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Existence and topological stability of Fermi points in multilayered graphene
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We study the existence and topological stability of Fermi points in a graphene layer and stacks with many
layers. We show that the discrete symmetries (space-time inversion) stabilize the Fermi points in monolayer,
bilayer, and multilayer graphenes with orthorhombic stacking. The bands near k=0 and e=0 in multilayers
with the Bernal stacking depend on the parity of the number of layers, and Fermi points are unstable when the
number of layers is odd. The low-energy changes in the electronic structure induced by commensurate pertur-
bations which mix the two Dirac points are also investigated.
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I. INTRODUCTION

The recent synthesis of monolayer graphite'-> (graphene),
the experimental ability to manipulate few layer samples,>~
and the observations of quasi-two-dimensional behavior in
graphite® have awaken an enormous interest in these sys-
tems. The conduction band of graphene is well described by
a tight-binding model which includes the 7 orbitals, which
are perpendicular to the plane at each C atom.”® This model
describes a semimetal, with zero density of states at the
Fermi energy and where the Fermi surface is reduced to two
inequivalent K points located at the corners of the hexagonal
Brillouin zone. The low-energy excitations with momenta in
the vicinity of any of the Fermi points have a linear disper-
sion and can be described by a continuum model which re-
duces to the Dirac equation in two dimensions,>!'® which has
been tested by recent experiments.*>!! Fermi points have
also been found in the modeling of the low-energy band
structure of multilayer systems both theoretically'>!3 and
experimentally.'*!> A crucial issue for both theory and tech-
nology is the possibility of controlling the opening of a gap
in the samples. From a theoretical point of view, the gap is
related to the chiral symmetry breaking and mass generation,
a classical (unresolved) problem that has been explored at
length in planar QED.'®!7 For the applications, it is by now
clear that opening a gap in monolayer graphene will be a
difficult task and efforts are concentrated on multilayer
structures. 31819

In this paper, we analyze the stability of the Fermi points
under small perturbations using very basic topological
concepts.’” We find that the Fermi points are protected by the
discrete symmetries (translational invariance and space and
time inversion) in the monolayer, bilayer AB, and multilayers
with ABCA--- (thombohedral) stacking. The stability of
Fermi points in stacks with the Bernal stacking ABAB: - de-
pends on the parity of the number of layers. We also discuss
the changes in the low-energy and low-momentum properties
induced by commensurate perturbations which hybridize the
two K points and partially break translation invariance. We
will not analyze here in detail the effects of spin-orbit cou-
pling, which my lead to additional changes at low
temperatures.>!—2*
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The analysis reported here will be useful for the construc-
tion of continuum theories for long-wavelength spatial per-
turbations and for the study of the degeneracy and spectrum
of the low index Landau levels in a magnetic field.

II. ELECTRONIC STRUCTURE AND STABILITY
IN GRAPHENE

The Fermi surface (FS) is a central concept in condensed
matter that controls the low-energy physics of the systems. In
a Landau Fermi liquid at T=0, Luttinger® defined the FS of
an interacting Fermi system in terms of the single-particle
Green’s function G(E, w), as the solution of the equation
G~'(k,0)=0, and showed that it encloses the same volume,
equal to the fermion density n, as in the noninteracting sys-
tem. The robustness of the Fermi-liquid idea has been under-
stood recently in the context of the renormalization group,
where the Fermi and Luttinger liquids are seen as infrared
fixed points.?®?” In recent works,?®? Volovik has empha-
sized the idea of the topological stability of the Fermi surface
as the origin of the robustness of the Fermi liquid and has
suggested a classification of general fermionic systems in
universality classes dictated by momentum space topology. A
more recent proposal relates the stability of Fermi surfaces
with K theory, a tool used to classify D-brane charges in
string theory.?” The idea behind the topological stability is to
study the zeros of the matrix G;'(k,®) (free inverse propa-
gator) that cannot be lifted by small perturbations. Here, we
will analyze the stability of the Fermi points of single and
multilayer graphenes, where the discrete symmetries of the
system play a principal role. Although we will restrict our-
selves to perturbations that can be studied within the context
of a single-particle effective Hamiltonian, the extension to
self-energy induced perturbations is rather straightforward
and will be reported elsewhere.’!

As shown in Fig. 1, monolayer graphene consists of a
planar honeycomb lattice of carbon atoms. Corresponding to
the two atoms in the unit cell, one may define two Bloch
wave functions to be used in a variational (tight-binding)
computation of the spectrum as follows:
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FIG. 1. (Color online) Direct lattice and unit cell for monolayer
graphene.

D(K) = >, KT D(F— 7~ 1), i=A,B, (1)
7

where the sum runs over all the points in the direct lattice,
i.e., f=nf;+nyty, (F4,7p) are the positions of the atoms in
the unit cell, and ®(r) is a real (w-type) atomic orbital.
As is well known, a simple tight-binding computation’?
yields a spectrum with two Fermi points located at
121=—2§1/3—§2/3 and 122=—I§1, where 7;-g;=2m5; (see
Fig. 2). Near the two Fermi points, the Hamiltonian can be
linearized, and using appropriate units, one finds

. 0 k'
H(K1+k)~(k 0>=kx0'X+kya'y, (2)

and H(—IE1+I€)~—kX0'x+ky0jy, where k=k,+ik, and o; are
the Pauli matrices. Thus, the low-energy electronic excita-
tions behave like massless Dirac fermions with relativistic
spectrum E==|k|.

Under a k-independent, translationally invariant perturba-
tion,

& 4
K, K,”
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FIG. 2. (Color online) First Brillouin zone and Fermi points.
The vectors K|,K] (K},K5) are equivalent to K; (K»).
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- a. k'+d"
H(K1+k)—>(k : ) (3)

+a —da,

| 2

where a=a,+ia,, the spectrum becomes E=i\ra§+|k+a
and a gap 2|a.| is generated. This is consistent with Hofava’s
general arguments,’® which show that Fermi points for Dirac
fermions in two dimensions are unstable. However, this is
not the end of the story, since the existence of discrete sym-
metries can sometimes stabilize the Fermi loci. In the case of
the graphene, this role is played by time reversal T:t— —t¢
and spatial inversion I:(x,y) — (—=x,—y). The reality of the 7

orbitals implies that time reversal merely reverses K,
T®(K) = ; (K) = (- K), “)

whereas the spatial inversion also exchanges the two types of
atoms,

[®,(K) = Dp(—K), IDp(K) =Dy~ K). (5)

Invariance under these symmetries imposes the following
constraints on the Hamiltonian:

T:H(K) = H'(- K),

LH(K) = 0 H(- K)o, (6)

Although these are useful properties that relate the Hamilto-
nians at opposite values of K, what we need is a constraint on

the form of H(IE). This is obtained by combining time rever-
sal with the spatial inversion,

TLH(K) = o,H (K)o, (7)

implying H,;(K)=H(K). This enforces a,=0 in Eq. (3), and
we see that no gap opens if the perturbation preserves the
space-time inversion 77.

This has an interesting topological interpretation, which
extends the previous arguments to k-dependent—but transla-
tionally invariant—perturbations. The low-energy Hamil-

tonian H(1€]+l€) in Eq. (2) defines a map from the circle
k§+k5=R2 to the space of 2 X2 Hamiltonians H=h- 7

k=Re'? — (hy,hy,h,) = R(cos 6,sin 6,0). (8)

Since Fermi points correspond to zeros of the determinant
—det(H)=th+h3+h§, a perturbation will be able to create a
gap only if the loop represented by the map (8) is contract-
ible in the space Hamiltonians with nonvanishing determi-
nants, which are just R*—{0}. This is clearly the case, since
a1 (R*~{0})=,(5%)=0. On the other hand, Hamiltonians in-
variant under 77 are represented by points in R, and we have

m(R*={0}) = m(S") = Z. )

This means that nontrivial maps such as the ones implied by
Eq. (2) can only be extended to the interior of the circle by
going through the origin, i.e., by having at least one zero.
This precludes the creation of a gap.

Note that the maps defined by the low-energy Hamil-
tonian in the proximity of the two Fermi points,
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H(+K, +K):k=Re'® — hy+ihy= = Re*®,  (10)

have opposite winding numbers N=+1, which can be com-
puted by the formula

1 21
= —J dOTr(o.H ' 9,H). (11)
4i ) )

The fact that the two Dirac points carry opposite charges
suggests that they could annihilate mutually if brought to-
gether by a perturbation. Any external potential commensu-
rate with the honeycomb lattice, which has a finite Fourier
component at the wave vector G=K;—K,, induces terms
which hybridize the two Dirac points, and it will lead to the
possibility of a gap. We can compute all the possible pertur-
bations which are compatible with the symmetries of the
lattice. The most general (4 X 4) Hamiltonian including per-

turbations at G=0 and (3:[21—[}25—121 is
0 K+0; 0, 0,

k+Q, 0 [on 03
H= . . ) , (12
0, 0, 0 —-k+Q, (12)

0, 0y -k+0, 0

where Q;=Q7+iQ transforms according to the E, represen-
tation of the Cg, symmetry group®” at the I'(K=0) point. Q,

and Q3 belong to the E representation of the C;, group at K,
and Q, to the A, representation of the same group (see Ref.
33 for notation). At this point, it is worth noticing a point on
notation. When grouping the Hamiltonians attached to the
two Dirac points (K| ,) into a four-dimensional matrix, it is a
common practice to reverse the order of the sublattices
(A,B) in one of the Fermi points in such a way that the
four-dimensional wave functions have the form

= (CI)KI,A’(DKI,B’(DKZ,B’(DKZ,A) :

If this is done, the topological structure of the Hamiltonian is
messed up and the computation of charges becomes less
clear. For this reason, we follow instead the convention in
Ref. 21, where

= (CI)KI,A:(I)KI,B’(I)KZ,A’(I)KZ,B) :

This is also important if one tries to compare the analysis of
the perturbations written in Eq. (12) with the ones produced
by the different types of disorder.3*36

The perturbation given by Q7 and Q3 shifts the Dirac
points but does not open a gap. In fact, the only parameter
which opens a gap is Q4. When only Q, is different from
zero, the spectrum becomes E==1|Q,>+|k|> and, for Q,
real, the deformation of the lattice is given in Fig. 3, where
one can see that no point symmetry is broken. This shows, in
particular, that invariance under space-time inversion is not
enough to guarantee the stability of Fermi points—
translation invariance plays a crucial role: 77 by itself makes
the Fermi points individually stable, but they may still anni-
hilate each other in the presence of a perturbation that breaks
translation invariance. A distortion of the type of Q4 can be
induced by a substrate with a periodicity commensurate with
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FIG. 3. (Color online) Distortion caused by the condensation of
A mode with real Q4 and new unit cell.

the lattice, or by the effect of one layer on another when
there is a lattice mismatch between them, as in samples
grown on a substrate.>*’ It can be responsible for the gap
observed recently in photoemission experiments.’® It is
worth noting that the perturbation denoted here Q, has been
studied in a graphene ribbon in Ref. 39.

When only Q, or Q3 is different from zero, we find

10, 5] 10257 -
=+ x| k. 13
€= =* > + 4 + |k] (13)

The energy bands are represented in Fig. 4 for the particular
case 0,=0, O3=1. We can see that the spectrum is the same
as the one obtained in a simple model for a bilayer system,*’
which will be discussed later. A complete analysis of the
most general perturbation of the form (12) will be given
elsewhere.’!

In the absence of time-reversal symmetry, other perturba-
tions are possible, such as

O0H =B,0.7,+ B,0,T,, (14)

where ¢ and 7 are Pauli matrices whose entries are the sub-
lattice and K point indices, respectively, and B, and B, trans-
form like the z component of a magnetic field and are odd
under time inversion. Note that the first term is the orbital
part of the intrinsic spin-orbit coupling in graphene,?'~?* and
it opens a gap. The second term should appear in a general
spin-orbit Hamiltonian which takes into account the coupling

between the two K points.
2 /
) \

FIG. 4. Energy bands along the line (0,k,) for O3=1, 04=0.
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FIG. 5. (Color online) Sketch of the three possible positions of a
given layer with respect to the others in a graphene stack. Bernal
stacking, 1,2,1,2,..., is described by two inequivalent planes, while
orthorhombic stacking, 1,2,3,1,2,3,..., requires the three inequiva-
lent ones.

III. ELECTRONIC STRUCTURE AND STABILITY IN
MULTILAYERED GRAPHENE

The case of the multilayer is more interesting. We will
concentrate on the ability of the 77 invariance to prevent the
creation of a gap. For the sake of definiteness, only staggered
(ABA) and rhombohedral (ABC) stackings will be consid-
ered. The relative orientations of the ABC planes are
sketched in Fig. 5. The two inequivalent atoms in layer n will
be denoted (A,,,B,). Our conventions are such that the cou-
plings of an A,, (B,)) atom to the three in-plane nearest neigh-
bors are shaped as a Y (inverted Y), independent of n. Thus,
the low-energy limit of the “free” Hamiltonian obtained by
neglecting interlayer couplings is block diagonal, with
2 X 2 blocks given by Eq. (2)

The simplest model introduces interlayer hoppings ¢ only
between nearest neighbors. The resulting Hamiltonian for bi-
layer graphene in the vicinity of the K; Fermi point is

s

0k O

?V‘*ON

H(k) = , (15)

0
00
t 0

> O O
()

and the energy bands are given by Eq. (13) with the replace-
ment |Q, 3| — 7. In the limit £ <7, one can obtain an effective
Hamiltonian*®® for the lowest-energy bands. To this end, re-
order the wave functions according to (A;,B;,A,,B,)
—(A,,B,A,B,), so that in the new basis the Hamiltonian
becomes

k>:<
0

o O

H(k) =

*

o = O

_ (H” Hy,

, (16)
H, H22>

=

=~ O O O
~

o
~

0

where H;; is a 2 X2 block. The identity
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det(H — E) =det(H,, — H\»(Hy, — E)"'H,, — E)det(H,, — E)
(17)

shows that, for E<t, the substitution H,,—FE— H,, reduces
the computation of the lowest-energy bands to the diagonal-
ization of the 2 X 2 effective Hamiltonian,

HN =H,, - H,H; H ——l<0 k*z) (18)
11 i =="1,2 o |

This effective Hamiltonian involves only the atoms (A,,B)),
which are not linked by ¢ and give rise to bands with zero
energy at the Fermi points. Since (A,,B,) are interchanged
under spatial inversion r— —r, the combined 77 invariance
imposes a constraint H/(k)=o,H"(k)o, identical to Eq.
(7). This implies H%/(k)=H%5(k), which shows that no gap
can open. According to Eq. (11), the topological charge for
the K 1 Fermi point is +2 and, by time-reversal invariance, the

charge for —K,; is —2. Thus, as in the case of monolayer
graphene, the Fermi points are stable under perturbations that
preserve 71 and translation invariance. For instance, a pertur-
bation such as trigonal warping*® changes the off-diagonal
elements in Eq. (18), k> —k>+vsk", and splits the Fermi
point of charge Q= +2 into three Dirac points away from the
K point, and charge Q=+1, and another Dirac point at the K
point and Q=-1, but the total charge is conserved and no
gap opens. However, a perturbation hybridizing K; and —-K,
or one breaking 77 might lead to a gapped system with no
Fermi points at all. A physical example is provided by the
experiment described in Ref. 18, where a gap is controlled
by changing the carrier concentration in each layer.

This analysis can be easily generalized to multilayer
graphene with rhombohedral stacking. This type of staking
includes the links (B, —A,,B,—Aj,...,By_1—Ay), and the ef-
fective Hamiltonian, which involves only the unlinked atoms
(A;,By), is given by

1[0 &N
off - _
= zN-‘<kN o)' (19)

The topological charge for the K; (—=K;) Fermi point is +N
(=N). As the point group for multilayer graphene with rhom-
bohedral stacking is D5, which contains the inversion /, the
system is invariant under TI, which interchanges (A;,By),
and the whole argument goes through as before. Thus, we
conclude that the Fermi points for multilayer graphene with
rhombohedral stacking are stable against perturbations that
respect 71 and translation invariance.

The situation is very different for ABA stacking. An
N-layer graphene stack is invariant under the spatial inver-
sion / only for even N, where the point group is Ds,, while it
is Dy, for odd N.

The 2N eigenstates in a stack with N layers at k=0 can be
divided into two sets: N states at the orbitals connected by
the interlayer hopping ¢ and N states in the other sublattice
sites of each layer. If we only consider the hopping ¢, the first
N states acquire a dispersion*' lying in the range —2¢t<e
< 2¢. The other N states are degenerate with e=0. A pertur-
bation compatible with all the symmetries of the stack is a

155424-4



EXISTENCE AND TOPOLOGICAL STABILITY OF FERMI...
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FIG. 6. (Color online) Energy bands close to €=0 for a stack
with four layers (left), eight layers (center), and nine layers (right).
All stacks have the Bernal stacking. The Fermi velocity is vp=1,
t=0.1, and a layer dependent shift has been included: e,
={0.02,0.01} (left), €,={0.02,0.01,0.005,0.002} (center), and ¢,
={0.02,0.01,0.005,0.002,0} (right).

layer dependent shift of the on-site energies. This shift can be
arbitrary, except for the twofold degeneracy related to the
equivalence between layers which are symmetrically placed
around the center, €,=¢€y_,,;. This is illustrated in Fig. 6.

The results in Fig. 6 show a gap at half filling in the stack
with four layers, and overlapping bands at all energies for the
stack with eight and nine layers. Note that the gap in the
stack with four layers does not require the existence of an
external electric field, which will break the equivalence of
the layers at opposite sides of the stack. In all stacks with an
even number of layers, the two bands which start at the on-
site energy of layers n and N—n+1 are degenerate at k=0.
The effective 2 X2 Hamiltonian describing the bands near
these degeneracy points has off-diagonal elements with a
nontrivial phase as in Eq. (18). Hence, the degeneracy has
topological charge Q=2, and it cannot be removed by per-
turbations compatible with the symmetries of the stack. For
even n, an explicit computation shows that these two bands
will have curvatures with the same sign near k=0. Thus, the
corresponding degeneracy points do not represent Fermi
points. For odd numbered layers, the two bands disperse in
opposite directions away from k=0, and the degeneracy
points become stable Fermi points at the appropriate doping.
Note that the symmetries of the system allow for a direct
trigonal-like coupling between the two layers, which will
split this Fermi point and give rise to four Fermi points
showing linear dispersion, as in the bilayer. On physical
grounds, this coupling will be negligible, unless the two lay-
ers are contiguous.

The low-energy bands in a stack with an odd number of
layers also contain doubly degenerate states at k=0, associ-
ated with the equivalence between layers at opposite sides of
the stack. In this case, the inversion / is not part of the
symmetry group D5, of the stack, no invariance under 77 can
be imposed, and, as a consequence, the first homotopy group
, is trivial. This means that no conserved topological
charge exists. Hence, a gap may open at k=0 when other
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perturbations consistent with the symmetries of the stack are
included. Concretely, a direct coupling between orbitals in
the same sublattice in layers separated by an odd number of
other layers will open a gap. Such a coupling, between layers
which are second nearest neighbors, has been proposed in
graphite.*?

IV. CONCLUSIONS

We have presented a classification of the bands at low
momenta and low energy of graphene layers and stacks with
many layers.

Each Fermi point in single layer graphene is stable against
perturbations which preserve the discrete 7/ symmetry and
which do not mix the two Fermi points. A magnetic field, for
instance, induces a gap in the spectrum, see Eq. (14). This
term arises from the discreteness of the lattice, and it should
be of higher order than the minimal coupling which leads to
the formation of Landau levels. Combining this and dimen-
sional arguments, we expect it to be B, x(vg/lg) X (allg),
where a is the lattice constant and Iz=+/(eB)/(c®,) is the
cyclotron radius. Thus, for B~10T, we have B,
~().1 meV.

We have also classified the long-wavelength perturbations
commensurate with the graphene lattice, which can hybridize
the two K points. Some of these perturbations open a gap in
the spectrum, while others shift the position of the Dirac
points. We expect that their strength will decay like a power
law with the wavelength of the distortion.

The low-energy and low-momentum spectrum of stacks
with many graphene layers depends on the stacking order
and the number of layers. For the most common case of the
Bernal stacking, we find that layer dependent on-site ener-
gies lead to Fermi points with double degeneracy, topologi-
cal charge Q=+2, and a parabolic dispersion in k. This situ-
ation will be stable in stacks with a large (even) number of
layers. In stacks with an odd number of layers, there is no
conserved topological charge and this degeneracy will be
broken by additional interactions. Stacks with rhombohedral
order lead to degenerate states with a large topological
charge, O=N, which will give rise to the formation of a
cascade of Fermi points slightly away from k=0, with lower
topological charges.

The most likely origin of the inequivalence between lay-
ers is the charge accumulation at the layers close to the
surface.*> An induced doping of 10'°—10'> cm™2 gives rise to
shifts in the local potential of 0.01-0.1 eV, so that the split-
tings associated with this effect can be easily measurable. We
find that a true gap opens, in the absence of an external field
which breaks spatial inversion, only in a stack with four
layers and Bernal stacking. Finally, stacking defects, which
break the equivalence between pairs of layers, will also break
the degeneracy of all bands at k=0.
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