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We show theoretically that arbitrary coherent rotations can be performed quickly �with a gating time �1 ns�
and with high fidelity on the spin of a single confined electron using control of exchange only, without the need
for spin-orbit coupling or ac fields. We expect that implementations of this scheme would achieve gate error
rates on the order of ��10−3 in GaAs quantum dots, within reach of several known error-correction protocols.
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The elementary building blocks for universal quantum
computing are a two-qubit entangling operation, such as the
controlled-NOT �CNOT� gate or �SWAP gate, and arbitrary
single-qubit rotations. For qubits based on single electron
spins confined to quantum dots,1 recent experiments have
now achieved the two-qubit �SWAP gate2 and single-spin co-
herent rotations.3 If these operations are to be used in a vi-
able quantum information processor, they must be performed
with a sufficiently small gate error per operation, ��1. The
threshold values of � required for effective quantum error
correction depend somewhat on error models and the par-
ticular error-correction protocol, but current estimates are in
the range ��10−2–10−4.4,5 To achieve these low error rates,
new schemes must be developed to perform quantum gates
quickly and accurately within the relevant coherence times.

Previous proposals6 and recent implementations3 for
single-spin rotation have relied on ac magnetic fields to per-
form electron-spin resonance �ESR�. In ESR, difficulties
with high-power ac fields limit single-spin Rabi frequencies
to values that are much smaller than the operation rates typi-
cally associated with two-qubit gates mediated by exchange.2

To circumvent these problems while still achieving fast co-
herent single-qubit rotations, there have been several propos-
als to use exchange or electric-field �rather than magnetic-
field� control of electron spin states. These proposals aim to
perform rotations on multiple-spin encoded qubits,7,8 or re-
quire strong spin-orbit interaction,9–12 coupling to excited or-
bital states,13 or rapid pulsing of magnetic fields.14 Qubits
encoded in two states having different orbital wave functions
are susceptible to dephasing through fluctuations in the elec-
tric environment, even in the idle state.15–17 Proposals that
make use of the spin-orbit interaction9–12 are restricted to
systems where the spin-orbit coupling is sufficiently strong,
excluding promising architectures such as quantum dots
made from Si:SiGe �Ref. 18� and carbon nanotubes or
graphene sheets.19–21 Sufficiently rapid pulsing of magnetic
fields14 may not be feasible in GaAs, where the electron-spin
coherence time is on the order of �c�10 ns.2,22

Here we propose to perform single-qubit rotations in a
way that would marry the benefits of demonstrated fast elec-
trical control of the exchange interaction2 with the benefits of
naturally long-lived single-electron spin qubits.1 Our pro-
posal would operate in the absence of spin-orbit coupling
and would act on single electron spins without the use of ac
electromagnetic fields, in the presence of a fixed Zeeman
field configuration �Fig. 1�. This scheme applies to confined
electrons in any structure with a locally controllable poten-

tial. Specifically, this scheme may be applied to electrons
above liquid helium, bound to gated phosphorus donors in
silicon, and in quantum dots formed in a GaAs two-
dimensional electron gas, nanowires, carbon nanotubes, or
graphene.

We begin from a standard tunneling model for the two
lowest orbital levels of a double quantum dot, including tun-
nel coupling t12, on-site repulsion Uc, nearest-neighbor repul-
sion Uc�, local electrostatic potentials V1�2�, and a local Zee-
man field b1�2� on dot 1 �2� �see Refs. 23 and 24, and
references therein�:

H = − �
l�

Vlnl� + Uc�
l

nl↑nl↓ + Uc��
l

�nl↑ + nl↓�

+ t12�
�

�d1�
† d2� + d2�

† d1�� − �
l

Sl · bl. �1�

Here we have set �=1, dl� annihilates an electron in dot l
=1,2 with spin �, nl�=dl�

† dl� is the usual number operator,
and Sl=

1
2�s,s�cls

† �s,s�cls� is the spin density on dot l. We
choose ��±	bz�
 �t12�, �	bz�� �t12�, with 	bz= �b1

z −b2
z� /2 and

�=V2−V1−Uc+Uc�, which favors the �1, 1� charge state
�where �N1 ,N2� denotes a state with N1�2� electrons on dot 1
�2�; see Fig. 2	. Additionally, we require a large Zeeman field

FIG. 1. �Color online� Possible setup to implement the scheme
proposed here. Ancillary electron spins at z1 are maintained in a
polarized state with a large Zeeman field b1

z along z. Qubit spins at
z2 are free to precess in a weaker effective Zeeman field lying in the
x−z plane: �= �b2

x ,0 ,b2
z −J /2�. Here, J is the exchange coupling

between the qubit and ancillary spins and b2 is the qubit Zeeman
field in the absence of exchange. When b1

z 
b2
z 
b2

x, z rotations are
performed if J
0 and x rotations are achieved when J
2b2

z .
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along z in dot 1 ��b1
z �
 �b1

x,y�� so that the spin on dot 1 is
frozen into its spin-up ground state. For simplicity, we fur-
thermore choose b2

y =0. Equation �1� then reduces to the fol-
lowing low-energy effective Hamiltonian for the spin on dot
2:

Heff = − 1
2� · �, � = „b2

x,0,b2
z − J���/2… . �2�

When ���
 �	bz�, J���
−2t12
2 /�. Thus, for a fixed Zeeman

field b2, the direction and magnitude of the effective field �
can be tuned with gate voltages via its dependence on � �see
Fig. 2�c�	. Equation �2� follows directly from a much more
general Hamiltonian of the form H=J���S1 ·S2−�lbl ·Sl in
the limit where �b1�
 �b2� ,J, and so this scheme is not lim-
ited to the particular Hamiltonian given in Eq. �1�, which
neglects the long-ranged nature of the Coulomb interaction
and excited orbital states. The long-ranged part of the Cou-
lomb interaction �the exchange integral� contributes a small
fraction to J��� compared to the tunneling contribution when
the out-of-plane magnetic field is zero,25 and contributions to
J��� due to excited orbital states17 are a small correction
when ����J�0,2�, where J�0,2� is the single-dot exchange cou-
pling on dot 2. Outside of this range of validity, the func-
tional form J��� could be obtained empirically, as has been
done in Ref. 26.

Arbitrary single-qubit rotations can be achieved with the
appropriate composition of the Hadamard gate �H� and � /8
gate �T�:27

H =
1
�2

�1 1

1 − 1
�, T = �1 0

0 ei�/4 � . �3�

Up to a global phase, T corresponds to a rotation about z by
an angle 
=� /4. This operation can be performed with high
fidelity by allowing the qubit spin to precess coherently for a

switching time ts=
 /�z at the operating point �A in Fig. 2�a�,
where �z
�x. The H gate can be implemented by pulsing �
�see Fig. 2�c�	 from �A, where �z
b2

z , to �B=−t12
2 /b2

z , where
�z
0, and back. The pulse is achieved with a characteristic
rise and fall time �, and returns to �=�A after spending the
pulse time tp at �=�B. If b2

x �b2
z , Heff induces approximate z

rotations during the rise and fall time, and x rotations when
�=�B. The entire switching process �with total switching
time ts= tp+4�� is described by a time evolution operator U
=T exp �i
0

tsdt ��t� ·� /2	, which, for b2
x �b2

z , is thus approxi-
mately given by

U 
 U�
x,
z� = Rẑ�−

z

2
�Rx̂�− 
x�Rẑ�−


z

2
� , �4�

where 
x=�xtp and 
z=
0
tsdt �z�t�. Here, Rn̂�
� is a rotation

about the n̂ axis by angle 
. When 
x=� /2 and 
z=�, Eq.
�4� gives an H gate, up to a global phase: U�� /2 ,��= iH.

We quantify gate errors with the error rate �=1−F,
where F is the average gate fidelity, defined by

F =
1

4�
� d� Tr�U�in��,
�U†Ũ�in��,
�Ũ†	 . �5�

Here, �in�� ,
�= �� ,
��� ,
�, where �� ,
�=cos�� /2��↑ �
+ei
 sin�� /2��↓ � indicates an initial spin-1 /2 coherent state
in the qubit basis �the two-dimensional Hilbert space
spanned by the �1,1� charge state and spin up on dot 1	, U
=H or T is the ideal intended single-qubit gate operation, and

Ũ=T exp�−i
0
tsdt H�t�	 is the true time evolution of the sys-

tem under the time-dependent Hamiltonian H�t�. The over-
bar indicates a Gaussian average over fluctuations in the
classical Zeeman field b2, which reproduces the effects of
hyperfine-induced decoherence due to an unknown static
nuclear field when �� �b2�:28

f�b2� =� d3b2

�2���3/2 exp� �b2 − b2�2

2�2 � f�b2� . �6�

For a gated lateral GaAs quantum dot, �N
2 = �b2−b2�2=3�2

due to hyperfine fluctuations has been measured, giving �N
=0.03 �eV.22

Based on the above protocol for gating operations, and
assuming a coherence time �c for the qubit spins, a suitable
parameter regime for high-fidelity single-qubit operations is
given by the following hierarchy:

1/�c � b2
x � b2

z � t12 � b1
z � ��B� � ��A� . �7�

The first inequality in Eq. �7� guarantees that x rotations are
achieved with high fidelity at the operating point �=�B. The
second inequality allows for high-fidelity z rotations at �
=�A. The third and fourth inequalities are required to ensure
that b2

z can be canceled by exchange J�2t12
2 /�, and the last

two inequalities guarantee that the population of �0,2� �the
double occupancy D��t12/��2	 remains small, which limits
errors due to leakage and orbital dephasing �see below�.
When �c is dominated by hyperfine fluctuations, 1 /�c��N.
In this case, we give a set of values for these parameters
satisfying Eq. �7� in the caption of Fig. 3. The effective
Zeeman-field gradient given here could be achieved under

FIG. 2. �Color online� �a� Charge stability diagram indicating
the ground-state charge configuration �N1 ,N2� for local dot poten-
tials V1 ,V2. In the �1, 1� configuration, the exchange interaction J���
can be tuned by shifting the double-dot potential difference ��V2

−V1. �b� When the electron spin in dot 1 is polarized, the qubit
electron acquires a Zeeman shift given by t12

2 /�=−J��� /2 due to
virtual hopping processes that are allowed for spin down, but for-
bidden for spin up due to the Pauli principle. �c� Energy spectrum of
the Hamiltonian given in Eq. �1� in the presence of a strong inho-
mogeneous magnetic field.
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the following circumstances: �a� a GaAs double quantum dot
with the nuclei in dot 1 at near full polarization, which would
produce a maximum effective Zeeman splitting of b1

z

�135 �eV �high polarizations could be achieved, e.g.,
through optical pumping29 or transport30�, or �b� a nanomag-
net neighboring a carbon nanotube or graphene double quan-
tum dot with g factor g=2 and interdot separation �L
�1 �m or an InAs nanowire double quantum dot with g
factor g=8 and interdot separation �L�100 nm, either of
which would require a magnetic-field gradient on the order
of �B /�L�1 T/�m. Comparable field gradients have al-
ready been achieved experimentally.31 Alternatively, the an-
cillary spins could be polarized with the exchange field from
a neighboring ferromagnet, high-g-factor material, or strip-
line currents �see Fig. 1�. The values we have used for the
detuning parameter � and tunnel coupling t12 are of the same
order as those used in previous experiments.2

Within the validity of the two-dimensional effective

Hamiltonian Ũ
exp�−iHeff���ts	, it is straightforward but
tedious to calculate rotation errors at �=�A �z rotations; U
=Rẑ�
�	 and �=�B �x rotations; U=Rx̂�
�	 using the expres-
sions in Eqs. �5� and �6�.37 The error rate for z rotations is
dominated by the misalignment of the average field b2 with
the z axis and is thus small in the ratio b2

x /b2
z . For a rotation

by angle −
 �to leading order in b2
x /b2

z�, this error rate is

�z�
� 

2

3
�b2

x

b2
z �2

sin2�


2
� . �8�

When �z=0 �at �=�B�, the error rate for x rotations is domi-
nated by hyperfine fluctuations, and is therefore small in
�N /b2

x. We find that this error rate for an x rotation by angle
−
 �to leading order in �N /b2

x� is

�x�
� 
 �
2

18
+

4

9
sin2�


2
����N

b2
x �2

. �9�

We estimate the error in T using �z�
� with 
=� /4. To
estimate the error in H, we use Eq. �4� in combination with

Eqs. �8� and �9�, assuming that the errors incurred by each
rotation are independent. These estimates give

� 
� �z��

4
� �U = T� ,

�x��

2
� + 2�z��

2
� �U = H� .� �10�

From Eq. �10� we find that the error rate for H is always
larger than that for T and reaches a minimum at an optimal
value of b2

x. The optimal values of b2
x and � at this point are

b2
x,opt = �C�b2

z ��N, ��b2
x,opt� =

4

3
C

�N

�b2
z �

, �11�

where C is a numerical prefactor, C=�1/3+�2 /48�0.73.
Using the measured value �N=0.03 �eV and b2

z =10 �eV,
we find an optimized error rate of ��10−3. Here we have
included the most dominant error mechanisms. There are
many other potential sources of error, which we discuss in
the following. All numerical estimates are based on the pa-
rameter values given in the caption of Fig. 3.

The error due to leakage to the �0,2� singlet state or mis-
alignment of b1 due to the hyperfine interaction in leading-
order perturbation theory is given by �max���N /b1

z�2 ,
�t12/�A�2	�10−4.

If switching is done too slowly during the Hadamard gate,
the qubit states will follow the adiabatic eigenbasis, introduc-
ing an additional source of error. We estimate this error to be
1− P
�, where P=e−� is the Landau-Zener tunneling prob-
ability, determined by32

� =
��b2

x�2

�dJ�t�/dt�



��b2
x�2�B

2�

2t12
2 ����

� 10−4. �12�

Here, we have used dJ�t� /dt
−2�̇t12
2 /�B

2 , with ��̇�
���� /�,
where ��=�A−�B. In the opposite limit, �
1, the qubit spin
could be read out via charge measurements2 by sweeping
slowly to large positive �, where the qubit state �↑ � would be
adiabatically converted to the �0,2� ground-state singlet, or
initialized by sweeping in the opposite direction �see Fig.
2�c�	.

In systems with finite spin-orbit coupling, the transverse-
spin decay time T2 is limited by the energy relaxation time
T1 �i.e., T2=2T1 �Ref. 33�	, so it is sufficient to analyze this
error in terms of T1. T1 in quantum dots can now be
measured,34 giving T1�1 ms at fields of B
6 T �g*�BB
�135 �eV�.35 This value gives an error estimate on the or-
der of ts /T1�10−6 for a switching time ts�1 ns.

Finally, rapid voltage-controlled gating in this scheme is
made possible only because the electron spin states are asso-
ciated with different orbital wave functions during pulsing,
which also makes these states susceptible to orbital dephas-
ing. The associated dephasing time is, however, strongly sup-
pressed in the limit where the double occupancy is small:
D
�t12/��2�1. In particular, the dephasing time for the
two-electron system is �


�2��D−2�

�1�,15 where �


�1�
1 ns
�Ref. 36� is the single-electron dephasing time in a double
quantum dot. This gives an error estimate of ts /�


�2��10−4,
using ts
1 ns and D�10−2 at the operating point �=�B. It

FIG. 3. �Color online� Error rates for H and T gates. For these
plots we have chosen the parameters t12=100 �eV, b1

z =135 �eV,
b2

z =10 �eV, b2
x =1 �eV, and �A=−6 meV. For the Hadamard gate,

these values result in �B=−t12
2 /b2

z =−1000 �eV, a pulse time tp

=�� /2b2
x =1 ns, and a rise and fall time �
�� /4b2

z =50 ps. Sym-
bols give the results of numerical integration of the time-dependent
Schrödinger equation for the Hadamard gate �H, circles� and � /8
gate �T, squares�. Lines give the estimates for gating error from Eq.
�10�.
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should be possible to further suppress orbital dephasing by
choosing the operating point �B to coincide with a “sweet
spot,” where dJ��B� /d�=0.15–17

To confirm the validity of the approximations made here
and to verify the smallness of error mechanisms associated
with leakage and finite pulse times, we have numerically
integrated the time-dependent Schrödinger equation for the
Hamiltonian given in Eq. �1� in the basis of the �0,2� singlet
state and four �1,1� states �including spin�. We have used the
pulse scheme described following Eq. �3� and evaluated the
gate error rates for T and H from the fidelity in Eq. �5�. For
the Hadamard gate we used the symmetric pulse shape

��t� = � �0 +
��

2
tanh�2�t − 2�	

�
� , 0 � t �

ts

2
,

�0 +
��

2
tanh�2�ts − 2� − t	

�
� ,

ts

2
� t � ts,�

�13�

where �0= ��A+�B� /2 and ��=�B−�A. The pulse time tp and
rise and fall time �= �ts− tp� /4 were fixed using

tp =
�

2b2
x , � = �

0

ts

�z�t�dt , �14�

where the solution to the above integral equation was found
numerically. The results of our numerics are shown in Fig. 3.
To implement the integral �Eq. �6�	 numerically, we have
performed a Monte Carlo average over 100 Overhauser
fields, sampled from a uniform Gaussian distribution using
the experimental value �N=0.03 �eV. Error bars due to the
finite sample of Overhauser fields are smaller than the sym-
bol size. We find good agreement between the analytical and
predicted error rates for T in the limit of large b2

x �the satu-
ration value for � at low b2

x is consistent with our estimates
of �10−4 for error due to leakage�. Additionally, we find
reasonable agreement with our estimate for the H-gate error
rate, confirming that we have identified the dominant error
mechanisms. This gives us confidence that an error rate on
the order of �10−3 should be achievable with this proposed
scheme.
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