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Graphene has two atoms per unit cell with quasiparticles exhibiting Dirac-like behavior. These properties
lead to interband in addition to intraband optical transitions and modify the f-sum rule on the longitudinal
conductivity. The expected dependence of the corresponding spectral weight on the applied gate voltage Vg in
a field-effect graphene transistor is �const− �Vg�3/2. For Vg=0, its temperature dependence is T3 rather than the
usual T2. For the Hall conductivity, the corresponding spectral weight is determined by the Hall frequency �H

which is linear in the carrier imbalance density �, and hence proportional to Vg, and is different from the
cyclotron frequency for Dirac quasiparticles.
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I. INTRODUCTION

The real part of frequency-dependent optical conductivity
�xx��� is its absorptive part, and its spectral weight distribu-
tion as a function of energy ���� is encoded with informa-
tion on the nature of the possible electronic transitions result-
ing from the absorption of a photon. Even though the
relationship of the conductivity to the electronic structure
and transport lifetimes is not straightforward, much valuable
information can be obtained from such data. In particular, the
f-sum rule on the real part of �xx��� stated in its simplest
form for an infinite free electron band,
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, �1.1�

has proved particularly useful. Here �P is the plasma fre-
quency, �P

2 =4�ne2 /m, with n the free carrier density per
unit volume, −e	0 the charge of electron, and m its effec-
tive mass. In this case the right-hand side �RHS� of Eq. �1.1�
is independent of temperature and of the interactions. More
generally for a finite tight-binding band, the optical sum rule
takes the form
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with �M a cutoff energy on the band of interest and only the
contribution to Re �xx��� of this particular band is to be
included in the integral. Here � is Planck’s constant, V is the
crystal volume, � is the spin, 
k is the electronic dispersion,
k is the wave vector in the Brillouin zone, and nk,� is the
probability of occupation of the state �k ,��. If we assume a
free electron dispersion 
k=�2k2 /2m, Eq. �1.2� immediately
reduces to Eq. �1.1� with n=N /V, where N=�k,�nk,� is the
total number of electrons in the band. For tight-binding dis-
persion with nearest-neighbor hopping on a square lattice it
is easy to show that the RHS of Eq. �1.2� reduces to e2 /�2

multiplied by minus one-half of the kinetic energy, WKE per
atom. In this particular case the optical sum rule can be used
to probe the change in kinetic energy of the electrons as a
function of temperature or with opening of a gap in the spec-

trum of the quasiparticle excitations which has been a topic
of much recent research.1–5

When a constant external magnetic field B is applied to a
metallic system in the z direction, the optical conductivity
acquires a transverse component �xy��� in addition to the
longitudinal component �xx���. This quantity gives addi-
tional information on the electronic properties modified by
the magnetic field. In this case Drew and Coleman6 have
derived a new sum rule on the optical Hall angle �H���. If
we define

tH��� � tan �H��� =
�xy���
�xx���

, �1.3�

then
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d� Re tH��� = �H, �1.4�

where �H is the Hall frequency which corresponds to the
cyclotron frequency �c=eB /mc for free electrons. Here c is
the velocity of light.

Recently, graphene which is a single atomic layer of
graphite, has been isolated7 and studied8,9 �see Refs. 10 and
11 for a review�. The two-dimensional �2D� graphene hon-
eycomb lattice has two atoms per unit cell. Its tight-binding
band structure consists of the conduction and valence �
bands. These two bands touch each other and cross the Fermi
level, corresponding to zero chemical potential �, in six K
points located at the corners of the hexagonal 2D Brillouin
zone, but only two of them are inequivalent. The extended
rhombic Brillouin zone can be chosen to contain only these
two points inside the zone. In a field-effect graphene
device7–9 electrons can be introduced in the empty conduc-
tion band or holes in the filled valence band through the
application of a gate voltage and thus the normally zero
value of the chemical potential � can be changed continu-
ously. In this paper we wish to consider the optical sum rules
described above for the specific case of graphene. Two es-
sential modifications arise. The existence of the two bands
means that interband transitions need to be accounted for in
addition to the usual intraband transitions of the previous
discussion. Second, the electronic dispersion curves near K
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points are linear in momentum and the low-energy quasipar-
ticle excitations are described by the “relativistic”
�2+1�-dimensional Dirac theory12–15 rather than the
Schrödinger equation.

The effective low-energy Dirac description of graphene
turns out to be insufficient for the derivation of the sum
rules. This can be easily understood from two examples. The
RHS of Eq. �1.2� is normally related �Refs. 2–5� to the dia-
magnetic term that is defined as the second derivative of the
Hamiltonian 	see Eq. �2.7� below
 with respect to the vector
potential. This term is zero within the Dirac approximation.
On the other hand, it follows from the same Dirac approxi-
mation that, in the high-frequency limit, the interband con-
tribution to conductivity is constant16,17 �see also Ref. 18�:

Re �xx��� �
�e2

2h
, � 
 �,T . �1.5�

The frequency � is unbound in the Dirac approximation,
although physically � should be well below the band edge.
This example indicates that when considering sum rules one
should go beyond the Dirac approximation.

The second example is that the cyclotron frequency �c for
the Dirac quasiparticles19 is defined in a different way, �c
=eBvF

2 / �c����, where vF is the Fermi velocity. This definition
follows from the fact that a fictitious relativistic mass8,9,20

mc= ��� /vF
2 plays the role of the cyclotron mass in the tem-

perature factor of the Lifshits-Kosevich formula for
graphene.21,22 This cyclotron frequency diverges as �→0,
also posing the question as what one should use as a Hall
frequency on the RHS of Eq. �1.4�.

It turns out that these problems are resolved when a tight-
binding model is considered, but still due to the specifics of
graphene, the f-sum rule cannot be guessed from Eq. �1.2�
applied for the two-band case. Further important modifica-
tions to the f-sum and Hall-angle sum rule for graphene are
expected and found in this paper.

The paper is organized as follows. In Sec. II we introduce
the tight-binding model and the necessary formalism. In
Secs. III and IV we describe the derivation of the sum rules
for the diagonal and Hall conductivities and consider the
specific case of graphene. The partial sum rule for the Hall
angle is investigated in Sec. V. In Sec. VI, the main results of
the paper are summarized. Mathematical details are given in
two appendixes.

II. TIGHT-BINDING MODEL AND GENERAL
REPRESENTATION FOR ELECTRICAL CONDUCTIVITY

A. Tight-binding model: Paramagnetic and diamagnetic
parts

The honeycomb lattice can be described in terms of two
triangular sublattices A and B. The unit vectors of the under-
lying triangular sublattice are chosen to be

a1 = �a�3/2,a/2� ,

a2 = �a�3/2,− a/2� , �2.1�

where the lattice constant a= �a1�= �a2�=�3aCC and aCC is the
distance between two nearest carbon atoms. Any A atom at

the position n=a1n1+a2n2, where n1 and n2 are integers, is
connected to its nearest neighbors on B sites by the three
vectors �i:

�1 = − �a1 + a2�/3,

�2 = 2/3a1 − 1/3a2,

�3 = − 1/3a1 + 2/3a2. �2.2�

We start with the simplest tight-binding description for �
orbitals of carbon in terms of the Hamiltonian

H = t �
n,�,�


an,�
† exp� ie

�c
�A�bn+�,� + c.c.� , �2.3�

where t is the hopping parameter and an,� and bn+�,� are the
Fermi operators of electrons with spin � on A and B sublat-
tices, respectively. Since we are interested in the current re-
sponse, the vector potential A is introduced in the Hamil-
tonian �2.3� by means of the Peierls substitution an,�

† bm,�

→an,�
† exp�− ie

�c�m
n Adr�bm,�, which introduces the phase fac-

tor exp� ie
�c�A� in the hopping term �see Ref. 2 for a review�.

We keep the Planck constant � and the velocity of light c, but
set kB=1.

Expanding the Hamiltonian �2.3� to second order in the
vector potential, one has

H = H0 − �
n

1

c
A�n�j�n� −

1

2c2A��n�����n�A��n�� ,

�2.4�

�,� = 1,2.

The total current density operator is obtained by differentiat-
ing the last equation with respect to A��n�,

j��n� = −
�H

��A�/c�
= j�

P�n� − ����n�A��n�/c , �2.5�

and consists of the usual paramagnetic part

j�
P�n� = −

ite

�
�
�,�

��	an,�
† bn+�,� − bn+�,�

† an,�
 �2.6�

and diamagnetic part

����n� =
�2H

��A�/c���A�/c�

= −
te2

�2 �
�,�

����	an,�
† bn+�,� + bn+�,�

† an,�
 . �2.7�

B. Noninteracting Hamiltonian

The noninteracting Hamiltonian H0 in Eq. �2.4� written in
the momentum representation reads

H0 = �
�
�

BZ

d2k

�2��2��
†�k�H0���k� , �2.8�
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H0 = � 0 
�k�ei��k�


�k�e−i��k� 0
� ,

with ��k�= t��eik��
�k�ei��k�. The dispersion law 
�k� is


�k� = t�1 + 4 cos
�3kxa

2
cos

kya

2
+ 4 cos2 kya

2
. �2.9�

In Eq. �2.8� we introduced the spinors

���k� = �a��k�
b��k�

� , �2.10�

with the operator ���k� being the Fourier transform of the

spinor ���n�= � an,�

bn,�
�:

���n� = �S�
BZ

d2k

�2��2eikn���k� . �2.11�

Here S=�3a2 /2 is the area of a unit cell and the integration
in Eqs. �2.8� and �2.11� goes over the extended rhombic Bril-
louin zone �BZ� which is characterized by the reciprocal lat-
tice vectors b1=2� /a�1/�3,1� and b2=2� /a�1/�3,−1�.

We also add the term

H0 → H0 − ��
�
�

BZ

d2k

�2��2��
†�k�Î���k� , �2.12�

with the chemical potential � to the Hamiltonian H0, so that
our subsequent consideration is based on the grand canonical
ensemble. The corresponding imaginary time Green’s func-
tion �GF� is defined as a thermal average

G���1 − �2,n1 − n2� = − �T�����1,n1���
†��2,n2��

�2.13�

and its Fourier transform is

G���1 − �2,n1 − n2� = T�
n
�

BZ

d2k

�2��2G�i�n,k�

�exp	− i�n��1 − �2� + ik�n1 − n2�
 ,

�2.14�

with

G�i�n,k� =
�i�n + ��Î + �+��k� + �−�*�k�

�i�n + ��2 − 
2�k�
, �2.15�

�n = ��2n + 1�T ,

where the matrix �±= ��1± i�2� /2 made from Pauli matrices
operates in the sublattice space. In Eq. �2.15� the spin label �
is omitted, because in what follows we neglect the Zeeman
splitting and include a factor of 2 when necessary. The GF
�2.15� describes the electronlike and holelike excitations
with energies E±�k�= ±
�k�−�, respectively. The dispersion

�k� near K points is linear, E±�p�= ±�vF

�p1
2+ p2

2−�, where
the wave vector p= �p1 , p2� is now measured from the K
points and the Fermi velocity is vF=�3ta / �2��. Its experi-
mental value8,9 is vF�106 m/s.

C. Electrical conductivity

The frequency-dependent electrical conductivity tensor
������ is calculated using the Kubo formula2,3

������ =
K���� + i0�
− i�� + i0�

, �2.16�

K���� + i0� �
�����

V
+

���
R �� + i0�

�V
,

where the retarded correlation function for currents is given
by

���
R ��� = �

−�

�

dtei�t���
R �t� , �2.17�

���
R �t� = − i��t�Tr��̂	J��t�,J��0�
� ,

V is the volume of the system, �̂=exp�−�H0� /Z is the den-
sity matrix of the grand canonical ensemble, �=1/T is the
inverse temperature, Z=Tr exp�−�H0� is the partition func-
tion, and J� are the total paramagnetic current operators with

J��t� = eiHt/�J��0�e−iHt/�, J��t� = �
n

j�
P�t,n� , �2.18�

expressed via the paramagnetic current density �2.6�. Using
the representation for ������ in terms of the matrix ele-
ments of the current operator J��t=0�, one can find23 the
high-frequency, �→� asymptotic of the Hall conductivity,

�xy��� =
i

V��2��	Jx,Jy
� +
1

����2 �	†	Jx,H
,H‡Jy
�

+ O� 1

����4�� , �2.19�

while the longitudinal conductivity is

�xx =
1

iV�
�− ��xx� +

1

����2 �†	Jx,H
,Jx‡� + O� 1

����4�� .

�2.20�

Here 	,
 is the commutator. Below in Secs. III and IV we will
use Eqs. �2.16�, �2.19�, and �2.20�, to outline the formal deri-
vation of the sum rules.

III. DIAGONAL OPTICAL CONDUCTIVITY SUM RULE

The optical conductivity sum rule is a consequence of
gauge invariance and causality. Gauge invariance dictates the
way that the vector potential enters Eq. �2.3� and, respec-
tively, determines the diamagnetic and paramagnetic terms in
the expansion �2.4� as well as the form of Kubo formula
�2.16�. The causality implies that the conductivity, Eq.
�2.16�, satisfies the Kramers-Krönig �KK� relation

������ =
1

�i
P�

−�

� d�������
� − �

. �3.1�

Combining together the high-frequency limit of the KK re-
lation �3.1�,

SUM RULES FOR THE OPTICAL AND HALL… PHYSICAL REVIEW B 75, 165407 �2007�

165407-3



Im ������ =
1

��
P�

−�

�

d� Re ������, � → � ,

�3.2�

and the asymptotic �2.20�, we arrive at the sum rule

1

�
�

−�

�

d� Re �xx��� =
��xx�

V
. �3.3�

Taking into account that Re �xx��� is an even function of �,
we observe that for a single tight-binding band ����� /V cor-
responds to the RHS of Eq. �1.2�. Also defining the plasma
frequency �P via �P

2 / �4����������� /V we can rewrite the
sum rule �3.3� in the form �1.1�. Below we calculate this
term for the Hamiltonian �2.3� with a nearest-neighbor hop-
ping on the hexagonal graphene lattice.

A. Explicit form of the diamagnetic term

The diamagnetic or stress tensor ����� in the Kubo for-
mula �2.16� is a thermal average of Eq. �2.7�:

����� = ��
n

����n�� . �3.4�

This term is calculated in Appendix A and is given by

�����
V

=
2e2

�2 �
BZ

d2k

�2��2 	nF„
�k�… − nF„− 
�k�…


�
 �2

�k�
2 − � ���k�

�k�
�2�
�k� , �3.5�

where nF���=1/ �exp	��−�� /T
+1� is the Fermi distribu-
tion. Because the graphene structure contains two atoms per
unit cell �two sublattices�, there are two bands in the BZ
which correspond to positive- and negative-energy Dirac
cones. The momentum integration in Eq. �3.5� is over the
entire BZ, and the thermal factors nF(
�k�) and nF(−
�k�)
refer to the upper and lower Dirac cones, respectively. We
note that a simple generalization of Eq. �1.2� for a two-band
case would miss the term with the derivative of the phase,
����k� /�k��2. This term occurred due to the fact that the
Peierls substitution was made in the initial Hamiltonians
�2.3� and �2.8� rather than after the diagonalization of Eq.
�2.8�. The second comment on Eq. �3.5� 	see also Eq. �A4� in
Appendix A
 is that ����� vanishes if 
�k� is taken in the
linear approximation. This reflects the absence of the dia-
magnetic term in the Dirac approximation. The correct way
is first to take the derivatives in Eq. �3.5�. This is done in Eq.
�A5� in Appendix A and leads to the final result

�����
V

= −
e2a2

3�2 �
BZ

d2k

�2��2 	nF„
�k�… − nF„− 
�k�…

�k� .

�3.6�

Equation �3.6� is equivalent to Eq. �3.5�. Note that ����� is
always positive and does not depend on the arbitrary choice
of the sign before t in Eq. �2.3�. Now Eq. �3.6� is e2 /�2 times
−2/ �3�3� ��−0.39� of the kinetic energy per atom instead of

−1/2 for the usual square lattice. At zero temperature for
��0 �to be specific� the lower Dirac cone is full and, in the
conductivity, only interband transitions are possible for these
electrons. Similarly, the electrons in the upper Dirac cone
can undergo only intraband transitions. In the above sense
the first thermal factor in Eq. �3.6� corresponds to intraband
and the second to interband at T=0.

It is useful to separate explicitly the contribution ��xx��
=T=0�� of the Dirac sea from Eq. �3.6�:

��xx� = ��xx�� = T = 0�� + ��xx
eh��,T�� , �3.7�

where

��xx�� = T = 0��
V

= −
e2a2

3�2 �
BZ

d2k

�2��2 	− 
�k�
 �3.8�

is the contribution of the Dirac sea �the energy of the filled
valence band� and

��xx
eh��,T��

V
= −

e2a2

3�2 �
BZ

d2k

�2��2 	nF„
�k�… + 1

− nF„− 
�k�…

�k� �3.9�

is the electron-hole contribution. Expressions �3.6�, �3.8�,
and �3.9� contain the energy 
�k� as happens also for the case
of the square lattice with nearest-neighbor hopping men-
tioned in the Introduction.

The numerical calculation of the Dirac sea contribution
�3.8� with the full dispersion �2.9� gives

��xx�� = T = 0��
V

= �
e2t

�2 , � � 0.61. �3.10�

The same answer also follows from the linearized Dirac ap-
proximation with the trigonal density of states if the band
width W is taken to be W=��3�t. The electron-hole contri-
bution �3.9� can be estimated analytically in the linear ap-
proximation for the dispersion law,

��xx
eh��,T��

V
=

2e2a2T3

3��4vF
2 	Li3�− e�/T� + Li3�− e−�/T�
 ,

�3.11�

where Li3�z� is the polylogarithmic function.24 This shows
that for �=0 the temperature dependence of the diagonal
conductivity sum rule is �T3, in contrast to a well-known T2

dependence.2–5 We note, however, that because ��xx
eh��

=0,T�� /V�−T3 / t2, which is small, the T3 behavior is un-
likely to be observed. On the other hand, using asymptotics
of the polylogarithmic function for ���
T, Eq. �3.11� can be
written in the form

��xx
eh��,T��

V
= −

e2a2

9��4vF
2 	���3 + �2���T2
 . �3.12�

The ���3 behavior at T=0 is easily understood from Eq.
�3.9�, in which case it reduces to an integral over energy
ranging from 0 to � of the density of states �DOS� which is
proportional to �
� in graphene. The integrand is therefore
proportional to 
2, leading directly to the ���3 dependence.
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This cubic power law reflects directly the Dirac nature of the
electronic dispersion relation encoded in the linear in the 

DOS. At finite T the DOS in Eq. �3.9� for �=0 provides an
additional factor of T as compared with the conventional
case, leading to T3 rather than T2 behavior. On the other
hand, for ���
T the DOS can be evaluated at �, leading to a
���T2 law. All these results follow directly from a linear dis-
persion of the massless Dirac quasiparticles.

We note that the ���3 behavior is more likely to be ob-
served than the T3 dependence by varying the gate voltage
Vg. Using Eq. �4.7� for carrier imbalance � which is propor-
tional to Vg, we obtain that ��xx

eh�Vg�� /V�−�Vg�3/2. Note that
as one can see from Eq. �3.12�, the electron-hole contribution
��xx

eh�� ,T�� in Eq. �3.9� is negative and it has to be added to
Eq. �3.8� to get the total non-negative contribution to the
optical sum. If at T=0 we take the chemical potential to fall
at the top of the band, so that the positive-energy Dirac cone
is completely occupied, Eq. �3.9� reduces to Eq. �3.8� except
for a difference in sign. The two contributions cancel, be-
cause a full band cannot absorb. The same result follows
from Eq. �3.12� when � is taken to be the energy cutoff on
the bandwidth W=��3�t. We also note from Eq. �3.12� that
for ���
T we recover the already mentioned T2 law.2–5

IV. HALL-ANGLE SUM RULE

We now consider the optical Hall angle �1.3� that plays
the role of the response function to an injected current rather
than an applied field:

jx��� = �xy���Ey��� = tH���jy���, jy��� = �xx���Ey��� .

�4.1�

It was proved in Ref. 6 that the response function tH���
satisfies the KK relation

tH��� =
1

�i
P�

−�

�

d�
1

� − �
tH��� . �4.2�

Multiplying Eq. �4.2� by −i� and taking the limit �→�, we
obtain the sum rule

1

�
�

−�

�

d� tH��� = �H, �4.3�

with the Hall frequency

�H � lim
���→�

	− i�tH���
 . �4.4�

The Hall-angle sum rule �1.4� follows from Eq. �4.3� after
we take into account that the real and imaginary parts of
tH��� are even and odd functions of �, respectively. Micro-
scopic considerations based on the Kubo formula �2.16�
show that the high-frequency limit �4.4� exists and is given
by

i�H = lim
���→�

�Kxy���
Kxx���

=
�	Jx�t = 0�,Jy�t = 0�
�

���xx�
, �4.5�

where in the last equality we used the high-frequency asymp-
totics, Eqs. �2.19� and �2.20�.

The commutator Ix,y = �	Jx�t=0� ,Jy�t=0�
� is calculated in
Appendix B, where we obtain

Ix,y = − i
e2a4t2�eB

4�4c

xyV� . �4.6�

Here � is the carrier imbalance ��=ne−nh, where ne and nh
are the densities of electrons and holes, respectively� and 
ab
is antisymmetric tensor. The carrier imbalance for B=T=0
and in the absence of impurities is

� =
�2 sgn �

��2vF
2 . �4.7�

Substituting Eqs. �4.6� and �3.10� into Eq. �4.5� we finally
obtain

�H = −
1

4�

eB

c

ta2

�2 �a2. �4.8�

Since ta2 /�2 has the dimensionality of the inverse mass and
�a2 is dimensionless, Eq. �4.8� has the correct dimensionality
of the cyclotron frequency. Substituting Eq. �4.7� and ex-
pressing vF via t, one can rewrite

�H = −
4 sgn�eB�

9��
L2�B�

�2 sgn �

�t3 . �4.9�

Here L�B�=��eB��vF
2 /c is the Landau scale which in

temperature units is equal to L2�B� 	K2
=8.85
�10−8 K2 vF

2�m/s� B�T� and �=7.638�10−12 K s.
As mentioned in the Introduction, in a recent interpreta-

tion of Shubnikov–de Haas measurements a gate voltage-
dependent cyclotron mass was introduced8,9 through the re-
lationship ���=mcvF

2 . If this is used in Eq. �4.9�, we get

�H = −
eB

cmc
� �

1.62t
�3

. �4.10�

Since a full upper Dirac band corresponds to a value �=W
=��3�t�2.33t �see the end of Sec. III A�, in this case for-
mula �4.10� resembles the formula �H=�c=eB /mc from
Ref. 6 for two-dimensional electron gas with mc replacing
the free electron mass. In graphene, however, mc varies as
the square root of the carrier imbalance ��� and the two cases
look the same only formally.

Finally, we notice that when the spectrum becomes
gapped with E=��2vF

2�p1
2+ p2

2�+�2, the carrier imbalance is

� =
1

��2vF
2 ��2 − �2����2 − �2�sgn � . �4.11�

This implies that the gap � can be extracted from the change
in �H obtained from magneto-optical measurements. This
kind of measurement which reveals gapped behavior has al-
ready been done on the underdoped high-temperature super-
conductor YBa2Cu3O6+x.

25 The recent measurements done in
epitaxial graphite26 and in highly oriented pyrolytic
graphite27 lead us to expect that this experiment should be
possible for graphene. Below we restrict ourselves to the �
=0 case.
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V. PARTIAL SPECTRAL WEIGHT FOR THE HALL-
ANGLE SUM

So far we have considered only the complete optical sum
involving integration of the optical spectral weight over the
entire band. The temperature dependence of such a sum has
been central to many recent studies3–5 focused on the possi-
bility of kinetic-energy-driven superconductivity in the cu-
prates. The effects are small and the experiment is difficult.
The conductivity is needed up to high energies and there is
no unambiguous criterion to decide where the band of inter-
est may end. On the other hand, the partial optical sum to a
definite upper limit �m can give important information on
the approach to the complete optical sum. It has also proved
very useful in understanding the spectral weight redistribu-
tion with temperature or phase transition �see, e.g., the recent
works in Refs. 28 and 29�. A discussion of the effect of an
external magnetic field on the partial optical sum �or weight
of the main peak� for the longitudinal conductivity in epitax-
ial graphite can be found in Ref. 26. While the optical Hall
conductivity is not as widely studied as the longitudinal con-
ductivity, many new studies �see, e.g., Ref. 25� have shown
its usefulness as it gives information on the change in micro-
scopic interactions brought about by B. The available experi-
mental data for graphite27 already contain information about
optical Hall conductivity, and when the same measurements
are done on graphene, they can be directly compared with
the results discussed below.

We saw in our previous paper17 that the longitudinal con-
ductivity

Wxx��m� = �
0

�m

d� Re�xx��� �5.1�

showed �see Fig. 7 in Ref. 17� plateaus with the steps corre-
sponding to the various peaks in the diagonal conductivity.
Here we are interested in the corresponding quantity associ-
ated with the Hall angle Re tH��� and consider the weight

W��m� = �
0

�m

d� RetH��� . �5.2�

It is instructive to begin with a discussion of the frequency
dependence of Re tH���. As already mentioned after Eq.
�4.3�, because the imaginary part of both �xy��� and �xx���
is an odd function of �, only the real part of tH��� contrib-
utes to the sum rule �1.4�. Thus we will need to consider only
Re tH��� defined by Eq. �1.3�. General expressions for the
complex conductivities �xx��� and �xy���, derived in the
Dirac approximation, are given by Eqs. �9�, �11� and �10�,
�12�, respectively, of our previous paper.17

In what follows we will consider explicitly possible ex-
perimental configurations. For a fixed cutoff ��m� sweeping
the magnetic field gives direct information on the change in
optical spectral weight, in this frequency region, brought
about by B. For the field-effect transistor configuration used
in Refs. 7–9 the chemical potential � can be changed
through an adjustment of the gate voltage at fixed B and �m.

Another configuration that might be considered is to fix B
and � and change �m. These three cases serve to illustrate
what can be expected in experiments.

In Fig. 1 we show results for the frequency dependence of
Re tH��� for a case with external magnetic field B=0.4 T, at
temperature T=5 K and impurity scattering rate �=10 K.
Accordingly, the energies of the Landau levels are Mn

=�2nL2�B� 	see also Eq. �5� in Ref. 17
—viz., M1�265 K,
M2�375 K, M3�460 K, and M4�531 K, respectively.
Thus the long dashed �red� curve with �=−20 K is for ���
	M1, the dash-dotted �black� curve with �=−300 K is for
M1	 ���	M2, the solid �blue� line with �=−400 K is for
M2	 ���	M3, and the short dashed �green� curve with �
=−500 K is for M3	 ���	M4. The values chosen for all the
parameters used in Fig. 1 are quite reasonable. For a mag-
netic field 0.4 T the various Landau energies fall within the
range of available optical spectrometers and this is one value
of B used in Ref. 26 on the optics of several-layer graphite.
The value of the broadening parameter � is not so well
known, but our choice is reasonable when compared with the
line broadening seen in experiments.26 Higher values would
simply broaden the lines seen in Fig. 1. Further in field-effect
graphene devices7–9 the chemical potential can be easily var-
ied from −3600 K to 3600 K simply by changing the gate
voltage. Low temperatures can also be easily achieved. Start-
ing with the long dashed �red� curve of Fig. 1 we notice a
Drude-like behavior of Re tH��� at small �, followed by a
region where it is small. It then changes sign, after which it
exhibits a negative peak around 375 cm−1. This is followed
by a further series of small peaks, all negative, which decay
in amplitude as the frequency � increases. The frequencies
of the peaks do not correspond to the sum or differences of
two adjacent Landau level energies Mn as do the peaks in
both Re �xx��� and Im �xy��� seen in Ref. 17. Rather they
fall, approximately, at energies between two peaks in

FIG. 1. �Color online� Real part of the Hall angle, RetH���, at
B=0.4 T, temperature T=5 K, and scattering rate �=10 K for four
values of chemical potential. Long dashed �red� lines �=−20 K;
dash-dotted �black� line, �=−300 K; solid �blue� line, �=−400 K;
and short dashed �green� line, �=−500 K.
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Re �xx��� �see Fig. 1 in Ref. 17 taking into account that it is
plotted for B=1 T�, where the Im �xx��� also crosses zero
and the denominator in Re tH=Re��xy /�xx� which is equal to
	Re �xx���
2+ 	Im �xx���
2 consequently has a minimum.
The numerator Re �xx���Re�xy���+Im �xx���Im �xy���
plays little role in the peak positions, but determines their
sign which can be positive or negative as seen in the other
three curves �for larger values of chemical potential�. In this
case the first peak is positive and this is followed by, decay-
ing in amplitude, a sequence of higher-energy peaks, all of
which are negative. Note that the position of the first positive
peak in each of the dash-dotted, solid, and dashed curves
moves progressively to higher energy as the chemical poten-
tial crosses a new Landau level. This happens because, as we
have already stated, the peaks in Re tH��� fall in between the
two consecutive peaks in Re �xx��� 	for MN	 ���	MN+1,
the first interband peak in Re �xx��� falls at MN+MN+1
.

Returning to the small-� behavior of Re tH���, where a
Drude-like behavior was noted, we see that the weight under
this peak is progressively depleted as � crosses through
larger Landau level energies. These features can be under-
stood qualitatively from approximate expressions for
Re tH��� obtained by keeping only the leading term in the
formulas for both the longitudinal �xx��� and Hall �xy���
conductivity. In Ref. 17 we provided expressions �11� and
�12� which we will not repeat here. Both involve a sum over
Landau levels n=0,1 ,2 , . . .. If ��� falls in the interval

M0 ,M1	, retaining only the n=0 contribution to the sum, we
get for T=0

�xx��� =
e2vF

2 �eB�
�ci

2�� + 2i��
M1

1

M1
2 − �� + 2i��2 �5.3�

and

�xy��� = −
e2vF

2eB sgn �

�c

2

M1
2 − �� + 2i��2 . �5.4�

It follows from Eqs. �5.4� and �5.3� that

tH��� = −
i�2��eB�vF

2/csgn�eB�sgn �

� + 2i�
, �5.5�

RetH��� = −
M12� sgn�eB�sgn �

�2 + 4�2 .

This shows that while Re �xx��� and Im �xy��� are peaked
near �=M1, the small-� limit of Re tH��� is indeed Drude
in shape with width 2�. Also its height at �=0 and �	0 is
M1 /2� which is set by the inverse scattering rate 2� and by
the Landau scale L�B�, because M1=�2L�B�.

On the other hand, for �� 
MN ,MN+1	 the first nonzero
term in the expression for the Hall angle tH��� is for n=N.
Retaining only this contribution to the conductivities �11�
and �12� from Ref. 17 and defining

AN
± =

1

�MN+1 ± MN�2 − �� + 2i��2 �5.6�

for T=0 we get

�xx��� =
e2vF

2 �eB��� + 2i��
�ci

� AN
−

MN+1 − MN
+

AN
+

MN+1 + MN
� ,

�5.7�

�xy��� = −
e2vF

2eB

�c
�AN

− + AN
+� . �5.8�

Hence for tH we obtain the Drude term

tH��� = − i
sgn�eB�sgn �

� + 2i�

�
AN

− + AN
+

AN
−/�MN+1 − MN� + AN

+/�MN+1 + MN�
. �5.9�

It follows directly from this formula that Re tH��� in the
limit of large N is given approximately by

RetH��� � −
1

2�N

M12� sgn�eB�sgn �

�2 + 4�2 , N 
 1.

�5.10�

The value Re tH��=0�=M1 / �4�N�� is roughly verified in
our numerical work, where larger N corresponds to larger
chemical potential, and these results serve as a guide to our
numerical work.

Our theory predicts not only the position in energy of the
various lines as well as the shape of the Re tH��� at small
photon energy, but also provides values for the optical spec-
tral weight under the various features seen in Fig. 1. Infor-
mation on this spectral weight is conveniently presented in
terms of the partial sum rule of Eq. �5.2� for typical values of
the cutoff �m as a function of the magnetic field. In Fig. 2 we
show numerical results for the Hall-angle spectral weight
W��m� in cm−1 as a function of the value of the external
magnetic field B for four values of the cutoff �m at fixed
value of �=−20 K, T=1 K, and �=15 K. For the long
dashed �red� curve with the cutoff �m=300 cm−1 only the
frequency region in the long dashed �red� curve of Fig. 1
which falls below the first peak �negative in this case� in
Re tH��� is integrated in the weight. While in Fig. 1 the field
B=0.4 T, the peaks in Re tH��� move to higher energies as
B increases and so for all values of B used in the figure only
the Drude region around small � of the curve is integrated
over. Using the formula �5.5� as a rough approximation we
expect in this case W��m� to scale as the square root of B
coming from the M1 factor. This is verified to good accuracy
in the numerical work. When �m increases, as is the case for
the other three curves of Fig. 2, the peaks in Re tH���, which
are negative for �=−20 K, start entering the integral and this
reduces the value of the optical sum. However, we have no
simple approximate analytic formula which might capture
the essence of the situation in this case, so we must rely on
the numerical work. It is also clear that for a given value of
B, the reduction in the optical sum caused by the negative
peaks in Re tH��� will be less as B increases, because the
peaks move to higher energies. In fact the upward steps, seen
most clearly in the dash-dotted �black� curve of Fig. 2 with
the cutoff �m=700 cm−1, correspond to values of B for
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which a peak in Re tH��� is starting to fall outside the inte-
gration range. The first step occurs around B�0.75 T when
the second negative peak in the long dashed curve of Fig. 1
is moving through 700 cm−1, while for B�1.6 T it is the
first peak in Re tH��� which is involved. This peak is larger
in absolute value, and so this second step is larger. Note also
that in this case the dash-dotted �black� curve merges with
the long dashed �red� curve for the smaller cutoff as it must,
since in both instances only the Drude-like contribution at
small � is relevant to the integral.

Another feature of the curves in Fig. 2 is worth comment-
ing on. We note that the short dashed �green� curve for �m
=1200 cm−1 becomes linear in B at small B in contrast to the
long dashed �red� curve which, as we saw, went like �B. We
can get some understanding of this crossover which corre-
sponds to the case when many peaks are involved in the
integration, by considering the B→0 limit. In Ref. 17 we
also obtained the expressions �13� for �xx and �14� for �xy
which for �=0 read

�xx��� = −
2ie2�� + 2i��

h 
 1

�� + 2i��2�
0

�

d����� �nF���
��

−
�nF�− ��

��
� − �

0

�

d�
nF�− �� − nF���
�� + 2i��2 − 4�2� �5.11�

and

�xy��� =
e2vF

2eB

�c
�

0

�

d�� �nF���
��

+
�nF�− ��

��
�

� 
−
1

�� + 2i��2 +
1

4�2 − �� + 2i��2� .

�5.12�

For T=0 we get

�xx��� =
2ie2

h

 ���

� + 2i�
+

1

4
ln

2��� − �� + 2i��
2��� + �� + 2i��� ,

�5.13�

�xy��� =
e2vF

2eB

�c
sgn �
 1

�� + 2i��2 +
1

�� + 2i��2 − 4�2� .

�5.14�

Hence for ���
� ,� we obtain

tH��� = −
�vF

2eB

c�

1

2� − i�
= −

�eB sgn �

cmc

1

2� − i�
,

�5.15�

where in the second equality we introduced the cyclotron
mass mc. This form is to be contrasted to that obtained in Eq.
�5.5� for large magnetic field B, where tH��� is proportional
to �B rather than to B as in Eq. �5.15�. Except for a sign
change this result is of the same form as in Eq. �22� of Ref.
6 with mc playing the role of mass which in graphene varies
as the square root of the carrier imbalance ���.8,9 Here we
emphasize the linear dependence on magnetic field B in Eq.
�5.15� as well as in the full sum rule �1.4� with �H given by
Eq. �4.9�.

An experimental configuration which has already been
used by Li et al. in Ref. 30 is incorporating the specimen into
a field-effect device.7–9 In this case the chemical potential �
is easily changed by varying the gate voltage. In Fig. 3 we
show numerical results for W��m� in cm−1 as a function of
chemical potential � in K for four values of the cutoff �m.
The magnetic field B has been set to 0.4 T, T=1 K, and �
=15 K. We see steps occurring in these curves as the chemi-
cal potential � crosses the Landau level energies—viz., M1
�265 K, M2�375 K, M3�460 K, and M4�531 K, re-
spectively. Between successive sharp rises, W��m� stays
nearly constant, quite independent of �. The long dashed
�red� curve has the smallest cutoff equal to 300 cm−1 which
falls below the first peak in the long dashed �red� curve of
Fig. 1 for �=−20 K and its value �135 cm−1 corresponds to
the area under the Drude part of the curve �in Fig. 1�. Re-
maining with �m=300 cm−1 as ��� is increased beyond M1
but is less than M2, the value of W��m� decreases. This now
corresponds to the dash-dotted �black� curve of Fig. 1 which
has a smaller Drude-like piece than does the long dashed
�red� curve and the drop is close to a factor of 0.56 while our
simplified but analytic formula �5.10� predicts 0.71 �which is
better than can be expected as it is valid only for N
1 and
we are using it outside the range of validity�. The dash-
dotted �black� curve has �m=450 cm−1 which is chosen to

FIG. 2. �Color online� Partial Hall spectral weight W��m� as a
function of field B at �=−20 K, temperature T=1 K, and scattering
rate �=15 K for four values of �m. Long dashed �red� line, �m

=300 cm−1; dash-dotted �black� line, �m=700 cm−1; solid �blue�
line, �m=1000 cm−1; and short dashed �green� line, �m

=1200 cm−1.
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fall above the first �negative� peak in the long dashed �red�
curve of Fig. 1. For ���	M1 the dash-dotted curve of Fig. 1
applies, and to get W��m�, we are integrating through the
first negative peak in addition to the Drude-like peak cen-
tered at �=0. This reduces its value to about half the value it
had for the lower cutoff �m=300 cm−1. In the region �
� 
M1 ,M2	, however, the dash-dotted curve of Fig. 1 applies
and we are integrating over the first positive peak in
Re tH��� as well as through the Drude-like region and so the
value of the weight W��m� is now increased. After this it
decreases again as more negative peaks are integrated over.
The other two curves can be understood as well with argu-
ments similar to those used for the first two cutoffs.

Finally in Fig. 4 we present results for W��m� as a func-
tion of �m for T=1 K, �=15 K, and �=−20 K for three
values of magnetic field. Each curve shows steps as the vari-
ous peaks beyond the Drude-like structure in Re tH��� vs �
are included in the integral defining W��m� as �m is in-
creased. These steps are most pronounced for the solid �blue�
curve with B=1.5 T. For this field value the peaks in the
long dashed curve of Fig. 1 will be shifted upwards by a
factor of �1.94, so that the first drop corresponds to integrat-
ing over the first negative peak in the equivalent of the long
dashed �red� curve of Fig. 1, while the second drop corre-
sponds to integrating over the second negative peak etc. The
drops in the other curves can be similarly traced and fall at
smaller values of �m because of the �B scaling of the peak
positions in Re tH��� vs �. To end we note that W��m�
could also show upward rather than downward steps if we

had chosen a larger value of ��� between M1 and M2. In this
case as an example, the first peak in Re tH��� is positive, so
it adds to the low-� Drude-like contribution.

VI. CONCLUSION

We have studied the modification of the usual optical sum
rules brought about by the particular band structure of
graphene—namely, its compensated semimetal aspects and
the Dirac nature of its quasiparticles. The existence of two
bands within the same Brillouin zone leads to interband as
well as intraband optical transitions, both of which enter the
optical sums.

We considered both the usual f-sum rule on the real part
of the longitudinal conductivity �xx��� and an equivalent
sum rule recently introduced by Drew and Coleman6 involv-
ing the Hall conductivity. From a formal point of view we
find that care must be used in introducing the electromag-
netic vector potential. It should be introduced into the initial
Hamiltonian through a Peierls phase factor rather than after
the diagonalization. The f-sum rule is shown to be propor-
tional to �−0.39 of the kinetic energy per atom rather than
the usual minus one-half value, familiar for a square lattice
with nearest-neighbor hopping only. This difference reflects
the particularity of the honeycomb lattice with nearest-
neighbor hopping between the two distinct A and B sublat-
tices.

For small chemical potential ����T, the longitudinal sum
rule displays a T3 temperature law rather than conventional
T2 law of free electron theory. Also for ���
T we predict a
���3 dependence on chemical potential for the deviation from
the T=�=0 reference case. The first temperature correction
in this case goes as ���T2, recovering the T2 law of free

FIG. 3. �Color online� Partial Hall spectral weight W��m� as a
function of � at B=0.4 K, temperature T=1 K, and scattering rate
�=15 K for four values of �m. Long dashed �red� line, �m

=300 cm−1; dash-dotted �black� line, �m=450 cm−1; solid �blue�
line, �m=700 cm−1; and short dashed �green� line, �m

=1000 cm−1.

FIG. 4. �Color online� Partial Hall spectral weight W��m� as a
function of the cutoff �m at �=−20 K, and T=1 K, and scattering
rate �=15 K for three values of B. Long dashed �red� line, B
=0.5 T; dash-dotted �black� line, B=0.8 T; and solid �blue� line,
B=1.5 T.
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electron theory. The ���3� �Vg�3/2 dependence should be ob-
servable in field-effect devices.

The sum rule for the Hall conductivity involves the real
part Re tH��� of the Hall angle �1.3�. Its integral �1.4� is
equal to the Hall frequency �H, and in the free electron met-
als �H coincides with the cyclotron frequency. For graphene
we find instead that �H is given by Eq. �4.9�. Although this
equation can be formally written in the form �4.10� which
involves the “relativistic” cyclotron mass mc= ��� /vF

2 , ex-
pression �4.10� is different from the conventional one. There
are two modifications. The cyclotron mass mc varies as the
square root of the carrier density, and �H in Eq. �4.10� is also
proportional to the ratio �� / t�3.

In our previous paper17 we considered partial spectral
weight Wxx��m� given by Eq. �5.1� for Re �xx��� and found
steplike structures corresponding to peaks in Re �xx���.
Here we considered the partial spectral weight W��m ;B ,��
given by Eq. �5.2� for Re tH���. Interesting steplike struc-
tures are also found in which the steps can go up or down
depending on the variable used to display the weight
W��m ;B ,��. Specifically we analyzed its dependence on the
value of the external magnetic field B and chemical potential
for various fixed values of �m. We also considered the de-
pendence of W��m ;B ,�� on �m for fixed � and B values.
The rich pattern of behavior can be traced back to the fre-
quency dependence of Re tH��� which shows a Drude-like
peak at small � followed by a series of peaks which fall at
some energy between the interband peaks of �xx���, where
both its real and imaginary parts are small. Also the peaks in
Re tH��� depend on the sign and value of chemical potential.

We hope that these specific predictions for the behavior of
Re tH���, the corresponding partial spectral weight
W��m ;B ,��, and the sum rules can be verified experimen-
tally.
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APPENDIX A: DIAMAGNETIC TERM

Substituting the Fourier transform �2.11� into Eq. �2.7�
and summing over the lattice sites, we obtain

�
n

����n� = −
te2

�2 �
�,�

�����
BZ

d2k

�2��2 	a��k�†eik�b��k� + H.c.


=
e2

�2�
�
�

BZ

d2k

�2��2
 �2��k�
�k��k�

��
†�k��+���k�

+
�2�*�k�
�k��k�

��
†�k��−���k�� . �A1�

Accordingly the thermal average ����� is easily expressed in
terms of the GF �2.15� as

����� =
2Ve2

�2 �
BZ

d2k

�2��2T �
n=−�

�

e−i�n�

� 
tr	�+G�i�n,k�

�2��k�
�k��k�

+ tr	�−G�i�n,k�

�2�*�k�
�k��k�

�, � → 0. �A2�

Calculating the trace we obtain for the diagonal component
of the stress tensor �����= �������� that

�����
V

= −
2e2T

�2 �
n=−�

� �
BZ

d2k

�2��2

1

��n − i��2 + 
2�k�

����k�
�2

�k�
2 �*�k� + c.c.� . �A3�

The sum over the Matsubara frequencies converges irrespec-
tively of infinitesimally small �, and we find

�����
V

=
e2

�2�
BZ

d2k

�2��2

1

2
�k�
	nF„
�k�… − nF„− 
�k�…


����k�
�2

�k�
2 �*�k� + c.c.� . �A4�

Writing ��k�=
�k�ei��k� we can recast the last equation in
the form �3.5�. The derivatives in the brackets in Eq. �A4� are
easily calculated using the explicit expression for ��k�:

��k�
�2

�k�
2 �*�k� + c.c. =

1

2 �
�=1,2

���k�
�2

�k�
2 �*�k� + c.c.�

= −
a2

3

2�k� . �A5�

Substituting Eq. �A5� into Eq. �A4� we arrive at the final
expression �3.6�.

APPENDIX B: HALL TERM

Here we calculate the commutator Ix,y = �	Jx�t=0� ,Jy�t
=0�
� of the paramagnetic currents Jx�t=0� and Jy�t=0� that
are defined in Eq. �2.18�. Since this commutator is nonzero
only in the presence of a magnetic field, the corresponding
current density operator ja�n� has to be taken for a finite
vector potential A:

ja�n� = −
ite

�
�
�,�

�a	an,�
† T�bn,� − bn,�

† T−�an,�
 , �B1�

where the operator

T� = ei��p+e/cA�/�. �B2�

Using the anticommutation relations for an,� and bn,� opera-
tors we calculate the commutator
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	jx�n�, jy�m�
 =
e2t2�nm

�2 �
�,��,�

�x�y��an,�
† �T�T−�� − T��T−��an,�

+ bn,�
† �T−�T�� − T−��T��bn,�� . �B3�

Provided that the magnetic flux per unit cell is far less than a
flux quantum h /e, we may expand the operator T�:

T� � 1 + i
�a

�
�pa +

e

c
Aa� . �B4�

Then using the commutator

	Da,Db
 � 
pa +
e

c
Aa,pb +

e

c
Ab� = − i

e�

c
B
ab, a,b = 1,2,

�B5�

we obtain

T�T−�� − T��T−� =
1

�2 	�a�b�DaDb − �a��bDaDb


=
�a�b�

�2 �− i�
e�

c
B
ab, �B6�

where the sum over the dummies a and b is implied. Now
the sum over � and �� in Eq. �B3� can be evaluated as fol-
lows:

�
�,��

�x�y������
�� = 
���
�

�x���
��

�y���� = 
xy
a4

4
, �B7�

where in the second equality we used the relation

�
�=1,2,3

���������� =
a2

2
���. �B8�

Substituting the commutator �B3� into the expression Ix,y
=�n,m�	jx�t=0,n� , jy�t=0,m�
� and utilizing Eqs. �B6� and
�B7� we arrive at the representation

Ix,y = − i
e2a4t2�eB

4�4c

xy�

n,�
��an,�

† an,� + bn,�
† bn,��� . �B9�

Thus to complete the calculation of Ix,y we have to find the
thermal average

Ĩ � �
n,�

��an,�
† an,� + bn,�

† bn,��� . �B10�

As in Appendix A, Ĩ is expressed in terms of the GF �2.15� as

Ĩ = �
n

�
�

tr	ÎG���,0�


= 2VT�
n
�

BZ

d2k

�2��2 	G11�i�n,k� + G22�i�n,k�
e−i�n�,

�B11�

where

G11�i�n,k� = G22�i�n,k�

=
1

2

 1

i�n + � − 
�k�
+

1

i�n + � + 
�k��
�B12�

are the diagonal in the sublattice space components of the
GF �2.15�. In contrast to the convergent Matsubara sums
�A2� and �A3� in the off-diagonal components of the GF
�2.15�, regularization of the Matsubara sum �B11� by the
factor e−i�n� is crucial, because it would diverge otherwise.
The factor e−i�n� regularizes the sum over Matsubara fre-
quencies differently depending on the sign of �:

lim
�→±0

T � e−i��n

i�n + � − �
= −

1

2
	1 − 2nF���
 −

sgn �

2

= �nF��� , � → − 0,

nF��� − 1, � → + 0.
�
�B13�

Normally to count the number of particles31 one takes the
limit �→−0. One can check, however, that such a prescrip-
tion leads to a contradiction when calculating the integral

�B11�, because it results in Ĩ which is not odd in �, while the
LHS of Eq. �1.4� is odd in �. This contradiction is resolved
if one takes into account that the first term of the GF �B12�
describes electrons, so that the prescription �→−0 has to be
used, while the second term of the GF �B12� describes holes
and the prescription �→ +0 is necessary. Then we obtain

Ĩ = 2V�
BZ

d2k

�2��2 	nF„
�k�… + nF„− 
�k�… − 1
 , �B14�

which is odd in �. The quantity �B14� describes the carrier
imbalance �=ne−nh, where ne and nh are the densities of
electrons and holes, respectively. It was considered in the
Dirac approximation in Appendix C of Ref. 20, and here we
use two expressions �4.7� and �4.11� for �.
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