
Bosonization study of quantum phase transitions in the one-dimensional asymmetric
Hubbard model

Z. G. Wang,1,2 Y. G. Chen,1 and S. J. Gu2,*
1Department of Physics, Tongji University, Shanghai 200092, China

2Department of Physics and the Institute of Theoretical Physics, The Chinese University of Hong Kong, Hong Kong, China
�Received 14 December 2006; published 17 April 2007�

The quantum phase transitions in the one-dimensional asymmetric Hubbard model are investigated with the
bosonization approach. The conditions for the phase transition from density wave to phase separation, the
correlation functions, and their exponents are obtained analytically. Our results show that the difference be-
tween the hopping integrals for up- and down-spin electrons is crucial for the occurrence of the phase sepa-
ration. When the difference is large enough, the phase separation will appear even if the on-site interaction is
small.
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I. INTRODUCTION

The Hubbard model1 �HM� is one of the simplest non-
trivial models of interacting spin-1 /2 electrons on a lattice.
Its Hamiltonian reads

HHM = − t�
j=1

L

�
�=±1

cj,�
† cj+�,� + U�

j

nj↑nj↓, �1�

where cj,�
† and cj,� ,�= ↑ ,↓ are creation and annihilation op-

erators for electrons with spin � at site j, respectively, n�

=c�
†c�, t is the hopping integral, and U denotes the strength

of on-site interaction. In one dimension �1D�, the HM can be
solved exactly by the Bethe-ansatz method.2,3 The wave
function and the energy of N=N↑+N↓ electrons on a chain
with L sites can be written in terms of N pseudomomentum
variables and N↓ spin rapidities. Although the energy spectra
have been known for many years, the calculation of the cor-
relation functions proved to be a delicate problem.4–7 The
numerical evaluations of the correlation functions5 and the
analytic results6 indicated clearly that the 1D HM is a
Tomonaga-Luttinger liquid �TLL�.8,9 Assuming that the 1D
HM is TLL, it then becomes possible to calculate the corre-
lation functions from the knowledge of the energy spectra.10

Using this procedure, Schulz11 studied the correlation-
function exponents for different U and band fillings n. It is
also shown12 that the large-scale behavior of the spin and
charge degrees of freedom can be described by two decou-
pled boson field theories with dynamics governed by the
TLL Hamiltonian in the small and large U regimes.

Another nontrivial model is the Falicov-Kimball model13

�FKM� which consists of localized ions and itinerant spinless
fermions. The Hamiltonian of the FKM reads

HFKM = − t�
j=1

L

�
�=±1

cj
†cj+� + U�

j

njwj , �2�

where cj
† are creation operators for spinless fermions, and the

configuration �wj� denote spatial distribution of ions. Clearly,
the FKM can be viewed as a modification of the HM in the
sense that the one kind of fermions, such as down-spin fer-
mions, has infinite mass, and hence does not move. Never-
theless, the physics of the FKM is completely different. In

the neutral case where each particle concentration equals
1 /2, it was14 proved that the system always orders in an
alternating “chessboard” phase below a finite transition tem-
perature in all dimensions greater than 1. This ordered phase
can be interpreted from the transition from a high-
temperature homogeneous �liquid and/or gas� phase to a low-
temperature-ordered �solid� phase. Freericks et al.15 showed
that the model �on a hypercubic lattice� also displayed in-
commensurate order, segregation, or phase separation �PS�.
The 1D case of the FKM has also been extensively studied.
Though there is no finite-temperature phase transition, the
system can have phase transition in the ground state. The
numerical solutions16 produced a conjecture for the case ne
+ni�1, with ne=Ne /L and ni=Ni /L and the screened Cou-
lomb interaction U is large enough; the system will segregate
into an empty lattice �with no ions and all the electrons� and
into a full lattice �with all the ions and no electrons�. This
conjecture was later proven to be true by Lemberger.17 For
any dimensional FKM, Freericks et al.18 gave a theorem that
the strong correlation can lead to PS.

The relation between the HM and the FKM is straightfor-
ward. In order to have a unified framework, the asymmetric
Hubbard model �AHM� has been introduced naturally.19–22

Its Hamiltonian reads

HAHM = − �
j=1

L

�
�=±1

�
�

t�cj,�
† cj+�,� + U�

j=1

L

nj,↑nj,↓, �3�

where t� is �-dependent hopping integral. Clearly, if t↑= t↓,
the AHM becomes the HM, and if t↓=0, it becomes the
FKM. The Hamiltonian �Eq. �3�� has U�1� � U�1� symmetry
for general t�, and the electron numbers N↓ and N↑ are con-
served. In the condensed matter physics, the AHM is be-
lieved to describe many physical phenomena, such as super-
conductor, valence fluctuating, and heavy fermions.23,24 In
the recent development of the optical lattice, it has been
pointed out that the AHM can be used to describe a mixture
of two species of fermionic atoms in optical lattices.25,26

According to the fact that the ground states of the Hamil-
tonian �Eq. �3�� in its two limiting cases: the HM �t↑= t↓� and
the FKM �t↓=0� belong to two different universality classes,
a quantum phase transition was suggested to happen in the
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phase diagram defined in the U− t↓ plane.20,22,25 Neverthe-
less, the quantitative phase diagram for the case away from
half filling had never been obtained until a recent work by
Gu et al.26 In their work, the quantum entanglement27 be-
tween a local part and the rest of the system and the structure
factor of charge-density wave �CDW� for down-spin elec-
trons are used to identify the transition point. Here, we are
going to study the ground-state phase diagram of the AHM
away from the half filling with the strategy of bosonization
method.28 Different from the numerical approach26 which
captures the physics from the finite-size analysis for small
systems, our work aims to give definite analytical results
from the point of view of field theory. This paper is orga-
nized as follows. In Sec. II, we derive the bosonized form of
the 1D AHM and clarify the role of some terms in the Hamil-
tonian. In Sec. III, we first diagonalize the effective Hamil-
tonian in which some irrelevant terms are ignored, then ob-
tain the instability conditions for the PS and compare them
with the numerical results of a finite sample. We also obtain
the analytical expressions for the correlation functions of
charge-density-wave, spin-density-wave �SDW�, singlet-
superconductivity �SS�, triplet-superconductivity �TS� fluc-
tuations, as well as the corresponding exponents. Finally, a
brief summary is given in Sec. IV.

II. THE BOSONIZED FORM OF ONE-DIMENSIONAL
ASYMMETRIC HUBBARD MODEL

The convenient way to analyze the 1D AHM is to
bosonize the Fermi operators and convert them to a quantum
theory of two Bose fields.28,29 In the framework of the stan-
dard bosonization method, the AHM is expressed in terms of
canonical Bose fields and their dual counterparts as

HB =
vc

2
� dx	 1

Kc
��x�c�2 + Kc�c

2

+

vs

2
� dx	 1

Ks
��x�s�2 + Ks�s

2

+ �v� dx��c�s + �x�c�x�s�

+
U

2�2a
� dx cos��8��s�

+
U

2�2a
� dx cos��8��c + 2�kF↑ + kF↓�x� , �4�

with

vc = a�t↑ sin�kF↑a� + t↓ sin�kF↓a�	t↑ sin�kF↑a� + t↓ sin�kF↓a� +
U

2�

 , �5�

1

Kc
=�1 +

U

2��t↑ sin�kF↑a� + t↓ sin�kF↓a��
, �6�

vs = a�t↑ sin�kF↑a� + t↓ sin�kF↓a�	t↑ sin�kF↑a� + t↓ sin�kF↓a� −
U

2�

 , �7�

1

Ks
=�1 −

U

2��t↑ sin�kF↑a� + t↓ sin�kF↓a��
, �8�

�v = a�t↑ sin�kF↑a� − t↓ sin�kF↓a�� . �9�

Here, the Bose fields �c and �s present the charge and spin
degrees of freedom, respectively. kF↑ and kF↓ are the Fermi
momentum for up- and down-spin electrons, kF↑=�n↑ /a and
kF↓=�n↓ /a, with n↑=N↑ /L and n↓=N↓ /L the filling densities
for up- and down-spin electrons, respectively, and a is a
lattice constant. vc,s are the propagation velocities of the
charge and spin collective modes of the decoupled model
��v=0�, and Kc,s are the stiffness constants.

Clearly, at unpolarized case where N↑=N↓, this model is

the standard HM with both Bose fields decoupling. If the
model is at the half filling, kF↑+kF↓=� /a, the oscillating
factor disappears, the Umklapp term �the last term in HB� is
important, and the HM is in the SDW phase with U�0 or in
the CDW phase with U�0. As the model shifts away from
the half-filling band, the Umklapp term has an oscillating
factor, which makes the Umklapp term ignorable by appro-
priate choice of the filling factor. Here, we discuss the quan-
tum phase transition in the case of away from the half filling
which means that the Umklapp interaction can be ignored.

The last term in HB is the spin backscattering term. In
general, t↑ , t↓�0. Then, if U�0 and Ks�1, the model has
attractive on-site interaction and possesses a spin gap at any
filling. The term cos��8��s� is relevant. Nevertheless, in the
parameter region of U�0, Ks�1, so the term of cos��8��s�
is irrelevant whenever the system is at unpolarized case with

WANG, CHEN, AND GU PHYSICAL REVIEW B 75, 165111 �2007�

165111-2



N↑=N↓. In the one-loop approximation, we can cancel it di-
rectly and get

HB eff =
vc

2
� dx	 1

Kc
��x�c�2 + Kc�c

2

+

vs

2
� dx	 1

Ks
��x�s�2 + Ks�s

2

+ �v� dx��c�s + �x�c�x�s� . �10�

Therefore, the difference between hopping integral and
the filling densities of up- and down-spin electrons in the
system appears as an effect that breaks the spin-charge sepa-
ration which reveals the presence of the third term in the last
equation.

III. RESULTS AND DISCUSSIONS

The Hamiltonian �Eq. �10�� can be diagonalized in terms
of two new phase fields which contains a mixture of spin and
charge degrees of freedom. The propagation velocities of
these collective modes are

v±
2 =

vc
2 + vs

2

2
+ �v2 ±��vc

2 − vs
2

2
2

+ �v2	vc
2 + vs

2 + vcvs�KcKs +
1

KcKs

 . �11�

As �v→0, v+→ max�vc ,vs� and v−→ min�vc ,vs�. As �v increases, v− decreases until it vanishes at the points

�v1
2 = vcvs

1

KcKs
, �12�

�v2
2 = vcvsKcKs. �13�

At these points, the freezing of the lower bosonic mode is accompanied by a divergence in the charge and spin response
functions. The static charge compressibility � diverges at �v=�v1 or �v=�v2. It behaves as

� = �0	1 −
�v

�v1�2�

−1

, �0 =
2Kc

�vc
. �14�

Beyond these points, the susceptibilities become negative. This behavior of the static response functions together with the
vanishing of the collective mode velocity indicates that the system becomes unstable30 and undergoes a first-order phase
transition.31 This instability is known as phase separation and has been shown to occur in the extended HM �Refs. 32 and 33�
and in the t−J model.34,35

In our case, we obtain

�v1 = �vcvsKcKs = at↑ sin�kF↑a� + t↓ sin�kF↓a� , �15�

�v
2

=� v
c
v

s

K
c
K

s

= at
↑

sin�k
F↑

a� + t
↓

sin�k
F↓

a��1 − � U

2��t
↑

sin�k
F↑

a� + t
↓

sin�k
F↓

a���
2

. �16�

It is obvious that �v1��v2, so the system is in PS phase state as

�v � �v2, �17�

i.e.,

t
↑

sin�k
F↑

a� − t
↓

sin�k
F↓

a�

2
�

t
↑

sin�k
F↑

a� + t
↓

sin�k
F↓

a�

2
�1 − � U

2��t
↑

sin�k
F↑

a� + t
↓

sin�k
F↓

a���
2

. �18�
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Then, we obtain the condition of PS,

�t↓ sin�kF↓a���t↑ sin�kF↑a�� 	 � U

4�
2

. �19�

Let us now focus our attention on the correlation func-
tions. Our interest in this work is to observe the algebraic
decay of the instantaneous correlation functions at zero tem-
perature and to study how the exponents get modified from
the standard HM. The operators for CDW, SDW, SS, and TS
fluctuations in their bosonized form are10

OCDW
+ �x� = 
1↑

+ 
2↑ =
1

2��
exp��2�i��� + ��� + 2ikFx� ,

OSDW
+ �x� = 
1↑

+ 
2↓

=
1

2��
exp��2�i	���x� − �

−

x

dy���y�

− 2ikFx� ,

OSS
+ �x� = 
1↑

+ 
2↓
+

=
1

2��
exp��2�i	− �

−

x

dy���y� + ���x�
� ,

OTS
+ �x� = 
1↑

+ 
2↑
+ =

1

2��
exp��2�i�− �

−

x

dy���y�

− �
−

x

dy���y�
� , �20�

which represent fluctuations of CDW, SDW, SS, and TS
phases, respectively. The correlation functions are defined as

Ri�x� = �:Oi�x�Oi
+�0�:� . �21�

After some calculation, we find that the correlation functions
behave as

Ri�x� � �x�−2+�i. �22�

The exponents �i’s determine the divergence of the corre-
sponding phase. The expressions obtained for the �i are

�CDW = 2 − Kc�
c − Ks�

s, �23�

�SDW = 2�1 + ���s� − Kc�
c − �s/Ks, �24�

�SS = 2�1 + ���c� − �c/Kc − Ks�
s, �25�

�TS = 2 − �c/Kc − �s/Ks. �26�

with

�c =
vc

v+ + v−
	1 +

vs
2

v+v−
�1 −

�v2

�v2
2
 , �27�

�s =
vs

v+ + v−
	1 +

vc
2

v+v−
�1 −

�v2

�v1
2
 , �28�

�c =
vc

v+ + v−
	1 +

vs
2

v+v−
�1 −

�v2

�v1
2
 , �29�

�s =
vs

v+ + v−
	1 + −

vc
2

v+v−
�1 −

�v2

�v2
2
 , �30�

�c =
�v

v+ + v−
�1 +

�v2
2 − �v2

v+v−
 , �31�

�s =
�v

v+ + v−
�1 +

�v1
2 − �v2

v+v−
 . �32�

The ground state is controlled and named by the most diver-
gent correlation function, i.e., with the largest �i.

To have a deep understanding of the PS, it is very useful
to study the structure factor of the CDW. Since the dominat-
ing configuration of electrons with spin down is quite differ-
ent in two phases, we introduce the following structure of
down-spin electrons;

SCDW�q� =
1

L
�

jl

eiq�j−l���nj,↓nl,↓� − �n↓�2� , �33�

where q=2n� /L, n=0,1 , . . . ,L. From the point of view of
the bosonization approach, the density-density correlation in
Eq. �33� can be evaluated from Eq. �20�. We show the struc-
ture fact as a function of t= t↓ / t↑ at a given U / t↑=0.5 for two
different modes q=2� /L and q=2N↓� /L in Fig. 1. From the

FIG. 1. �Color online� The structure factor of the CDW for two
different modes q=2� /L and q=2N↓� /L at given U / t↑=0.5. Here
L=10,N↑=N↓=2, t= t↓ / t↑, and Nd denotes N↓.
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figure, we find that in the small t limit, S�2� /L� dominates
�this fact manifest the phase separation�, while in a relatively
larger t region, S�2N↓� /L� dominates �this suggests the
density-wave �DW� state�. Thus, we can use the intersection
point of the structure factors of two different modes to de-
termine the transition point. In Figs. 2 and 3, we show the
phase diagram for different concentrations n=2/5 and 1/3 in
the small U region. The results are very impressive. In both
figures, we can see that if U�0.5, the numerical results from
the exact diagonalization method agree with Eq. �19� excel-
lently. That is, the phase boundary in the small U regime is
proportional to U2. However, when U becomes large, say,
U�1, the bosonization results deviate from the numerical
results apparently. We interpret it as due to the fact that the
bosonization method becomes invalid in the large U region.
On the other hand, the excellent agreement between the re-
sults obtained from two approaches suggests that finite-size
correction to the numerical data for a finite sample in the
small U region is very small.

Therefore, the bosonization results are wonderful in the
small U region and low concentration conditions. Since the
1D AHM is equivalent to the FKM if t↓=0 �or t↑=0�, this has
proven that there exists PS phase at infinite-U limit when the
system shifts away from half filling. From Eq. �19�, we find
that the PS phase always appears in the 1D FKM whenever
the onsite interaction is small or large as the system shifts
away from half filling. On the other hand, the numerical
studies26 suggest that there might exist a critical U if the
density of electrons is close to half filling. This inconsistency
may due to the effect of Umklapp process around half filling.

IV. SUMMARY

In summary, we have studied the quantum phase transi-
tions in the 1D AHM with the bosonization approach. In the
framework of standard bosonization method, we first ob-
tained an effective Hamiltonian of 1D AHM. Then, we di-
agonalized the Hamiltonian and obtained the propagation ve-
locities of the collective modes for both spin and charge
degrees of freedom. Based on the instability condition, we
got the final conditions of the phase transition from DW to
PS. We also obtained the analytical expressions for the cor-
relation functions of CDW, SDW, SS, and TS fluctuations, as
well as the corresponding exponents.

Our results show that the difference between the hopping
integrals for up- and down-spin electrons is crucial for the
occurrence of the PS. When the difference is large enough,
the phase separation will appear even if the on-site interac-
tion is small. In the small-U and low concentration regions,
the phase boundary which scales like t↓�U2 agrees with the
numerical results excellently.
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