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We present an analytic universal impurity solver for strongly correlated electrons. We extend the many-body
perturbation expansion via suitable two-particle renormalizations from the Fermi-liquid regime to the critical
region of the metal-insulator transition. The reliability of the approximation in the strong-coupling limit is
demonstrated by reproducing the Kondo scale in the single-impurity Anderson model. We disclose the origin
of the Kondo resonance in terms of Feynman diagrams and find criteria for the existence of the proper Kondo
asymptotic behavior in approximate theories.
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I. INTRODUCTION

One must have at hand a reliable theory capturing the
salient features of the strong-coupling asymptotics to fully
comprehend the effects of electron correlations in metals.
Most theoretical approaches are based on the well estab-
lished weak-coupling expansion, and we have only a few
opportunities to test its extensions to the strong-coupling re-
gime. The most reliable check of credibility of a theory in the
strong-coupling regime is to compare its results with one of
the existing exact solutions in this limit. There are two prin-
cipal exact results for strongly correlated electrons. They are
the single-impurity Anderson model �SIAM� and the one-
dimensional Hubbard model. The ground state of both mod-
els at half filling was constructed with the aid of the Bethe
ansatz. The former is a heavy-fermion liquid in the strong-
coupling limit,1 while the latter is an electron-hole liquid for
arbitrary interaction strength.2

Recently, SIAM has won in importance, since its solu-
tions form a fundamental building block in the construction
of a dynamical mean-field theory of strong electron correla-
tions via the limit to infinite-dimensional lattices.3 Unfortu-
nately, there are only approximate impurity solvers in the
strong-coupling regime. The only analytic theory, noncross-
ing approximation, is not a Fermi liquid and displays low-
energy pathological features.4 Numerical quantum Monte
Carlo simulations5 are restricted to rather high temperatures.
The most reliable impurity solver proved to be the numerical
renormalization group. It produces the expected three-peak
spectral function with the central Kondo resonance for inter-
mediate coupling.6,7 Due to limitations of the numerical pro-
cedure, it cannot be extended to arbitrarily large interactions.
Neither of these solutions, however, is capable of producing
a detailed ultimate picture of the strong-coupling limit and of
deciding whether and in which form the Kondo resonance
survives or whether the system undergoes a metal-insulator
transition. This question can only be answered by an analyti-
cally controlled theory.

There is presently no global analytic theory capable of
tracing the genesis of the correlation-induced Kondo reso-
nance. The standard weak-coupling, Fermi-liquid-based per-
turbation expansion renormalized with various self-energy
insertions becomes unstable for intermediate and strong elec-
tron interactions.8 Attempts to go beyond one-particle renor-

malizations by introducing explicit vertex corrections and a
two-particle self-consistency either do not lead to analyti-
cally solvable equations or have not yet produced the desired
Kondo asymptotics in SIAM.9,10

The aim of this paper is to construct an analytically con-
trollable approximation that would reliably interpolate be-
tween the weak- and strong-coupling regimes in models with
a screened electron repulsion. For this purpose, we use an
appropriately renormalized diagrammatic many-body expan-
sion. We demonstrate that it is not the one-particle self-
consistency but rather a two-particle one that must be intro-
duced in the critical region of the metal-insulator transition.
We further show that only a symmetric inclusion of electron-
electron and electron-hole scatterings leads to the proper
critical behavior. The two-particle self-consistency will be
achieved within the parquet approximation in which we
separate singular and regular functions. So as not to lose
analytic control, only the potentially divergent functions with
long-range fluctuations are kept dynamical, while the regular
ones with short-range fluctuations are replaced by constants.
Such a simplification does not affect the universal features of
the critical behavior. We explicitly construct the approxima-
tion for SIAM so that its reliability becomes transparent by
qualitatively correctly reproducing the exact weak-coupling
�Fermi-liquid� and strong-coupling �Kondo� regimes. We
identify with our construction the minimal necessary condi-
tions on approximate schemes to cover the Kondo strong-
coupling behavior.

II. MODEL AND BASIC EQUATIONS

We formulate the construction of an approximate theory
interpolating between the weak- and strong-coupling regimes
independently of the underlying model via renormalized
Feynman diagrams and equations of motion. To demonstrate
the reliability of our approach, we, however, use in our ex-
plicit calculations the single-impurity Anderson model, the
Hamiltonian of which reads

Ĥ = �
k�

��k�ck�
† ck� + Ed�

�

d�
†d� + �

k�

�Vkd�
†ck� + Vk

*ck�
† d��

+ Un̂↑
dn̂↓

d. �1�

We denoted n̂�
d =d�

†d�. When calculating the grand potential
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and thermodynamic properties of this impurity model, we
can explicitly integrate over the degrees of freedom of the
delocalized electrons. For this purpose, we standardly re-
place the local part of the propagator of the mobile electrons
by a constant ����=��k�Vk�2���−��k����, the value of
which we set as the energy unit. For simplicity, we assume
half-filled case �=Ed+U /2. The impurity grand partition
function can then be represented via a local Grassmann func-
tional integral,

Z =� D�D�* exp��
n

�n
*�i�n + i sgn��n����n

− U�
0

	

d
n̂↑
d�
�n̂↓

d�
�	 . �2�

For this integral, we can straightforwardly build up the stan-
dard weak-coupling �diagrammatic� perturbation expansion
in powers of the interaction strength U �diagrammatically
represented as a vertex� and the bare propagator, being in the
impurity case G0�x+ iy�=1/ �x+ i sgn�y���+ �y � �� �diagram-
matically represented as an oriented line�.

We know that in the particular case of SIAM, the non-
renormalized weak-coupling expansion is preferred and con-
verges for arbitrary interaction strength.11 To enable a treat-
ment of phase transitions and singularities in more general
extended lattice models, we have, however, to renormalize
the bare expansion. The fundamental quantity for renormal-
ization in the many-body perturbation expansion is the self-
energy. In our approach, we do not use the self-energy as the
approximation-generating quantity determined directly from
sums of selected �renormalized� diagrams. Instead, we rep-
resent it by means of the Schwinger-Dyson equation and the
two-particle vertex � as follows:

���i�n� =
U

	
�
n�

G−��i�n��
1 −
1

	
�
m

G��i�n+m�

G−��i�n�+m���−��i�n+m;i�n,i�n�−n�� , �3�

where �n= �2n+1��T and �m=2�mT are fermionic and
bosonic Matsubara frequencies in units of kB=1, respec-
tively. We assigned dynamical variables to the two-particle
vertex, as shown in Fig. 1.

We further introduce two-particle irreducible vertices, that
is, vertices that cannot be diagrammatically disconnected by
cutting specific pairs of one-particle lines �propagators�. The
choice of the two-particle irreducibility is ambiguous.12

Here, we choose only the singlet electron-hole and electron-

electron scattering channels. We denote the respective irre-
ducible vertices �eh and �ee. With their aid, we represent the
full two-particle vertex via two nonequivalent Bethe-Salpeter
�BS� equations. The Bethe-Salpeter equation in the eh chan-
nel reads

�↑↓�i�n,i�n�,i�m� = �↑↓
eh�i�n,i�n�,i�m�

−
1

	
�
n�

�↑↓
eh�i�n,i�n�;i�m�G↑�i�n��

G↓�i�n�+m��↑↓�i�n�
,i�n�;i�m� .

�4a�

In the ee channel, we obtain

�↑↓�i�n,i�n�;i�m� = �↑↓
ee �i�n,i�n�;i�m�

−
1

	
�
n�

�↑↓
ee �i�n,i�n�;i�m+n�−n��

G↑�i�n��G↓�i�n+n�+m−n��

�↑↓�i�n�,i�n�;i�m+n−n�� . �4b�

Equations �3� and �4� reduce the solution of the investi-
gated model to the determination of the irreducible vertices
�eh and �ee. The principal idea of the parquet approach is to
use the topological nonequivalence of different Bethe-
Salpeter representations of the full two-particle vertex via the
irreducible ones. Due to the nonequivalence of different
types of two-particle scatterings, the reducible vertex in one
channel is irreducible in the other one.12 If the vertex irre-
ducible in both channels is the bare interaction U �parquet
approximation�, we obtain the basic parquet equation in our
two-channel scheme:

�↑↓ = �↑↓
eh + �↑↓

ee − U . �5�

We use this representation in Eqs. �4� to exclude the full
vertex � from the BS equations that then become coupled
convolutive nonlinear integral equations for the irreducible
vertices �eh and �ee. These equations cannot be solved ana-
lytically and their numerical solution is available only far
from the Kondo regime.13 To gain an analytic assessment of
the low-temperature, strong-coupling behavior of the parquet
equations �4� using Eq. �5�, we have to resort to simplifica-
tions.

III. KONDO ASYMPTOTICS: VERTEX FUNCTIONS

A. Simplified parquet equations

Equations �4� can be analytically solved �in an approxi-
mate way� individually for the full vertex � by neglecting
Eq. �5� and using the irreducible vertices as input. Approxi-
mations of this type with renormalized one-particle propaga-
tors are now called fluctuation exchange �FLEX�. In the sim-
plest case, the irreducible vertices are replaced by the bare
interaction. We find that vertex � tends to develop a pole in
the BS equation with multiple electron-hole scatterings �Eq.
�4a�� caused by the imminent metal-insulator transition at

FIG. 1. Diagrammatic assigning of dynamical variables, fre-
quencies, and spins to the vertex �����i�n , i�n� ; i�m�.
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zero temperature, while the two-particle vertex � remains
finite �bounded� when calculated from Eq. �4b�. We use the
fact that only Eq. �4a� develops a pole in simplifying the
parquet approximation in the critical region of the metal-
insulator transition to an analytically controllable theory.
Since the output of the BS equation from one channel enters
the kernel of the other one, only �ee becomes singular in the
critical region of the metal-insulator transition. The irreduc-
ible vertex �eh remains bounded everywhere in the parquet
approximation.

We restrict our interest to the leading critical behavior of
the solution of the parquet equations in the asymptotic region
of the metal-insulator transition. For this purpose, we use the
reasoning of the renormalization group and neglect the short-
range fluctuations. We take into account explicitly only long-
range �in time� fluctuations shaping the singular behavior. In
this way, we do not influence the universal part of the critical
asymptotics. We hence keep only singular functions dynami-
cal �dependent on the relevant frequency only�. Regular
functions, where only short-range fluctuations contribute,
can be replaced by constants, suitably chosen averaged val-
ues. We must further guarantee that only the leading low-
frequency behavior of singular functions determines the criti-
cal behavior in the BS equations.

As a first step, we approximate �eh with a static effective

interaction �eh= Ū. Inserting this ansatz into Eq. �4a�, we
obtain a FLEX-type equation for the irreducible vertex from
the electron-electron channel,

�↑↓
ee �i�n,i�n�;i�m� = U −

Ū2�eh�i�m�

1 + Ū�eh�i�m�
, �6a�

where we denoted the electron-hole bubble �eh�i�m�
=	−1�nG↑�i�n�G↓�i�n+m�. Since the static approximation to

the electron-hole irreducible vertex �eh= Ū causes a devia-
tion from the exact high-frequency limit �eh→U, approxi-
mation �6a� holds in the low-frequency limit. We hence have
to consider in our simplification only the leading low-
frequency contribution from the right-hand side of Eq. �6a�.
It reads

�↑↓
sing�i�m� = −

Ū2�eh�i�m�

1 + Ū�eh�i�m�
. �6b�

We now use Eqs. �4b� and �5� and �sing from Eq. �6b� to

determine the effective interaction Ū. The right-hand side of
Eq. �4b� remains frequency dependent even with our ansatz.
Since we neglect all finite �short-time� fluctuations in regular
functions, we have to replace the vertex � resulting from Eq.
�4b� with a constant. This replacement is not uniquely de-
fined but the ambiguity has no impact on the qualitative �uni-
versal� critical behavior of the solution. We found that the
most appropriate way to replace the full vertex with a con-
stant is to multiply both sides of Eq. �4b� with pairs of one-
electron propagators G�i�n�G�i�m−n� from the left and
G�i�n��G�i�m−n�� from the right. We then average over the
fermionic Matsubara frequencies with a constraint m=0,
conserved during the electron-electron multiple scatterings.

By doing so, we obtain an explicit equation for the effective
interaction, the static part of the electron-hole irreducible
vertex,

Ū�ee�0� = U�ee −
�G↑G↓L↑↓

2 
�ee + �G↑G↓L↑↓

. �7�

We denoted �ee=	−1�nG↑�i�n�G↓�i�−n� the static part of the
electron-electron bubble and

L↑↓�i�n� =
1

	
�
n�.

G↑�i�n��G↓�i�−n���↑↓
sing�i�−n−n�� , �8a�

�G↑G↓X =
1

	
�
n.

G↑�i�n�G↓�i�−n�X�i�n� . �8b�

Equations �6b�, �7�, and �8� form a closed set of relations

determining the static effective interaction Ū and the dy-
namical vertex �sing�i�m� as functionals of the one-particle
propagators G� and the bare interaction U. Together with
Eqs. �5� and �3�, we have an analytic approximation in
closed form. The one-electron propagators may be either
bare or renormalized with the self-energy, when one-particle
self-consistency is used. The latter is not mandatory and we
show that it worsens the approximation with the Hartree one-
electron propagators, in particular, in the intermediate- and
high-frequency sectors.

The critical region of the metal-insulator transition in
SIAM corresponds to the strong-coupling regime, U /�→�.
It is reached when the denominator on the right-hand side
�rhs� of Eq. �6b� approaches zero. At zero temperature, half
filling, and in the rotationally invariant case, G↑=G↓, we

define a dimensionless Kondo scale a=1+ Ū�eh�0�=1

− Ū�−�
0 d�I�G+���2� /�→0. We used an abbreviation

G±����G��± i0+�. The denominator of the rhs of Eq. �6b�
can then be expanded only to the lowest �linear� order in
frequency if we are interested in the leading singular behav-

ior. We obtain 1+ Ū�eh��+ i0+�=a− i�Ū�0
2�. We denoted the

density of one-particle states at the Fermi energy
�0=−�−1IG+�0�. It does not depend, at zero temperature and
half filling, on the interaction strength. This singular low-
frequency asymptotics of �sing allows us to evaluate the lead-
ing contributions to the integrals in Eqs. �8�.

The leading contributions to the integrals with vertex
�sing in the asymptotic limit a→0 read

L↑↓�z� �
G�z�G�− z�

�2�0
2 �ln a� , �9a�

�G↑G↓L↑↓ � − � �ln a�
�2�0

2�2�
−�

0 d�

�
I�G+���2G−�− ��2� ,

�9b�

and
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�G↑G↓L↑↓
2  � − � �ln a�

�2�0
2�2�

−�

0 d�

�
I�G+���3G−�− ��3� .

�9c�

The effective interaction has an asymptotic solution for a
→0

Ū =
1

�ee

U�ee −

�ln a�
�2�0

2

��GG�ee
3 

��GG�ee
2 � , �10�

where we denoted ��GG�ee
n =−�−1�−�

0 d�I�G+���nG−�−��n�.
The dimensionless Kondo scale measuring the distance

from the metal-insulator transition is determined from an
equation for the critical point of the metal-insulator transi-

tion. It reads 1+ Ū�eh�0�=0. At half filling, �eh�0�=−�ee and
we obtain a leading-order asymptotic solution for the dis-
tance to the critical point,

a = exp�− �2�0
2 ��GG�ee

2 
��GG�ee

3 
�U�ee − 1�	 . �11�

Solution �11� holds at zero temperature and half filling when
the argument in the exponential tends to infinity and U�ee
�1. The latter condition can be viewed as a characteristic of
the strong-coupling regime, since the FLEX, weak-coupling
solutions are distinguished by the opposite inequality, U�ee
�1.

B. Hartree propagators

To manifest analytically that Eq. �11� reproduces correctly
the Kondo asymptotics, we use the bare �Hartree� one-
particle propagators in Eq. �11�. In this case, the integrals
with powers of the one-particle propagators can be explicitly
evaluated, ��GG�ee

n =�2�n−1��0
�2n−1� / �2n−1�. Using this re-

sult, we obtain an explicit representation for the Kondo scale,

a = exp�−
5

3
�U�0 − 1�	 . �12�

The exact result is a=exp�−�2U�0 /8�. Determination of the
exact prefactor at the linear dependence of the exponent of
the Kondo scale on the interaction strength is beyond the
reach of the present approximation. The prefactor depends
on the way in which we replace regular frequency-dependent
functions with constants. The universal feature of the Kondo
scale is the linearity in the interaction strength of the expo-
nent. This linearity is the major achievement of our construc-
tion. The other Fermi-liquid-based approximations fail in the
strong-coupling regime of SIAM. The single-channel FLEX-
type approximations either do not see the metal-insulator
transition at all �ee channel� or predict a quadratic exponent
a�exp�−U2�0

2� �eh channels�.14

IV. KONDO ASYMPTOTICS: ONE-PARTICLE
FUNCTIONS

The core of the parquet approach is a self-consistency
determining the two-particle irreducible vertices from the
completely irreducible vertex �bare interaction in the parquet

approximation� and the one-particle propagators. Both the
completely irreducible vertex and the one-particle propaga-
tors serve as input to the parquet equations. To complete the
parquet approximation and make it conserving and thermo-
dynamically consistent, we have to determine the physical
one-particle functions, that is, the physical one-particle
propagator and the self-energy. All physical quantities in
conserving theories are then generated from the full one-
particle propagator or the self-energy and their dependence
on appropriate external sources.15 The physical one-particle
propagator need not be identical with the “auxiliary” one
used in the parquet equations for the two-particle vertices.

A. Self-energy in the parquet approach

The fundamental quantity for any thermodynamically
consistent and conserving approximation is the self-energy.
Knowing the full two-particle vertex from the simplified par-
quet equations, we determine the self-energy from the
Schwinger-Dyson equation �3�. It reduces in the critical re-
gion of the metal-insulator transition to a simple FLEX-type
expression,

���i�n� =
U

	
�
n�

G−��i�n��

1 + Ū�eh�i�n−n��
. �13�

We can analytically continue the sum over Matsubara fre-
quencies to an integral with a Fermi function. At zero tem-
perature, the real part of the self-energy reads

R�+��� = − U
�����
−�

−�

+ ��− ���
−�

0 �dx

�
I

G+�x + ��

1 + Ū�+�x�

− U�����
−�

0 dx

�
RG+�x + ��I

1

1 + Ū�+�x�

− U��− ���
0

−� dx

�
IG+�x + ��R

1

1 + Ū�+�x�
.

�14a�

The imaginary part has a representation

I�+��� = − U
�����
−�

0

+ ��− ���
0

−� �


dx

�
IG+�x + ��I

1

1 + Ū�+�x�
. �14b�

We distinguished with a subscript + the way the real fre-
quency axis is approached in functions with complex vari-
ables. That is, G+�x��G�x+ i0+�, �+�x���eh�x+ i0+�. The
one-particle propagators on the rhs of Eqs. �14� may either
be bare or full propagators with the self-energy from the
left-hand side. Both constructions lead to conserving ap-
proximations when all thermodynamic quantities are deter-
mined from the self-energy.

We first use the bare �Hartree� one-particle propagators in
Eqs. �14�. The density of states calculated from the one-
particle propagator containing the self-energy from Eq. �14�
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is plotted for various interaction strengths in Fig. 2. The cen-
tral Kondo quasiparticle peak is well formed and its width
shrinks with increasing interaction strength, in accord with
Eq. �12�. See Fig. 3 for a detailed dependence of the quasi-
particle peak on the interaction strength. Not only the central
quasiparticle peak but also the satellite Hubbard bands are
well formed. Even though our approximation was justified
for small frequencies, the parquet equations with the Hartree
propagators reproduce the high-frequency features of the
spectral function surprisingly well. The Hubbard bands are
positioned very close to the exact values of the atomic levels
of the impurity electrons at ±U /2.

B. One-particle self-consistency

Usage of the Hartree propagators may seem inferior to a
theory with renormalized one-particle propagators in the par-
quet equations. In fact, the opposite is true, even though the
one-particle self-consistency adds new self-energy diagrams

to those explicitly taken into account in the parquet construc-
tion of the self-energy from the two-particle vertex. The so-
lution with renormalized one-particle propagators loses most
of the attractive features obtained in the parquet approach
with the Hartree propagators. First, the asymptotic formula
for the Kondo scale �Eq. �11�� cannot be evaluated explicitly
when renormalized one-particle propagators are used. Hence,
the exact strong-coupling asymptotics cannot be reached
analytically. Second, the satellite peaks are completely
washed out and merge with the central quasiparticle peak of
the density of states, as shown in Fig. 4. The central peak
broadens with respect to the solution with the Hartree propa-
gators. The solution with renormalized one-particle propaga-
tors shows overall worse agreement with the exact Kondo
behavior derived from the Bethe ansatz. An analogous be-
havior was observed in a static simplification of the parquet
equations.16 The failure of one-particle self-consistent theo-
ries to reproduce reliably the Kondo strong-coupling regime
in impurity models is in accord with early analyses of SIAM
using perturbation expansion in the interaction strength.11

The density of states resulting from the parquet approxi-
mation with renormalized one-particle propagators resembles
the solution of the renormalized random-phase approxima-
tion of Suhl.17 The central quasiparticle peak is, however,
much broader than in the FLEX-type approximations. It is
even broader than that from the parquet solution with the
Hartree propagators. This indicates that the critical region of
the metal-insulator transition is reached, if ever, for much
stronger interactions in the solution with one-particle self-
consistency than without it. The high-frequency behavior of
the parquet approximation with renormalized one-particle
propagators and the FLEX solution seem to behave similarly.
One can prove analytically that the one-particle self-
consistent theories with simplified one-frequency two-
particle vertex functions behave in the high-frequency region
universally and no Hubbard satellite bands emerge.

To assess the high-frequency behavior of one-particle
propagators, we evaluate explicitly the leading-order contri-
bution to the self-energy in the critical region of the metal-
insulator transition, that is, a→0. We obtain from Eqs. �14�

FIG. 2. �Color online� Density of states at zero temperature, half
filling, and various interaction strengths without one-particle
self-consistency.

FIG. 3. �Color online� Detailed dependence of the quasiparticle
peak in the density of states on the interaction strength.

FIG. 4. �Color online� Density of states for one-particle non-
self-consistent �NSC� and self-consistent �SC� solutions compared.
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R�+��� �
U

Ū�2�0
2

�ln a�RG+���

+ arctan� Ū��0
2�

a
�IG+���� , �15a�

I�+��� �
U

2Ū�2�0
2

ln
1 +
Ū2�2�0

4�2

a2 �IG+��� .

�15b�

If we now assume ��a�, we can further simplify the ex-
pression for the self-energy to

�̃+��� =
U�ln a�

Ū�2�0
2

G̃+��� +

� sgn���
2�ln a�

IG̃+���� . �16�

We decorated the high-frequency one-particle quantities with
tilde to distinguish them from the full ones. For tilde func-
tions, we can introduce a dimensionless variable

x =� Ū�2�0
2

U�ln a�
� . �17a�

We resolve the one-electron tilde propagator by using the
Dyson equation of SIAM. We obtain an explicit solution

G̃+��� =� Ū�2�0
2

U�ln a�

 x

2
− i�1 −

x2

4
� . �17b�

We see that one-particle self-consistent theories lead to a
universal high-frequency behavior with a semielliptic
density of states spread over a large interval of order
�U�ln a� / Ū�2�0

2. The FLEX solution differs only in that Ū
=U. The semielliptic form of the density of states in high
frequencies is hence universal for one-particle self-consistent
theories. The Hubbard satellite bands are completely
smeared out. The reason for the nonexistence of the satellite
peaks lies in the behavior of the real part of the self-energy in
the low-frequency region. We compared the non-self-
consistent and self-consistent solutions in Fig. 5. We can see
that the sharp low-frequency structure of the real part of the
self-energy is significantly smoothed and the peaks are
broadened by the one-particle self-consistency. Most impor-
tantly, the height of the peaks is so much lowered that ���
� �R�����. Only if this condition is broken, as is the case in
the non-self-consistent solution, do satellite peaks emerge.

V. CONCLUSIONS

We presented a construction of a universal analytic impu-
rity solver reliably interpolating between the weak �Fermi-
liquid� and strong �Kondo� coupling metallic regimes. The
approximation is a simplification of two-channel parquet
equations where the bounded irreducible vertex is replaced
by a static effective interaction and only the low-frequency
singular vertex is kept dynamical. Such a procedure is justi-
fied in the critical region of the metal-insulator transition,

where the low-frequency asymptotics of the singular two-
particle vertex becomes dominant. We set with our construc-
tion the minimal necessary conditions that must be fulfilled
to reproduce the Kondo exponential scale. The Kondo be-
havior is observed in an approximate solution of SIAM if the
low-frequency singularity in the two-particle vertex domi-
nates the dynamics and when electron-hole and electron-
electron multiple scatterings are self-consistently mixed in a
balanced way.

We analyzed two versions of the parquet approximation.
In the first one, we used the Hartree one-electron propagators
in the parquet equations for the two-particle irreducible ver-
tices and the Schwinger-Dyson equation for the self-energy.
In the second one, we used the fully renormalized one-
particle propagators. Although the latter construction con-
tains more Feynman diagrams renormalizing the self-energy,
its results are less reliable than the results of the former ap-
proach. This conclusion is not new and is also under-
standable.11,16 Renormalizations due to the one-particle self-
consistency unrealistically smear and unfold the low-
frequency structure of the self-energy. Consequently, the
high-frequency features of the one-particle propagator are
washed out and no Hubbard satellite bands can be observed.

One-particle self-consistency is standardly demanded in
order to guarantee conservation laws and thermodynamic
consistency. It is, however, not a necessary condition for ap-
proximations to be conserving. Conservation laws are guar-
anteed in any theory with an approximate self-energy func-
tional containing physical external sources. These sources
are then used to generate the desired physical quantities via
linear-response theory. On the other hand, theories aiming at
a description of critical phenomena such as magnetic phase
transitions or a metal-insulator transition must be self-
consistent in some way. Self-consistency is necessary for any
theory to handle singularities. Since singularities in models
with itinerant electrons emerge only at the two-particle level
in Bethe-Salpeter �BS� equations, we must introduce a two-
particle self-consistency. The parquet construction offers a
very natural way to reach this goal and to treat singularities

FIG. 5. �Color online� Real part of the self-energy for one-
particle non-self-consistent �NSC� and self-consistent �SC� solu-
tions compared.
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in the BS equations appropriately. One-particle self-
consistency influences the critical behavior of the two-
particle vertex, but it does not offer any direct control of
singularities in the BS equations. Neither can it guarantee
integrability of singular vertices nor is it capable of repro-
ducing the correct critical behavior in the Kondo regime.
When used in the parquet approach, the one-particle self-
consistency interferes in the control of the two-particle sin-
gularities from the BS equations achieved by the two-particle
self-consistency. The one-particle self-consistency can hence
be used only when appropriately compensated so that it does
not significantly affect the two-particle criticality. This is,
however, not the case in the parquet approximation and the
non-self-consistent one-particle propagators deliver better re-
sults than the self-consistent ones.

To conclude, we derived a global approximation that is
analytically tractable, sufficiently simple, and universal. It

can be used in a number of physically interesting situations,
including realistic �multiorbital�, material specific models as
a kind of mean-field theory for models with a strong local
electron interaction. It may stand as an alternative to a re-
cently proposed impurity solver for the strong-coupling
regime.18 Unlike the solver from Ref. 18, our approximate
scheme reproduces correctly the Kondo strong-coupling re-
gime.
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