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We consider electron-phonon �e-ph� energy-loss rate in three-dimensional and two-dimensional multicom-
ponent electron systems in semiconductors. We allow general asymmetry in the e-ph coupling constants
�matrix elements�, i.e., we allow the coupling to depend on the electron subsystem index. We derive a multi-
component e-ph power-loss formula, which takes into account the asymmetric coupling and links the total e-ph
energy-loss rate to the density response matrix of the total electron system. We write the density response
matrix within mean-field approximation, which leads to coexistence of symmetric energy-loss rate FS�T� and
asymmetric energy-loss rate FA�T� with total energy-loss rate F�T�=FS�T�+FA�T� at temperature T. The
symmetric component FS�T� is equivalent to the conventional single-subsystem energy-loss rate in the litera-
ture, and in the Bloch-Grüneisen limit, we reproduce a set of well-known power laws FS�T��TnS, where the
prefactor and power nS depend on electron system dimensionality and electron mean free path. For FA�T� we
produce a different set of power laws FA�T��TnA. Screening strongly reduces the symmetric coupling, but the
asymmetric coupling is unscreened, provided that the intersubsystem Coulomb interactions are strong. The lack
of screening enhances FA�T� and the total energy-loss rate F�T�. Especially, in the strong screening limit, we
find FA�T��FS�T�. A canonical example of strongly asymmetric e-ph matrix elements is the deformation
potential coupling in many-valley semiconductors.
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I. INTRODUCTION

Electron-lattice energy loss in various bulk and low-
dimensional semiconductor systems has attained a great deal
of interest during the last few decades.1 One reason for the
extensive studies of electron-phonon �e-ph� energy relax-
ation arises directly from device applications. Another driv-
ing force is that the energy relaxation is connected to the
versatile physics of microscopic electron-phonon interaction.
Furthermore, the total e-ph energy-loss rate can be probed in
hot electron experiments, which serve as a test for electron-
lattice interaction.

The e-ph energy loss is highly sensitive to various param-
eters of the coupled e-ph system. The most important param-
eter is, of course, the nature of the electron-phonon interac-
tion. In single-valley semiconductors, the electron-phonon
interaction can be typically described by deformation poten-
tial �DP� or piezoelectric coupling constants.2 In quantum
wells also, other types of coupling due to heterointerface3 or
electric-field4 induced quantum confinement may be impor-
tant. In the above-mentioned electron lattice coupling
mechanisms, the dependence of the e-ph matrix elements on
the electronic variables, such as momentum, can be typically
ignored. The situation is different, e.g., in metals where mo-
mentum dependency must be included due to the high Fermi
level.5 However, by simply setting the e-ph matrix elements
to a constant is not the whole story, even for DP coupling in
semiconductors. In many-valley �MV� systems, where the
conduction-band minimum consist of several equivalent val-
leys, certain strain components lift the valley degeneracy,
which directly shows that the e-ph DP coupling depends on
the valley indices.2,6 It is well known that this leads to an
important role of the valley degree of freedom in the elastic
properties and ultrasonic attenuation of doped MV

semiconductors.7–9 However, it was not until recently that
the effect of MV-DP coupling was investigated in the context
of the e-ph energy relaxation as well.10 This brings us to the
topic of this work: we present a theoretical discussion on
e-ph energy-loss rate in carrier systems that consist of differ-
ent components �subsystems�, which can have different e-ph
coupling constants, i.e., different matrix elements. Here we
follow a terminology where the coupling is referred to as
asymmetric if the e-ph matrix elements of the subsystems are
different, and if they are the same, the coupling is referred to
as symmetric. A typical example of asymmetric e-ph matrix
elements is the MV-DP coupling.

This paper describes the total steady-state e-ph energy-
loss rate �or power loss� in semiconductors in the presence of
symmetric and asymmetric e-ph couplings. We will assume
that the lattice and charge carriers are in separate internal
equilibrium. Within this so-called temperature model,11,12 the
total energy-loss rate can be quite generally described by a
symmetric power-loss formula1,11,13–15

P = F�Te� − F�Tph� , �1�

where Te and Tph are the electron and phonon temperatures,
respectively. The exact form of the energy-loss rate �func-
tion� F�T� requires microscopic derivation, but it can be phe-
nomenologically linked to the e-ph energy relaxation time
�e-ph. This time scale is roughly equivalent to the thermal RC
time constant defined by Ge-ph

−1 Ce, where Ge-ph=�F�T� /�T is
the macroscopic electron-phonon thermal conductivity and
Ce is the electron heat capacity. At low temperatures, �e-ph

−1

�Te
p and Ce�Te, which leads to the well-known power law

F�T��Tn �n= p+2�. This temperature dependency has been
experimentally verified in various electron and hole systems,
which exhibit different prefactor and power n, by utilizing
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low-temperature carrier heating techniques �see, e.g., Refs. 1,
10, and 15–21 and references therein�.

A single carrier component is equivalent to symmetric
e-ph coupling, which is typically the unquestioned assump-
tion made in microscopic derivations of Eq. �1� and �e-ph

−1 .
However, the existence of the asymmetric coupling can have
a large effect, because it is typically unscreened due to inter-
subsystem Coulomb interactions. This is the case even if the
total electron system would seem to be at the strong screen-
ing limit, where the screening wave vector � is larger than
thermal phonon wave vector qT=kBT /�vs �vs is the velocity
of sound�. In MV semiconductors, the dependence of the DP
coupling on valley indices is a source of strong asymmetric
coupling and, due to lack of screening, this enhances the
e-ph energy relaxation.9,10 In these systems, the carrier sub-
systems �valleys� have a full spatial overlap, but modern
micro- and nanofabrication techniques enable also the real-
ization of artificial bilayers where two two-dimensional �2D�
electron gases �2DEGs� form spatially separated subsystems.
Now if asymmetric coupling exists in closely spaced bilay-
ers, the e-ph energy-loss rate can be similarly enhanced as in
MV systems. Here we will touch e-ph energy-loss rate in
both MV semiconductors and bilayer systems.

This paper is organized as follows: In Sec. II A we derive
the multicomponent version of Eq. �1� by utilizing Kogan’s
approach,11,12 which connects F�T� to the electron density
response function. We will allow the e-ph matrix elements to
depend on the electron subsystem indices, which introduces
the multicomponent nature. We will assume that phonons
cannot couple the electron subsystems directly. For example,
in many-valley systems such direct coupling is relevant only
for high-energy phonons.1,2 Then in Secs. II B and II C, we
write the density response function �here a matrix describing
the multicomponent electron system� within mean-field ap-
proximation, which eventually leads to the coexistence of a
symmetric energy-loss rate FS�T� and an asymmetric energy-
loss rate FA�T� with the total energy-loss rate F�T�=FA�T�
+FS�T�. In Sec. III A, we discuss about the general aspects
of FA�T� and, in Sec. III B, we derive several analytical re-
sults in the Bloch-Grüneisen limit. For FS�T� we reproduce a
set of analytical results, which shows well-known depen-
dency on the parameters of the electron system, such as di-
mensionality and electron mean free path le. For FA�T� we
find a different set of results and show that if the asymmetric
and symmetric couplings have similar magnitude, then
FA�T��FS�T� �provided that � exceeds qT�. In Sec. III B, we
also view the role of FA�T� in experiments and, finally, we
conclude and summarize in Sec. IV.

II. THEORY

A. Electron-phonon energy-loss rate

We assume that a phonon with momentum �q and energy
�� cannot directly couple the electron subsystems, in which
case the e-ph interaction is described via matrix elements
Mq,l, where l=1,2 , . . . ,L refers to an electron subsystem
and L is the total number of subsystems. However, we will
allow disorder-induced elastic coupling of the subsystems.

The electron-phonon interaction Hamiltonian is now given
by

He-ph = �
q

�
l

�Mq,l	q,l
† bq + Mq,l

* 	q,lbq
†� , �2�

where bq �bq
†� is the phonon annihilation �creation� operator.

The electron-density operator 	q,l=�kck−q,l
† ck,l, where ck,l

�ck,l
† � is the electron annihilation �creation� operator in sub-

system l. Following Refs. 11 and 12, the e-ph interaction will
be considered as a perturbation Hamiltonian that will cause
transitions from initial state �i , �nq�i� with energy Ei to final
state �f , �nq� f� with energy E f. In state �e , �nq�p�, index e refers
to electronic states and �nq�p is a set of phonon occupation
numbers. The transition rate from initial to final state Wfi is
given by the golden rule formula

Wfi =
2


�
��f ,�nq� f�He-ph�i,�nq�i��2��Ei − E f� . �3�

By substituting Eq. �2� into Eq. �3�, performing an ensemble
average over the initial phonon and electronic states, and
summing over final electronic states, we obtain the phonon
emission and absorption rates as follows:

Wem�q� =
2


�
�
i,f

ŵi	
 f	�
l

Mq,l
* 	q,l	i�	2

�Nq + 1���Ei,f

− ��� , �4a�

Wab�q� =
2


�
�
i,f

ŵi	
 f	�
l

Mq,l	−q,l	i�	2
Nq��Ei,f + ��� .

�4b�

Here ŵi is the weighting factor for the electron many-body
state, the energy difference Ei,f =Ei−Ef, and Nq= �nq�. We
assume that the phonon system can be described by a ther-
mal distribution Nq=NTph

���= �exp��� /kBTph�−1−1 at tem-
perature Tph and by a well-defined phonon dispersion �
=�q �we ignore phonon renormalization and hot phonon
effects12�. The total e-ph energy-loss rate per d-dimensional
electron volume Ve is given by the energy balance equation

P =
1

Ve
�

q
���Wem�q� − Wab�q�

=
1

Ve
�

q

�

�
�e−��/kBTe − �1 − e−��/kBTe�Nq

��
l,m

Mq,l
* Cl,m�q,��Mq,m, �5�

where the latter equality is obtained by utilizing ŵf
= ŵi exp��Ei−Ef� /kBTe �Te is the electron temperature�. The
correlator Cl,m�q ,�� in Eq. �5� is defined by

Cl,m�q,�� = 2
��
i,f

ŵf�f �	q,l�i��i�	q,m
† �f���Ef ,i + ��� , �6�

and it is connected to the density response matrix �l,m�q ,��
through the standard fluctuation dissipation relation22

M. PRUNNILA PHYSICAL REVIEW B 75, 165322 �2007�

165322-2



�1 − e−��/kBTe�Cl,m�q,�� = − 2�Ve Im��l,m�q,��� . �7�

Substituting Eq. �7� into Eq. �5� leads to microscopic defini-
tion of F�T� in Eq. �1�:

P = F�Te� − F�Tph� , �8a�

F�T� = �
q

�NT���2eq
†M̂q

† Im�− �̂�q,���M̂qeq. �8b�

For the sake of clarity, we will denote matrices by a hat. Here
the response matrix �̂l,m�q ,��=�l,m�q ,�� depends on the
properties of the electron system. Therefore, if the tempera-
ture dependency of �̂�q ,�� is relevant, then F�T� should be
more generally written as F�T ,Te�, where Te arises from the
temperature dependency of �̂�q ,��= �̂�q ,� ,Te�. We have in-
troduced a useful matrix notation where the coupling matrix

M̂q is related to the e-ph matrix element Mq,l through the
relation

Mq,l = �
i=x,y,z

�M̂q�l,iei, �9�

where ei are components of the phonon polarization vector eq
��eq�=1�. If Mq,l=Mq,m for all l ,m or L=1, Eq. �8� reduces to
the power-loss formula of Refs. 11, 12, and 15. �The equiva-
lence with the expressions of Sergeev et al.15 can be obtained
by utilizing the mean-field response function given in Ref.
23.� The elastic intervalley scattering induced energy-loss
rate derived in Ref. 10 is also a special case of Eq. �8�.

The obtained power-loss formula applies to any type of
e-ph coupling mechanism that does not depend on the elec-
tronic variables �momentum� in a single subsystem. How-
ever, here we will mainly limit our studies to deformation
potential coupling to bulk acoustic phonons �in a volume
Vph�, in which case the coupling matrix is given by

M̂q = i� �

2Vph	�
q̂Ŝ , �10�

where 	 is the mass density of the crystal. We follow the

notations of Ref. 10: the L�6 DP matrix ̂ contains the

deformation potential coupling constants, and matrix Ŝ is the
displacement-strain conversion matrix. The DP matrix de-

pends on the properties of the electron system. The form of Ŝ
follows from the relation ���= 1

2 ��u� /��+�u� /���
= iquq�q̃�e�+ q̃�e�� /2, which couples the six symmetric
strain components ��� to components of displacement u.

With Ŝ this relation is simplified to ���= iquq��Ŝ��,�e�. By

definition, Ŝ is a 6�3 matrix, which depends only on unit
wave vector components, q̃�=q� /q, i.e., it depends on the

direction of phonon propagation. In our notation, M̂q also
contains the e-ph form factors. However, when deriving the
analytical results �Sec. III B�, we mainly set these form fac-
tors to unity, which is a reasonable approximation if we are
far from the threshold qTt=1 �t is the thickness of the elec-
tron system�.

B. Energy-loss rate with mean-field density response

Next, we assume that the electronic system can be de-
scribed with the response of the noninteracting system
�̂0�q ,�� under the external field plus the induced field of all
electrons, i.e., we use the standard mean-field approach
�random-phase approximation �RPA�.24 The RPA density re-
sponse and dielectric function, generalized to a multicompo-
nent system, are given by

�̂�q,�� = �̂0�q,���̂−1�q,�� , �11a�

�̂�q,�� = 1̂ − V̂�̂0�q,�� , �11b�

where matrix V̂ contains the interaction potentials. The ele-

ments V̂ij =Vij =Vd�q�Fd
ij�q�, where Vd�q�=e2 /4�0�2/q�d−1 is

the d-dimensional �d=2,3� Fourier transform of the Cou-
lomb interaction and Fd

ij�q� are the Coulomb form factors ��0

is the background semiconductor dielectric constant�. Here
we will consider two cases: �1� the 2D and/or three-
dimensional �3D� subsystems are fully overlapping �many-
valley/band, MV� or �2� two 2DEG layers separated by dis-
tance z0 �bilayer�. These cases are covered with form factor
Fd

ij�q�= ��ij + �1−�ij�exp�−qz0�3−d �if 1 /q greatly exceeds the
width of the individual layers in 2D�.

To study the energy-loss rate of the electron system, we
must invert the dielectric matrix, which is a formidable task

for arbitrary L, V̂, and �̂0�q ,��. For two subsystems �L=2�,
the inversion is tractable and well known from bilayer Cou-
lomb drag effect �see, e.g., Ref. 25�. Furthermore, it is easy

to show that if V̂�̂0= Â+ �1−b�1̂, where matrix Â follows

symmetry Âij = Âkj for all i, j, and k, then �̂−1�q ,��=b−1�1̂
+ Â / (b−Tr�Â�). This form covers, e.g., the case where all

interactions are similar and �̂0�q ,�� is arbitrary: V̂ij =V�q�,
Â= V̂�̂0�q ,��, and b=1. Here we will mainly concentrate on
a transparent model where all intrasubsystem and all inter-
subsystem dynamics are similar, respectively. In this case we
have ��̂0�ij =�d�ij +�od�1−�ij�. We further define �0=�d+ �L
−1��od and �1=−L�od when �̂0�q ,�� is given by

�̂0�q,�� = �0�q,��1̂ + �1�q,��Q̂A. �12�

Here Q̂A=1̂− Q̂S with �Q̂S�ij =1/L, and these matrices have a

useful property Q̂iQ̂j =�ijQ̂i. We can either use the properties

of Q̂i to invert the dielectric function or note that now we

also have V̂�̂0= Â+b1̂. We find

�̂−1�q,�� = �S
−1�q,��Q̂S + �A

−1�q,��Q̂A, �13�

where the scalar dielectric functions are �S�q ,��=1− �V11

+ �L−1�V12�0�q ,�� and �A�q ,��=1− �V11−V12���0�q ,��
+�1�q ,��. We can recognize that both of these have a simi-
lar form to the standard RPA dielectric function. They are
actually well known from bilayer physics, and the poles of
�S,A

−1 �q ,�� are related to symmetric �optical� and asymmetric
�acoustic� plasmons, respectively.26,27

Now by using Eqs. �11�–�13�, we can divide F�T� �Eq.
�8b� into symmetric �FS� and asymmetric �FA� terms:
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F�T� = FS�T� + FA�T� , �14a�

Fi�T� = �
q

�qNT���2 Im�− �i�
Mi

2

��i�q,���2
, �14b�

Mi
2 = eq

†M̂q
†Q̂iM̂qeq, �14c�

where i=S ,A, �S=�0�q ,��, and �A=�0�q ,��+�1�q ,��. We
have introduced yet another notation: the effective matrix
elements Mi

2, which are defined by quadratic forms and
screened with the scalar dielectric functions �i�q ,��. The
matrix elements compactly describe the contributions of
symmetric �MS

2� and asymmetric �MA
2� e-ph couplings. Note

that from the properties of Q̂i, it follows that the effective
matrix elements obey Mi

2�0 and, therefore, also Fi�T��0.
If the e-ph interaction is mediated through DP coupling

�Eq. �10�, then quadratic form i
2=eq

†Ŝ†̂†Q̂S,ÂŜeq can be
interpreted as a square of the deformation potential “con-
stant.” Note that i is not a constant in the general case: it
depends on the phonon polarization �arises from eq� and di-

rection of propagation �arises from Ŝ�. If the DP coupling is
mediated by one isotropic dilatational coupling constant ,
which is the same for all subsystems, then we simply have
i

2=2�eq ·q / �q��2�i,S.

C. Response function of noninteracting electrons

In order to perform quantitative analysis, we must know
the response function of the noninteracting system �̂0�q ,��.
In the pure limit qle�1, the off-diagonal elements of
�̂0�q ,�� are zero and, for the diagonal elements, we use the
standard zero-kelvin expressions:28,29

�0�q,�� = � − �
kF

4q
�H�a+� − H�a−� , 3D

− �
kF

q
� q

kF
+ G�a+,a−�� , 2D� �15a�

�− ��1 + i
�

qvF
Kd�a+

2 −
2��

�F
�� , �15b�

where a±=� /qvF±q /2kF, H�x�=2x+ �x2−1�ln��x−1� / �x
+1� �ln�z� branch: �Im ln�z���
, and G�a+ ,a−�=−�a+

2

−1�1/2+ �2���a−�−1���−a−�−1�a−
2 −1�1/2. �=���F� is the �di-

mensionality dependent� density of states at Fermi level �F
�kBT and vF is the Fermi velocity. Equation �15b� is small-
q approximation, where Kd�x�= �
 /2�d−2��1−x��1−x��d−3�/2.

We include the effect of �static� disorder by introducing a
phenomenological transport relaxation rate �=1/�, which is
connected to Drude mobility by �=e� /m. We distinguish
between intrasubsystem and intersubsystem scattering rates,
which we denote by �0 and �1, respectively. The total scat-
tering rate is given by 1/�=�=�0+ �L−1��1. Now the com-
ponents of Eq. �12� in the diffusive �hydrodynamic� limit
�� ,qle�1, are given by the particle-number-conserving
many-band response functions of Kragler and Thomas30 �see
also Ref. 9�,

�0�q,�� = − �
iD0q2

� + iD0q2 , �16a�

�1�q,�� = �0�q,��
�

iD0q2

i�̄

�� + i�̄� + iD0q2 , �16b�

where D0= 1
dvF

2�= 1
dvFle is the diffusion constant and �̄

= L
2 �1 is the total elastic intervalley and/or interband inter-

scattering rate. Note that �0�q ,�� has the familiar diffusion
pole form,23 while the interband term �1�q ,�� exhibits also a
relaxation pole which is slightly shifted toward finite q. The
absorptive part of �A=�0�q ,��+�1�q ,��, which enters
FA�T�, is

Im �A = −
���̄ + D0q2��

��̄ + D0q2�2 + �2 . �17�

This simply states that in the diffusive limit there are two
competing time scales which determine the energy relax-
ation: intervalley scattering time 1/ �̄ and diffusion time
1/D0q2 over the length scale 1 /q.

III. DISCUSSION AND ANALYTICAL RESULTS

A. General aspects

As Fi�T��0 holds always, the symmetric and asymmetric
energy-loss rates in Eq. �14� provide separate additive energy
relaxation channels. The appearance of two clearly distin-
guishable energy relaxation terms �channels� FS and FA fol-
lows from our symmetric choice of the response �̂0�q ,��
�Eq. �12�. If we would relax the symmetry of �̂0�q ,��, more
complicated cross terms with variable signs would also ap-
pear. However, here we will concentrate on the symmetric
response, which captures the essential physics. The sufficient
condition for finite asymmetric energy-loss rate FA is that
asymmetric coupling MA differs from zero. The magnitude
of FA depends on diagonal and off-diagonal elements of
�̂0�q ,�� through �A=�0+�1=�d−�od. Therefore, FA�0
even if there is no direct coupling between the subsystems,
i.e., even if �od=0 ��1=0�. This follows from an internal
�dynamic� image charge effect which is due to Coulomb in-
teraction between the subsystems.

The internal image charge effect is schematically depicted
in Fig. 1 and it quantitatively follows from the properties of

matrices Q̂i in the inverse dielectric function of Eq. �13�: let
us assume that L is even and that the external field couples to
the electron system through �scalar potential� �ext�q ,�� with
the components ��ext�l=vl

ext=vext,S+vext,A�−1�l �in Fig. 1,
vext,S=vext,A�. Here vl

ext describes the �phonon� field interac-
tion potential to subsystem l. Now the effective potential felt
by the full electron system is �ef f = �̂−1�q ,���ext, where vl

eff

=�S
−1�q ,��vext,S+�A

−1�q ,��vext,A. Note that full asymmetry of
�ext is, of course, not required. It is enough that vl

ext=v
�vm

ext=v+�v for one fixed m� l, and Q̂A picks this particular
component.

If the interaction between the subsystems is strong ��V11

−V12� is small, then �A�q ,���1 and this quenches the
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screening of asymmetric coupling constants and enhances
the total electron coupling to the external field. Thus, the
effect described in this paper is most important in the strong
screening limit, where the thermal phonon wavelength
2
 /qT exceeds the electron system screening length 2
 /�.
In this case, we expect that FS�T��FA�T� if �A�qT ,�T��1
��T=kBT /�� and MA

2 �MS
2. Note that the asymmetric cou-

pling also plays a role in medium screening systems qT��
when FS�T��FA�T�. On the other hand, the assumption
MA

2 �MS
2 may not always hold. It holds if asymmetric and

symmetric couplings are directly mediated by DP interaction
like in many-valley semiconductors or bilayer systems with
different DP coupling constants. But the existence of nonzero
MA

2 may be due to the vibration of heterointerfaces3 or e-ph
form factors, which may give MS

2�MA
2 . Then if �S�qT ,�T�

��A�qT ,�T� still holds, we may have FA�T��FS�T� and
both symmetric and asymmetric terms contribute to the total
energy flow rate. We will inspect few different cases where
either FS�T��FA�T� or FA�T��FS�T�, in detail below.

B. Analytical studies of different systems

Table I shows asymptotic low-temperature expressions of
Eq. �14� deep below the Bloch-Grüneisen limit qT=2kF for
different systems. Note that FS�T� is calculated assuming
strong screening, but in many cases FA�T� is simply the
weak/zero screening limit of FS�T� �see the discussion
above�. Before going into further details, we will briefly de-
scribe the general guidelines how the formulas in Table I are
obtained and how they should be interpreted. First of all, the
sum over q in Eq. �14b� is converted into a integral, and
linear phonon dispersion relations �=�q=vsq are assumed.
The sound velocity vs refers to both transversal and longitu-
dinal modes of the crystal and, therefore, all expressions
must be summed over these modes �if coupling to both type
of modes exists�. Here we mainly concentrate on DP cou-

pling and use the compact notation S,A
2 =eq

†Ŝ†̂†Q̂S,ÂŜeq
for the DP coupling constants �as discussed below Eq. �14�.
In the pure limit, qTle�1, the formulas for FS,A�T� are ob-
tained by utilizing Eq. �15b�. In the diffusive limit, qTle�1,
they are obtained by utilizing Eqs. �16�. For 2D electron

system, vector q in �̂�q ,�� refers to the parallel component
q� =q sin �, i.e., in 2D we set �̂�q ,��→ �̂�q� ,�� �� is the
angle between q and the normal of the 2D electrons�. The
dimensionality also affects the Coulomb interaction �as de-
scribed below Eq. �11a� and is eventually seen in the screen-
ing wave vector �=2�e2L� /4�01/�d−1�. Note that in the 2D
diffusive limit, the FA with ln�qT� factors are derived with
isotropic DP A

2 =0
2. For arbitrary A

2 analytical expressions
cannot be found.31

We have divided the results in Table I into four categories:
3D pure, 2D pure, 3D diffusive, and 2D diffusive. These are
described with common FS�T�. The symmetric component
FS�T� is equivalent to the conventional single-subsystem
energy-loss rate in the literature. Indeed, if we assume cou-
pling only to longitudinal phonons all symmetric energy-loss
rates FS�T� agree with the expressions given in Refs. 1, 11,
14, and 15 and references therein. Note, however, that for the
2D diffusive case we have to set 1 /�ls=0 in order to find an
equivalent expression to the FS�T� of Sergeev et al.15 This
small discrepancy follows from the approximation scheme of
Ref. 15, which ignores dynamical effects in �S�q ,�q�. The
importance of the dynamical effects in the diffusive �0�q ,��
are determined by the threshold � /D0q2=1 or equivalently
by qTls=1, which introduces the length scale ls= levF /vsd.
However, the imaginary part of 2D RPA response is propor-
tional to sin2 � / �1+ ls

2 sin2 ��q sin �+��2 and, therefore, in
the strong screening limit, it is actually the parameter �ls
which is important and not qTls. This reasoning obviously
applies also for the 3D case. Thus, both 3D and 2D diffusive
limits FS�T� in Table I are valid if �ls ,� /qT�1.

Let us next inspect the asymmetric part of F�T�. We first
focus on MV systems that are fully overlapping �z0=0�.
First, notice that in pure cases the ratio FA /FS= �� /qT�m,
where m=4 �2� in 3D �2D�. Thus, if screening is strong,
FA�FS, as we would intuitively expect. In the diffusive
limit, there are two competing internal relaxation mecha-
nisms in the electron system, elastic intervalley scattering
and diffusion, as already discussed below Eq. �17�. When
diffusion dominates over intervalley scattering, �� / �̄qTle

�1 and, in the opposite situation, �� / �̄qTle�1. In contrast
to FS�T�, now the magnitude of qTls strongly affects the re-
sults. Note that actually all FA in MV systems depend only
very weakly on dimensionality and, when intervalley scatter-
ing dominates ��� / �̄qTle ,kBT /��̄�1�, the 3D and 2D rates
are similar, because then either screening or diffusion plays
no role. Despite the finite mean free path and intervalley
scattering rate, still FA�FS holds in Table I. Recently, ex-
periments on n+ Si films were performed10 in the range
where the energy relaxation should be described by interval-
ley scattering induced e-ph energy-loss rate: the fourth and
ninth FA �from top� in Table I which have FA�T�
�

vF

�̄
�A

2�qT
6 �T6. This special case for FA�T� is also derived

in Ref. 10, but by using a phenomenological approach which
utilizes “classical” phonon attenuation rate. The experimen-
tal F�T� for the n+ Si samples coincide with the data of Table
I and the ultrasonic attenuation data of Ref. 8.32

In 2D bilayer systems, the finite layer separation z0 results
in �A�q ,���1. If z0 is small �qTz0�1�, then �A�q ,���1

FIG. 1. Schematic cross section of a two-component system and
illustration of the destruction of screening under an asymmetrically
coupling field. The electron gases have thickness t and they are
separated by a distance z0. Note that z0�0 describes a bilayer,
whereas z0=0 describes a many-valley system, which requires sepa-
ration in reciprocal space. The solid curves describe the external
�vl

ext� and effective �vl
ext� scalar coupling potentials in the plane of

electron gas l=1,2. The±signs describe the charge buildup due to
the external �and effective� field in the two electron gases. See Sec.
III A for further details.
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+�z0 /2 �=�A�. So far, we have assumed unity e-ph form
factors, but now we partially relax this assumption and allow
phase factors, which arise from finite z0, in the e-ph coupling
matrix. The finite layer separation introduces exp�±iqzz0 /2
�1± iqzz0 /2 factor in the first ��� and second ��� lines of

the DP matrix ̂, which gives rise to asymmetric coupling. It

is easy to show that now ̂†Q̂Â= 1
4qz

2z0
2̂†Q̂Ŝ, which leads

to the bilayer �z0�0� FA in Table I. For bilayers, where the
asymmetric coupling is induced by phonon form factors, the
ratio FA /FS�1 and depends on the magnitude of the param-
eter �z0.

If we would relax the symmetry of �̂0�q ,�� �Eq. �12�,
then more complicated cross terms in addition to FS,A�T�
would also appear in F�T�, as was already pointed out in
Sec. III A. Especially, in bilayer systems, the study of such
terms is an interesting and important problem of its own,
but it will not be discussed in detail in this paper. Note,
however, that if �V11−V12��0��A�q ,���1 and �̂0�q ,�� is

diagonal, then Eq. �14� approximately holds with Im �S,A
� Im�Tr��̂0�q ,��� �provided that ��qT�. In this case, the
2D FA with z0=0 in Table I qualitatively describes closely
spaced bilayers with different DP coupling constants. One
such system is the 2DEG bilayer realized in a double AlAs
quantum well,33,34 where the two electron gases are from
conduction-band valleys with different symmetries �depend-
ing on sample parameters�.35 2DEG bilayer systems can also
be tuned between two-component and single-component sys-
tems by external gates. Note, however, that the gate electrode
can affect and/or contribute to the e-ph relaxation processes
if the gate-to-2DEG distance is small ��qT

−1�, because then
the gate is simply one “component” of the total carrier sys-
tem. This effect can be present in all gated samples, at least
at sufficiently low temperatures.36

An interesting special case “bilayer” is a single quantum
well with two populated subbands with energies E0 and E1.
Phonons vibrate the heterointerfaces of the well �i.e., change
spatially the quantum well width�, which is a source of e-ph

TABLE I. Symmetric FS�T� and asymmetric FA�T� contributions of energy-loss rate of Eqs. �14�. The pure and diffusive categories are
defined by qTle�1 and qTle�1, respectively. The Limits column gives additional assumptions used in calculating FA. z0=0 refers to
many-valley systems and z0�0 refers to bilayers. Temperature dependency comes from thermal phonon wave vector qT=kBT /�vs. The

length scale ls= levF /vsd, the DP constants i
2=eq

†Ŝ†̂†Q̂îŜeq, and the dielectric function �A=1+�z0 /2. The bracket �¯� stands for average
over solid angle. The FA with ln�qT� factors are derived using isotropic A

2 =0
2. Both FS,A�T��qT

n are normalized with ���vs /2
2	vF�Bn−1,
where Bn−1=��n���n�=�dx xn−1 / �exp�x�−1. See Sec. III B for further details.

Category FS�T� FA�T� FA /FS Limits z0=0 z0�0

3D pure 


2�4 �S
2�qT

9 


2
�A

2�qT
5 � �

qT
�4

– �

3D diffusive
3

le�
4 �S

2�qT
8 �

3

le
�A

2�qT
4

vF

vS
ls�A

2�qT
6

vF

�̄
�A

2�qT
6

� � �

qT
�4

��2ls

qT
�2

�

�̄ ��2le

qT
�2 � ��

�̄
qTle ,qTls�1

��

�̄
qTle , �qTls�−1�1

��

�̄
qTle ,kBT /��̄�1

� �

2D pure
1

�2 �sin �S
2�qT

7 � � A
2

sin � �qT
5

�z0�2

4�A
2 �cos2 �S

2

sin � �qT
7 � � �

qT
�2

��z0�2

�A
2

–

–

�

�

2D diffusive 2

le�
2 � sin2 �S

2

�ls��−2+sin2 � �qT
6 �

1

le
0

2qT
4 ln�qTls�

vF

vS
ls�sin2 �A

2�qT
6

vF

�̄
�A

2�qT
6

z0
2

8�A
2 le

0
2qT

6 ln��AlsqT�

vFlsz0
2

4vS
�sin2 � cos2 �S

2�qT
8

�
� �

qT
�2

��ls�2

�

�̄
��le�2

��z0�2

�A
2

��lsz0qT�2

��

�̄
qTle ,qTls�1

��

�̄
qTle , �qTls�−1�1

��

�̄
qTle ,kBT /��̄�1

��AqTls��1

��AqTls�−1�1

�

�

�

�

�
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coupling.3 This coupling is defined by �En�2En�uz /�z and,
if E1−E0=�E�kBT, it is a source of asymmetric coupling
with A

2 = q̃z
2ez

2�E. Now we find �utilizing Table I�, e.g.,

for a pure system FA��E2� cos2 ��ez�2

sin �
�qT

5 and FA /FS
� �� /qT�2��E /�2 �we have replaced S with a dilatational
DP constant �. As typically �E /�1 applies, the role of
asymmetric coupling in the case of interface vibration is im-
portant only if screening is very strong.

IV. SUMMARY AND CONCLUSIONS

We have discussed on general aspects of the energy-loss
rate induced by symmetric and asymmetric e-ph couplings in
3D and 2D multicomponent electron systems. We derived
multicomponent version of Kogan’s power-loss formula �Eq.
�8�, which takes into account the e-ph matrix element de-
pendency on the electron subsystem indices and links the
total e-ph energy-loss rate to the density response function
�matrix� of the electron system. We adopted standard mean-
field approximation to find the density response function.
This led to coexistence of symmetric energy-loss rate FS�T�
and asymmetric energy-loss rate FA�T� with total energy-loss
rate F�T�=FS�T�+FA�T� �Eq. �14�.

For FS�T� we reproduced a set of well-known low-
temperature power laws FS�T��TnS, where the prefactor and

power nS depend, e.g., on electron system dimensionality and
electron mean free path le. For FA�T� we derived a different
set of power laws FA�T��TnA. Screening strongly reduces
the symmetric coupling and, therefore, also FS�T�. Whereas,
the asymmetric coupling is typically unscreened, which en-
hances FA�T� and the total energy-loss rate F�T�. This en-
hancement is large if the asymmetric and symmetric cou-
pling constants have similar magnitude, and screening is
important. Under these assumptions FA�T��FS�T�, which
we quantitatively proved also for many special cases.

In many-valley semiconductors, the deformation potential
coupling constants depend on valley indices, which are a
source of strong asymmetric e-ph coupling. Our findings
agree with recent hot electron experiments on doped many-
valley semiconductor �n+ Si�. Furthermore, the effect de-
scribed here should be present in various bilayer systems.
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