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We describe the effective Lorentz forces acting on the ions of a generic insulating system in a magnetic field,
in the context of Born-Oppenheimer ab initio molecular dynamics. The force on each ion includes an important
contribution of electronic origin, which depends explicitly on the velocity of all other ions. It is formulated in
terms of a Berry curvature, in a form directly suitable for future first principles classical dynamics simulations
based, e.g., on density functional methods. As a preliminary analytical demonstration we present the dynamics
of an H2 molecule in a field of intermediate strength, approximately describing the electrons through Slater’s
variational wave function.
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Understanding the behavior of matter in large magnetic
fields is important both conceptually and practically. The ef-
fect of a magnetic field on a nonmagnetic �molecular, fluid or
solid� electronic insulator is twofold. The first is on the elec-
tronic states, via a field induced modification of electron
quantization. The states of free electrons in a magnetic field
are split into Landau levels; in a general insulator, the elec-
tronic states or bands will turn into some generalized form of
Landau levels, whose splittings are important when at large
fields they become comparable with band gaps. These elec-
tronic effects can be efficiently calculated with modern den-
sity functional theory �DFT� methods well described in the
literature.1 The second type of field effects, important in dy-
namics, are those on nuclear motion, via Lorentz forces. In
an insulating or closed shell system, where electron motion
can be decoupled adiabatically, the effective Lorentz force
Fn on any ion n still depends on the electronic states. Sche-
matically, the total effective Lorentz force may range be-
tween the bare Lorentz force Fn= �Qn /c�Vn�B �if electrons
could be ignored� to zero �if electrons could be assumed to
be tightly bound to nuclei, thus neutralizing them�. Even if
the effect on the electronic structure is very small and prob-
ably negligible for solid state applications, the electronic
contribution to the Lorentz force is not negligible at all, but
is so far without a clear understanding of how one may, at
least in principle, calculate it.

A pioneering fully quantum-mechanical treatment of nu-
clei and electrons in a magnetic field was formulated long
ago, establishing a clear basis of principle.2,3 The separation
of the center-of-mass nuclear motion gives rise, apart from a
trivial motional Stark effect, to a number of mass-correction
terms in the electronic and nuclear Hamiltonians, which pro-
vide additional couplings of the motion of different nuclei.
Unfortunately, this approach is computationally very de-
manding and can be applied at best to small molecules or
clusters. There exists to our knowledge neither an explicit
formulation that can be used right away for ab initio simu-
lations, for example, of DFT type, nor a direct application to
real systems, beyond the hydrogen atom.4

In this paper we pursue a formulation of electronic Lor-
entz forces based on the Born-Oppenheimer �BO� approxi-
mation, in principle suitable for state-of-the-art first prin-

ciples simulations. As an illustration, we apply it to the
dynamics in a magnetic field of the H2 molecule described
by a simple variational wave function. Following Refs. 4 and
5, we will use the electronic Berry phases as a tool to calcu-
late electronic Lorentz forces acting on the ions in a general
insulating system. The BO approximation, which amounts to
assume fixed and infinite mass nuclei, is made before the
separation of the center-of-mass motion. By these assump-
tions we neglect the motional Stark effect and the mass cor-
rection terms. The former is well justified as long as the
particle speed is small compared to the speed of light, as in
most condensed systems.6 Mass correction terms become im-
portant for exceedingly strong magnetic fields, when the in-
sulating character may be lost and/or particles may behave
relativistically, in which case these corrections should of
course be included in the nuclear and electronic Hamiltonian.

We assume the ground state electronic wave function to
be given, at each time step, by an electronic structure calcu-
lation, such as Hartree-Fock,7 or density functional theory
methods.8 The nuclear Hamiltonian of a generic insulating
system in the BO approximation is

HN = �
n

1

2Mn
�Pn −

Qn

c
A�Rn� − �n�2

+ U��R�� . �1�

The first term is the ion kinetic energy �Pn=−i�Rn
�; the sec-

ond is the ground state expectation value of the electronic
Hamiltonian, including the magnetic field effect on the elec-
tronic structure. �n appearing in the first term of Eq. �1� is
the so-called geometric vector potential �GVP� or Berry con-
nection, given by4,5

�n = − i��el��R��	�Rn
	�el��R��
 , �2�

where �el��R�� is, in full generality, the many-body elec-
tronic wave function in presence of the field, normalized to
the number of electrons: ��el 	�el
=Nel, and depending para-
metrically on all nuclear coordinates. Whenever this wave
function can be chosen real and single valued, the GVP of
Eq. �2� vanishes.4 In a magnetic field, the wave function
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cannot be made real, and the GVP is nonzero. After integra-
tion of the electronic degrees of freedom, a gauge potential
associated with the GVP appears in the nuclear
Hamiltonian.4,5,9 This gauge field plays the role of an addi-
tional magnetic field, one that couples only to the kinematic
degrees of freedom, and not, e.g., to the nuclear moments,
which instead experience the real field. We restrict here for
simplicity to large gap insulators, where the adiabatic ap-
proximation is well justified, and one can safely ignore all
excited electronic states in the expression of �n. In that case
moreover the spin susceptibility is minuscule, and spin ef-
fects can also be neglected.

We derive from Eq. �1� the nuclear equations of motion
�EOMs� from the Heisenberg time evolution of the positions
and velocity operators. Classical equations of motion are
then obtained through Eherenfest’s theorem

MnV̇n = − �Rn
U + �Qn/c�Vn � B + �

m

Vm � ��nm�. �3�

Equation �3� resembles that of a charged ion in a field, but
for the last term, which is precisely the electronic Lorentz
force. The gauge invariant quantity ��nm� is the Berry curva-
ture which plays the role of an effective magnetic field
�gauge field� in the 3N-dimensional space spanned by the
ionic degrees of freedom �N is the number of nuclei�. It is
given by

��nm� = − 2 Im��Rn
�el	 � 	�Rm

�el
 �4�

and has the dimensions of a magnetic field, in fact propor-
tional to the external field �B /c� when sufficiently weak. Un-
surprisingly, the force on ion n now depends upon the veloc-
ity of all other ions m through the off-diagonal terms in Eq.
�4�. If the electrons were infinitely tightly bound to the nuclei
�or equivalently, in the limit of large separation between the
ions�, these off-diagonal terms would vanish. In that regime,
�el collapses to a sum of products of single particle orbitals
centered around the nuclei. Each is rapidly decaying in
space, and each is dragged rigidly along by its nucleus as it
moves, thus providing total magnetic screening for every
ion. Reality is of course very far from that limit, magnetic
screening is only partial, and must be calculated explicitly.

The basic ingredient for computing the Berry curvature,
Eq. �4�, is the derivative of the electronic wave function with
respect to atom position Rn. That can be obtained in a elec-
tronic structure calculation by finite differencing the elec-
tronic wave function �el for two atomic configurations, com-
pensating the arbitrary phase of the wave functions
�covariant derivative�. Alternatively, 	�Rn

�el
 can be obtained
by linear response to an atom displacement.

In order to provide a first exemplification of the electronic
Lorentz forces, with a direct analytical and quantitative in-
sight into the properties of the Berry curvature, Eq. �4�, we
consider here as a simple example the classical dynamics of
a neutral homonuclear diatomic molecule in a field. If we set
the molecule in motion and freeze the vibrational and rota-
tional degrees of freedom �V1=V2�V�, the EOMs are

MV̇ = �Q/c�V � B + V � ���11� + ��12�� �5�

�inversion symmetry requires ��11�=��22� and ��12�=��21��.
Since the molecule is neutral, the total Lorentz force must
vanish and ��11�+��12�=−Q�B /c� must screen completely
the nuclear charge Q. In the heteronuclear diatomic case, the
nuclei are not screened individually, but only globally, in the
form �nm��nm�=−�B /c��nQn.10 If we consider a rigid rota-
tion of the frozen molecule, then V1=−V2�V around the
center of mass and the EOM is

MV̇ = �Q/c�V � B + V � ���11� − ��12�� . �6�

The electronic screening field �r���11�−��12� depends
upon the internuclear distance and is related to the electronic
Berry phase � accumulated on a single period of rotation,

� � �
�C�R�

��R� · dR = 
C�R�

�r�R� · n̂dS , �7�

where C�R� is a circle of diameter R, R being the interatomic
distance. As shown in Ref. 11, � is the electronic contribu-
tion to the rotation-induced magnetic moment.

We now wish to address the generically rotating, translat-
ing, and vibrating molecule. In general, that calculation can
be done by first principle implementation of Eqs. �3� and �4�.
In order to make the illustration more explicit while keeping
it simple, we will focus on a hydrogen molecule, where we
can obtain essentially analytical results by describing the
electronic structure through Slater’s variational linear combi-
nation of atomic orbitals �LCAO� approximation based on
two 1s orbitals.12 To include the field, we form linear com-
bination of gauge-including atomic orbitals �GIAO�

�el = c1�̃1�r − R1� + c2�̃2�r − R2� ,

�̃n = exp�− �ie�/c��Rn → r���1s�r − Rn� , �8�

where the phase factor ��r→r�� is the integral of the vector
potential along the line connecting the points r and r�.13 �1s
is the hydrogenic 1s radial wave function for a nuclear
charge �, taken as variational parameter,12 �1s�r�
= ��3 /��1/2e−�r. For a fixed value of the internuclear separa-
tion, � minimizes the sum of the electronic energy plus the
nuclear-nuclear Coulomb repulsion, and varies from 1 in the
limit of large separation to �2 in the limit of small separa-
tion where the H2 molecule collapses to a He atom. We ne-
glect the electron spin due to the large gap between the sin-
glet and triplet ��10 eV�. Owing to its simplicity, this trial
wave function gives for H2 a crude equilibrium distance of
1.00 Å �experimental 0.74 Å� and a barely reasonable disso-
ciation energy of 4.235 eV �experimental 4.476 eV�. How-
ever, it illustrates the electronic Lorentz forces very well. At
weak field, the one electron matrix elements are

H̃nm = Hnm exp�− �ie/c���Rm → Rn�� ,

S̃nm = Snm exp�− �ie/c���Rm → Rn�� , �9�

where Hnm= ��n	H0	�m
 and Snm= ��n 	�m
 are the field-free
matrix elements.
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We computed ��11� and ��12� with the trial wave function
of Eq. �8�, directly from Eq. �4�. The resulting expression,
analytic, contains a number of terms and is too long to be
shown here. Since GIAOs give the first-order correction in
�B /c� to the zero-field wave functions, we retain only the
linear �B /c� term in the �’s, where the zero-order term is
zero. These quantities depend on the interatomic distance
and on the angle between the molecule axis and the magnetic
field, preserving the cylindrical symmetry of the system, in-
dependent of the gauge. In the following ��nm� will indicate
the coefficient of the first-order term in �B /c�.

The upper panels of Fig. 1 show ��11� and ��12� as a
function of the interatomic distance, for two relative orienta-
tions of the molecule with respect to the magnetic field,
which we choose parallel to the z axis. For large interatomic
separation R, i.e., in the dissociation limit, the off-diagonal
��12� vanishes and ��11� reaches the asymptotic value −1.
This reflects the fact that the motion of the two protons is
decoupled in the dissociation limit and the electronic screen-
ing of the individual nuclei is complete. For small inter-
atomic separation, both ��11� and ��12� �and by symmetry
��22� and ��21�� tend to −1/2, recovering the correct screen-
ing of an isolated He atom. For arbitrary interatomic dis-
tance, the sum of ��11� and ��12� is identically −1, which
fulfills Eq. �5� and warrants total screening of the center-of-
mass motion. The lower panels of Fig. 1 show the effective
relative magnetic field at the proton site, �1+�r� as a func-
tion of the interatomic distance, for two orientations of the
molecule relative to the field. At the equilibrium distance of
R�1 Å, the proton’s Lorentz force is that of a reduced ef-
fective charge ranging beetween +0.4	e	 and +0.6	e	, depend-
ing on orientation. �The true reduction is actually weaker,
since our variational wave function slightly overestimates the
electronic screening.� The approximate rotational g-factor14

computed by Eq. �7� in the present approximation is 0.62, in

fair agreement with experiment,14 and with more accurate
calculations,11 yielding 0.88. This sort of error does not im-
pair the value of the present approximation as an analytical
illustration of the method.

Armed with the Berry curvatures ��nm�—now known
analytically—and with a simple parametrization of the inter-
atomic potential U�R�, we can describe the classical dynam-
ics of H2 in a field. As in a first principles molecular dynam-
ics simulation, we integrate the equation of motion, Eq. �3�,
for the H2 molecule, exploring the effect of different initial
�Cauchy� conditions.15 By way of example, we start by com-
pressing or stretching the molecular bond and let it be free to
vibrate and/or rotate. The restoring force sets the two protons
in motion initially in the radial direction but soon their tra-
jectory is deflected by the Lorentz forces. If the molecule
initially lies in the plane perpendicular to the magnetic field,
the resulting orbits resemble cycloids in that plane. The re-
sulting trajectories are shown in Fig. 2. The sense of rotation
is determined by the initial condition of stretching or com-
pression.

To clarify the effect of the electronic Lorentz forces on the
EOM we show in the left-hand panel of Fig. 2 the same
trajectories now obtained by neglecting the Berry curvatures
from Eq. �3�—i.e., only retaining the bare Lorentz force
�Q /c�V�B. When the Berry curvature is included, the an-
gular velocity of the cycloid is reduced by the screening
action of the electrons by a factor �0.4, which is also the
average fraction of magnetic field felt by the ions during the
vibrations around the equilibrium position �see �r in Fig. 1�.
We note that this reduction factor measures the strength of
the effective magnetic field at the proton site, and differs
from the rotational g-factor �here 0.62�, which measures in-
stead its integral over the orbit spanned in a full rotation.
Summing up, implementation of Eqs. �3� and �4� yields a
description of nuclear motion whose accuracy is only limited
by that of the underlying electronic calculation.

All of the above is classical nuclear motion. In the quan-
tum EOMs for the nuclei, the presence of the GVP of Eq. �2�
must be considered. In particular, starting from the zero-field
nuclear Hamiltonian of a diatomic molecule, we may explore
how the GVP term of Eq. �2� influences the rotovibrational
spectrum. In the symmetric gauge, A�x�= �1/2�B�x one can

FIG. 1. Top: �z
�11� �solid line� and �z

�12� �dashed line� in units of
�B /c� as a function of the interatomic distance, for the H2 molecule.
Bottom: The effective magnetic field felt by each proton 1+�r, in
units of �B /c�. Left-hand panels, field normal to the molecule axis;
right-hand panels, field parallel to the molecular axis. The vertical
line indicates the theoretical equilibrium distance.

FIG. 2. Simulated trajectories of the H2, in the presence of a
magnetic field. Left-hand panel: neglecting the Berry curvature
term. Right-hand panel: with the Berry curvature term. In both
cases, the molecule was set initially parallel to the x axis and the
bond compressed 0.1 Å. The molecule rotates in the counterclock-
wise sense. For a field 10 T, the estimated rotation period is of 2
�10−5 s. The units of the plots are Å.
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separate center of mass and relative distance in Eq. �1�. The
distance Hamiltonian is HR=1/ �2	� �pR+ �e /c�A�R�+�R�2

+U�R� where �R= �e /2c�B�R�S−1� / �S+1�, S being the
overlap integral between the two atomic orbitals. The curl of
�R is �r. For ordinary laboratory magnetic field intensities,
the field can be considered as a perturbation, therefore we
expand the Hamiltionian up to first order in the field H
=H0+H1. H0 is the unperturbed Hamiltonian of a harmonic
vibrating rotator, H1= �eB� / �2	c�Lz2S / �S+1� is the rota-
tional paramagnetic term. The basis of the unperturbed
Hamiltonian H0 can be labeled by the quantum numbers
�n , l ,m�, and the spectrum is given by the rotovibrational
levels of the diatomic molecule. To first order in �B /c�, H1

removes the degeneracy of the rotational levels according to
the usual Zeeman splitting Enlm=Enlm

�0� +gR	nucBm, where gR
is the rotational g-factor. The eigenstates have corrections of
order �B /c� due to the term S / �S+1�, which mixes an unper-
turbed state with other states with the same �l ,m� and differ-
ent n. However, for a field of 1 T, the coupling between
vibrational states is of the order of 10−5 cm−1, much smaller
than the centrifugal and anharmonic couplings, which are of
the order of 10 cm−1. To second order in �B /c�, there will be
diamagnetic shifts affecting mainly the states with Lz=0. De-
spite the rotation, the canonical angular momentum Lz is a
conserved quantity. In the symmetric gauge, the mechanical
angular momentum is

I
 = Lz +
eB

2c

2S

S + 1
R2, �10�

where I and 
 are, respectively, the momentum of inertia and
the angular velocity. The second term on the right-hand side
is always positive, depends on the vibrational state of the
molecule, and is of the order of �B /c�. The physical rotation
of the molecule correspond to the expectation value of I
;
when m�0 the difference between I
 and Lz is negligible
because it is of order �B /c�. However, Eq. �10� shows that
even when Lz=0, a small amount of rotation still exists.

In conclusion, we presented a convenient formalism to
calculate the all important electronic contribution to adia-
batic Lorentz forces for atomistic dynamics in a magnetic
field, based on Berry connections and ideally suitable for
future ab initio simulations. We demonstrated its validity and
applicability in the simple example of H2 where variational
wave functions provide approximate but analytical results for
the the Berry connection and Berry curvatures. The example
demonstrates a weak field induced coupling between rota-
tions and vibrations.
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