further a semimetallic ground state in
zero field, we argued that at a finite field there exists a hier-
archy of energy scales, determined by the degrees of irrel-
evancy of the corresponding couplings at B=0. In this work
we considered only the effects of the least irrelevant interac-
tion, which we expect to give the leading correction to the
Landau level structure for the noninteracting electrons. The
phase diagram of graphene at laboratory magnetic fields
�10 T is proposed. The theory predicts the incompressible
states at all even integer filling factors including f =0, and at
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f = ±1. The ground state of the system at f =0 either breaks
the sublattice symmetry, in either charge or spin channels, or
is magnetic, depending on the magnitude of the Zeeman en-
ergy. At f = ±1 the system is always in the translational
symmetry-breaking phase and with finite magnetization,
whereas at �f � �2 the sublattice symmetry is preserved. The
phase diagram in the Zeeman energy-chemical potential

plane is proposed, and several of its features that may be
used to distinguish the present from other proposed scenarios
are discussed.
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