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We study the magnetic excitations on top of the plateaux states recently discovered in spin-Peierls systems
in a magnetic field. We show by means of extensive density matrix renormalization group �DMRG� compu-
tations and an analytic approach that one single spin-flip on top of M =1− 2

N �N=3,4 , . . . � plateau decays into
N elementary excitations each carrying a fraction 1

N of the spin. This fractionalization goes beyond the well-
known decay of one magnon into two spinons taking place on top of the M =0 plateau. Concentrating on the
1
3 plateau �N=3� we unravel the microscopic structure of the domain walls which carry fractional spin-1

3 , both
from theory and numerics. These excitations are shown to be noninteracting and should be observable in x-ray
and nuclear magnetic resonance experiments.
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Constitutive elements of condensed systems and their in-
teraction laws are all well known and in spite of this, modern
condensed matter physics is a field where new fundamental
concepts arise continuously, mainly due to strong correlation
effects. The clue is that the emergent laws governing a sys-
tem of many interacting bodies could have no direct relation-
ship with the behavior of each individual member. In other
words, the interaction processes could wash out the indi-
vidual properties of the constituents and give rise to excita-
tions of fundamentally new character.1 Specifically, a new
paradigm is now arising in the field of strongly correlated
electron systems, where the concept of Fermi liquid theory is
not applicable any more. Collective excitations with quan-
tum numbers essentially different than those of the individual
electrons are now predicted and observed in a variety of
systems.

The earliest example arose in the 1970s in the study of
conducting polymers as polyacetylene. For this system, it
was proposed that conduction was due to solitons carrying
the electronic unit charge but no spin. The emergence of
these quasiparticles carrying different quantum numbers than
the original constituent, was understood as a consequence of
electron-phonon interactions.2 Another example is provided
by a two-dimensional layer of electrons in a high magnetic
field. In the so-called fractional quantum Hall effect regime
at a certain filling fraction corresponding to a plateau in the
conductivity, the charge of the elementary excitations is a
fraction of the electronic charge. The statistical properties of
these quasiparticles are intermediate between fermionic and
bosonic and they are termed “anyons.”3

Understanding the mechanisms through which collective
processes could produce excitations different in character
than the original constituents of a solid state system is cur-
rently under intense study. In particular, making specific pre-
dictions of the effects of these excitations on the experimen-
tal observations is a very important issue of modern
condensed matter physics.

In studying the properties of many-body systems, mag-
netic systems have provided a fertile playground especially
for elucidating very important aspects of reduced dimension-
ality and strong correlations. When one flips the spin of an
individual electron �say Sz=− 1

2 →Sz= 1
2 � the total spin of the

system changes by one unity, �Sz=1, so one has created an
excitation carrying spin Sz=1. In a three-dimensional system
this excitation was ascribed to be carried by a bosonic par-
ticle called a magnon, a quantum of a spin wave. It came as
a big surprise when Fadeev and Takhtajan identified the el-
ementary spin quantum number of a spin wave as Sz= 1

2 in
the one-dimensional world, calling them spinons.4 One can
“have a look” at these spinons if one introduces sufficiently
strong frustration in the one-dimensional Heisenberg chain
so that the ground state becomes dimerized. Then the spinon
acquires a finite gap and it is visualized as a free spin sepa-
rating the different domains of dimerization as depicted in
Fig. 1.

Apart from the natural Sz= 1
2 value �which could still be

ascribed to the individual electron� no other fractional values
were observed in experiments.

The present paper is devoted to the study of fractional
spin excitations that go beyond the usual fractionalization of
a magnon into two spinons discussed above. For example, as
we discuss below, the excitations on top of the M = 1

3 plateau
carry a fractional spin Sz= 1

3 , which we dub “tertions.” This
fractionalization takes place due to collective effects in cer-
tain magnetoelastic systems under a strong magnetic field.
These excitations should be observable in spin-Peierls sys-

FIG. 1. Deconfined spinons in dimerized chain, connected black
dots represent dimers - spin singlet combination of two neighboring
spins, arrow is for free spin.
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tems like CuGeO3 and in Ising antiferromagnetic chains sus-
ceptible to lattice deformations. These tertions should con-
dense as a soliton lattice in the ground state of a system
under a magnetic field greater than the value corresponding
to the M = 1

3 plateau. This would allow to directly observe
these objects in nuclear magnetic resonance �NMR�, x-ray or
neutron scattering experiments as has been the case with
closing the zero magnetization gap.5,6

The lattice Hamiltonian of a frustrated spin chain coupled
to frozen phonons in a magnetic field reads as7

H =
1

2
K�

i

�i
2 + J1�

i

�1 − A1�i�S� i · S� i+1 + J2�
i

S� i · S� i+2

− H�
i

Si
z, �1�

H is measured in units where g�B=1, �i is the distortion of
the bond between site i and i+1, K the spring constant and
the first term corresponds to the elastic energy loss. J1 sets

the overall energy scale, and � J1

K a corresponding distance
scale. From now on, we fix J1=K=1 to get dimensionless
energies and distances.

Recently we have shown that plateaux can be present for
magnetization values M =1− 2

N , with N=2,3 ,4 , . . . being the
length of the periodic cell of the ground state in units of the
lattice constant. The actual presence of these plateau depends
on the strength of frustration, except for the M =0 plateau
�N=2� which is always present. The simplest nontrivial ones,
at M = 1

3 �N=3� and M = 1
2 �N=4�, have been observed clearly

in numerical simulations for moderate values of frustration
J2 and spin-lattice coupling A1.7

We have found that these plateaux are due to the next-to-
leading transfer processes becoming commensurate, in first
order of the spin-phonon interaction, and they appear at spe-
cial rational magnetization values in accordance with Ref. 8.
For the M = 1

3 plateau this corresponds to the process of trans-
ferring two particles from, say, the left to the right Fermi
point, and for the M = 1

4 plateau, a process involving the
transfer of three particles from the left to the right Fermi
point. Those plateaux are generically less wide than the zero
magnetization plateau which is caused by the doubling of the
amplitude of the basic transfer process at M =0.

Close to the zero magnetization plateau, the modulation
of the lattice distortions breaks into domains corresponding
to a soliton lattice.9 Domain walls carry spin Sz= 1

2 and are
deconfined. In analogy to the above picture our purpose is to
study the excitations on top of the nontrivial magnetization
plateaux at M =1− 2

N , N=3,4 , . . . to show that one spin-flip
decays into N free fractional spin excitations, with spin Sz

= 1
N . To this end, we analyze the formation of a soliton lattice

on top of the 1
3 plateau state, which is an up-up-down �uud�

modulated structure in the frustrated antiferromagnetic spin
chain coupled to adiabatic phonons.

Fractionally charged excitations in the systems with com-
mensurability 3 were studied in the early 1980s in one-
dimensional electron- phonon systems numerically10 and by
bosonization.11 In the case of 1 /3 electron filling these works
identified elementary excitations carrying charge and spin

values �in addition to polaronic excitation with ordinary elec-
tronic quantum numbers�: �Q= ±e /3, �S=1/2 and �Q
= ±2/3, �S=0, respectively. Our case corresponds to 1/2
electron filling, with completely frozen charge fluctuations.
As we will show in this case spin excitations will be frac-
tionalized in the units of 1 /3. Since the charge field is sup-
pressed there is no direct analogy between the quantum num-
bers of the excitations for electronic systems and our
magnetic system which is equivalent to the system of spin-
less electrons.

We developed a self-consistent harmonic approximation
�SCHA� in analogy to the zero magnetization case and our
findings are fully confirmed by extensive DMRG computa-
tions.

The bosonized version of Eq. �1� reads like

H = H0 + Hph + Hsp, �2�

where H0 is a Gaussian part, Hph is the adiabatic phonon
part, and Hsp is the spin-phonon interaction term which,
around M = 1

3 is given by7

− A1� dx��x���:cos��2���: + �:cos�2�2���:� , �3�

where ��x� is the smooth part of the displacement field in the
continuum limit and columns :¯ : indicate normal ordering
of the vertex operators with respect to the ground state with
magnetization M. For kF= �

3 there are three inequivalent
minima which are degenerate, which correspond to the three
different uud arrangements. In terms of the phonon and
bosonic fields, they correspond to �p�x�=�0 cos�2kF�x+ p��
�p=0,1 ,2� and �2��=0, ± 2�

3 , respectively. These three
structures are clearly observed in the numerical simulations.

An interesting observation is that singlets can always ap-
pear in domain walls because when tunnelling from the first
vacuum to the second or third, the field rests on the interme-
diate pseudominimum in between �which turns out to be a
portion of the quantum plateau indicated by yellow circles in
Fig. 2�.

Let us now analyze the excitations on top of the M = 1
3

plateau. In the pure spin case, the potential energy is given
simply by V�����dx cos�3�2���, which also has three de-
generate minima.12 From this potential, one immediately
concludes that the excitations on top of the plateau corre-

FIG. 2. �Color online� Values of the �periodic� bosonic field for
different M = 1

3 ground states. Squares correspond to the three �clas-
sical� configurations and circles to the quantum counterpart �Ref.
19�.
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spond to massive kinks �whenever V��� is a relevant pertur-
bation� interpolating between these inequivalent minima, and
carry fractionalized spin-1

3 .12

In the spin-phonon case, the situation is more subtle, since
now the three minima correspond to combined magnetoelas-
tic configurations as we discussed above. To see how frac-
tional spin kinks arise in that case, we resort to a SCHA
along the lines of Refs. 13–15.

Following Refs. 13–15 we split � into classical and quan-
tum components, �=�c+�q. Using the value of kF for M
= 1

3 and keeping only commensurate terms, we arrive at the
following potential for the classical bosonic field:

V��c� 	 −� dx cos�3�2��c� �4�

which led us to conclude that kinks are similar to those in the
pure spin case, though now both spin and phonon modula-
tions must combine appropriately. Below we find the explicit
expression for the local magnetization and bond modulations
and compare them with our numerical results obtained by
DMRG.

Let us start discussing how �c evolves as we walk around
a chain with periodic boundary conditions �PBC�. We start
from the vacuum corresponding to �2��c=0, then we have
a tunnelling of �2��c from 0→ 2�

3 , at the position of the first
domain wall �let us call this point x1�, then a tunnelling pro-
cess from 2�

3 → 4�
3 takes place �at x2� and at the position of

the third domain wall �x3� the initial vacuum is restored by
tunnelling 4�

3 →0. An analytic expression for �c can be built
up as a product of three soliton solutions of the sine-Gordon
model16 centered at x1, x2, and x3. It reads

3�2��c�x� =
1

8�2†4 arctan
exp��x − x1�/	��


„2� + 4 arctan
exp��x − x2�/	��…


„4� + 4 arctan
exp��x − x3�/	��…‡ �5�

with 	 being the soliton width. From Eq. �5� and the
bosonization formulas connecting ��x= ia� with Si

z �Ref. 17�
we extract the local magnetization of every three sites,

�S�
z �3x� =

1

6�
�x�c�x� − B1cos��2��c�x� +

4�

3
���

− B2 cos�2�2��c�x� +
8�

3
�� +

1

6
. �6�

As anticipated, singlets indeed appear within domain
walls. This is because when tunnelling from one vacuum to
another, the field passes through the intermediate pseudo-
minimum in between, which is exactly a portion of the quan-
tum plateau18,19 �see Fig. 2�. Here we would like to note that
in the absence of the spin phonon coupling the 1

3 magnetiza-
tion plaetau in the J1-J2 model was for the first time identi-
fied for stronger values of J2 by Okunishi and Tonegawa20

who also identified similar fractionalized spin-1
3 excitations

around it.21 They connected this excitation with a domain
wall in the Ising limit, microscopically different from a
singlet-core excitation that is realized in our case of addi-
tional spin phonon interaction and SU�2� symmetric spin ex-
change.

We now undertake a numerical analysis of the lattice de-
formations ��i� and the local magnetization ��Si

z� around the
plateau at M = 1

3 . We have used an iterative method based on
a DMRG procedure to solve the adiabatic equation corre-
sponding to Hamiltonian �1� along the lines stated in Ref. 7.
To compare with the previous analytical study, we consider
PBC, and the calculations were carried out keeping m=200
states, with a truncation error of order 10−11.

FIG. 3. �Color online� DMRG solution for Ns=138, J2=0.5,
and A1=0.6. We represent with circles �squares� symbols �i ��Si

z�,
using different colors for each of the three sublattices. �a� Results
for M = 1

3 in our system. �b� and �c� show the results for the next
magnetization over M = 1

3 . Solid lines in �b� and �c� correspond to
the modulations obtained within the SCHA �Ref. 14�. Three well-
defined excitations are seen as what we call tertions. Open symbols
and dotted lines correspond to DMRG and bosonization results for
a second pattern where the central tertion is shifted. Both patterns
have the same energy, showing that tertions are noninteracting.

FIG. 4. DMRG results for the same set of
parameters used in Fig. 3 for the local spin-spin
correlation function.
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With M =
2Stot

z

Ns
, we want to study the states for M = 1

3 and
one unit of magnetization above it. The iterative procedure
for the �i, takes around 100 iterations to achieve convergence
in a particular Ns. Note however that a periodic pattern with
a wavelength �=n 2

1+M �n integer� is expected for each mag-
netization M.7 Therefore, to reduce the CPU time we impose
such a periodicity for both M, on the �i pattern in our nu-
merical calculation, choosing Ns=138. Then we study for
values of Stot

z =23 and 24, and this enforcement helps us to
obtain very accurate results for the states we are interested
in. In Fig. 3 we show the results of �i and Si

z for a particular
set of parameters where the plateau at M = 1

3 is present. In
Fig. 3�a�, for Stot

z =23, �=3 the up-up-down structure is
clearly seen, corresponding to a weak-weak-strong structure
for the bonds. Figures 3�b� and 3�c� show magnetization and
distortion, respectively, for Stot

z =24, �=46.
The patterns obtained for �i and Si

z are oscillatory on the
scale of the lattice constant. We separate the lattice in three
different sublattices to extract the smooth variations of the
relevant quantities. Three different excitations are clearly
identified which are characterized as domain walls of the uud
order. As the total spin of this state is Sz=1 above the M
= 1

3 state, each excitation carries Sz= 1
3 and for this reason we

term them tertions. Moreover, a very accurate fitting could be
found between the DMRG results and the analytic form
given in Eq. �6�. Lines on Fig. 3�c� were obtained from this
expression with parameters B1=0.35, B2=0.03, and the soli-
ton width in units of three lattice sites, 	=4.5.

In Figs. 3�b� and 3�c�, we added further DMRG results
and the analytical fitting, now shifting the position of the
second domain wall, and running the code again without
forcing the periodicity. The overall coincidence between the
bozonization and DMRG results and the fact that both states
have the same energy confirm that the excitations correspond
to noninteracting solitons with fractionalized spin Sz= 1

3 .
DMRG results for other lattice sizes not shown here lend
further support to this conclusion of independence, in par-
ticular since Eq. �6� perfectly fits in all cases the numerical
results using the same set of constants B1 ,B2, and 	. We also
checked that excitations behave similarly for different sets of
parameters where the M = 1

3 plateau is present.
Finally, let us analyze the internal structure of these ter-

tions. Looking at the tertion placed at the center of the lat-
tice, it can be seen in Fig. 3�c� that Sz has greater value at
position 63, and almost vanishes at sites 61–62 and 64–65.
This fact points towards singlet formation as we have pre-
dicted theoretically. In fact, we have calculated the spin-spin
correlation �Si ·Si+1 shown in Fig. 4, and we obtain that the
value 	− 3

4 at the bonds around each tertion is centered. De-
pending on the system size, the quantum plateau portion can
be longer or shorter.

In conclusion we have shown that plateaux in magneto-
elastic systems, independently of the mechanism that pro-
duce them, involve the development of a soliton lattice at the
threshold. We have also shown that solitons-domain walls
carry fractional spin values which are generically smaller
than 1

2 , in particular for the excitations around the M = 1
3 pla-

teau, noninteracting quasiparticles with fractional spin Sz= 1
3

arise. We have also identified the core of the domain wall as
singlets in the case of the M = 1

3 plateau �Fig. 5�. We hope
that our predictions will stimulate further high field experi-
ments on spin-Peierls compounds. Like for the case near
M =0 in the spin-Peierls material CuGeO3,5 the lattice defor-
mation we predict could be measured in x-ray or neutron
scattering experiments. The local magnetic texture could oth-
erwise be seen in NMR experiments as in Ref. 6.
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