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We report on theoretical investigations of frequency-dependent quantum capacitance. It is found that at finite
frequency, a quantum capacitor can be characterized by a classical RLC circuit with three parameters: a static
electrochemical capacitance, a charge relaxation resistance, and a quantum inductance. The quantum induc-
tance is proportional to the characteristic time scale of electron dynamics, and due to its existence, the
time-dependent current can accumulate a phase delay and lags behind the applied ac voltage, leading to a
negative effective capacitance.
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Understanding dynamic conductance of quantum coherent
conductors is a very important problem in nanoelectronics
theory. When two quantum coherent conductors form a
double plate “quantum capacitor,” its dynamic conductance
G��� is given by the frequency-dependent electrochemical
capacitance1–3 C����, G���=−i�C����, where � is the fre-
quency. At low frequency, C���� can be expanded in fre-
quency, and at the linear order, it is described2 by an equiva-
lent classical circuit consisting of a static capacitor C� in
series with a “charge relaxation resistor” Rq. For a conductor
having a single spin-resolved transmission channel, Rq was
predicted2 to be half the resistance quantum, Rq=1/2Go,
where Go�h /e2. The factor 1 /2 in Rq is of quantum origin2,4

and has recently been confirmed experimentally.5 In the ex-
periment of Gabelli et al.,5 a submicron two-dimensional
electron-gas quantum dot �QD� is capacitively coupled to a
gold plate forming a double plate capacitor, where the QD
connects to the outside reservoir by a single-channel quan-
tum point contact �QPC�. The dynamic conductance G��� is
then measured at 1.2 GHz, and the data are well fit to the
equivalent circuit characterized by two parameters �C� ,Rq�.

The experiment of Gabelli et al.5 opened the door for
elucidating important and interesting physics of high-
frequency quantum transport in meso- and nanoscale de-
vices. An important question is what happens to electro-
chemical capacitance at higher frequencies beyond the linear
� regime, and, in particular, whether the two-parameter
�C� ,Rq� equivalent circuit is adequate at higher frequencies
to describe a quantum capacitor. It is the purpose of this
paper to address these issues.

In the following, we report a microscopic theory for high-
frequency quantum transport in a two-plate quantum capaci-
tor. Our results show that to characterize its high-frequency
dynamic response, one needs—in addition to C� and
Rq—another quantity Lq having the dimension of inductance.
Lq is found to have purely quantum origin and will be named
“quantum inductance.” Therefore, the frequency dependent
electrochemical capacitance of a quantum capacitor C���� is
equivalent to a classical RLC circuit characterized by three
parameters �C� ,Rq ,Lq� at high frequency. Due to Lq, elec-

trons dwell in the neighborhood of the capacitor plates caus-
ing a phase delay. At low frequencies, the dynamic response
is capacitivelike and voltage lags current. At larger frequen-
cies when ��1/�C�Lq, inductive behavior dominates and
voltage leads current: in this case, the quantum capacitor
gives a negative capacitance value. It is, indeed, surprising
that a quantum capacitor can give an inductive dynamic re-
sponse. For the experimental setup of Ref. 5, we estimate
that when ��3 GHz, the predicted high-frequency effects
should be observable.

Let us first work out a simple expression for the
frequency-dependent electrochemical capacitance C���� fol-
lowing the work of Büttiker.2 We consider a two-plate ca-
pacitor similar to the experiment of Gabelli et al.:5 a QD,
labeled I, and a large metallic electrode, labeled II. Each
plate is connected to the outside world through its lead, and
a time-dependent bias v1,2 is applied across the two leads.
We consider small amplitudes of v1,2 so as to focus on the
linear bias regime. Under the action of such a bias, the two
capacitor plates develop their own frequency-dependent elec-
tric potential UI,II���. The charge on plate I is equal to the
sum of the injected charge and induced charge: QI=QI

inj

+QI
ind. In the linear regime, the injected charge is propor-

tional to bias v1���: QI
inj=e2DI���v1���, where DI��� is the

generalized global density of states �DOS� of plate I at fre-
quency �. The induced charge, on the other hand, is in gen-
eral related to a nonlocal Lindhard function2 whose calcula-
tion is simplified by applying the Thomas-Fermi
approximation. Within this approximation, the induced
charge is proportional to the induced potential UI on the
plate: QI

ind=−e2DI���UI, where the minus sign indicates that
the charge is induced. Putting things together, we obtain
QI=e2DI����v1−UI�. Clearly, the same charge QI can be cal-
culated by the usual electrostatic geometric capacitance Co:
QI=Co�UI−UII�. We therefore obtain a relationship: Co�UI
−UII�=e2DI����v1−UI�. Applying the same argument to
plate II, we similarly obtain −Co�UI−UII�=e2DII����v2
−UII�. Finally, the same charge QI can also be obtained
from the definition of the electrochemical capacitance:
QI=C�����v1−v2�. These three relations allow one to derive
the following expression for C����:
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This result resembles the one obtained by Büttiker for the
static capacitance.2 An important difference is that the
frequency-dependent electrochemical capacitance in Eq. �1�
is a complex quantity: its real part is a measure of the elec-
trochemical capacitance and its imaginary part is propor-
tional to the frequency-dependent charge relaxation resis-
tance.

To proceed further, we need to calculate the frequency-
dependent DOS DI,II���. Following Ref. 4, the generalized
local DOS of plate � of the capacitor can be expressed in
terms of Green’s functions as follows:

dn����
dE

=� dE

2�

f − f̄

��
�Ḡr��Ga�xx, �2�

where the subscript x labels space coordinates and the global
DOS is given by

D���� = Tr� dE

2�

f − f̄

��
�Ḡr��Ga� .

In Eq. �2�, f is the Fermi function and f̄ � f�E+�, with
E+�E+��; Gr,a=Gr,a�E� is the retarded and/or advanced

Green’s function at energy E and Ḡr�Gr�E+���; and �� is
the linewidth function describing the coupling strength be-
tween plate � and its lead. These quantities can be calculated
in a straightforward manner when the Hamiltonian of the
capacitor model is specified.6,7

For the quantum capacitor of Ref. 5, plate I is a QD and
plate II is a metal gate. Since the metal gate has much greater
DOS, i.e., DII	DI, we can safely neglect the DII term in Eq.
�1�. For a QD with one energy level E0 and connected to one
lead, its Green’s function Gr=1/ �E−E0+ i�L /2�, where �L is
the linewidth function of the lead. With this Green’s func-
tion, the frequency-dependent DOS can be easily calculated
from Eq. �2�, and we obtain

DI��� =
�L

2������ + i�L�	1

2
ln


2


+
−

− i
arctan

E − ��

�L/2
− arctan


E + ��

�L/2
�� , �3�

where 
=
E2+�L
2 /4, 
±= �
E±���2+�L

2 /4, and 
E=EF

−E0. At resonance 
E=0, we obtain Re(DI���)= �−x ln�4x2

+1�+2 arctan�2x�� / �2��Lx�x2+1��, with x=�� /�L. Hence,
Re(DI���) is positive for small x and negative for large x,
i.e., there is a sign change. A similar behavior is also found
for the system away from the resonance. Due to this sign
change of Re�DI�, from Eq. �1�, the frequency-dependent
electrochemical capacitance CR�Re�C����� can become
negative.

To be more specific, we fix the classical capacitance of
QD C0=1 fF, which is a typical value for QD with an area of
�1 �m2. Figure 1 plots CR=Re�C����� �real part� and
CI=Im�C����� �imaginary part� versus frequency for differ-
ent values of �L by setting 
E and temperature to zero. We

observe that CR is positive at small frequency and becomes
negative at larger frequency. For instance, CR becomes nega-
tive at a “critical” frequency �c�10 GHz for �L=10 �eV.
This critical frequency can be smaller for smaller linewidth
function �L. We note that it is not difficult to achieve
�L=10 �eV experimentally: in Ref. 8, �L between 1 and
5 �eV has been realized. As will be discussed below, the
effective �L in the experiment of Ref. 5 is tunable by a gate
voltage, so that the critical frequency at which the negative
capacitance occurs can be even smaller. The inset of Fig. 1
also shows that as we increase �, the imaginary part of
C���� starts from zero, reaches a peak value around �c, and
then decays to zero. The negative capacitance at large fre-
quency can be understood as follows. For a classical capaci-
tor, a charge is accumulated across the capacitor induced by
an external voltage. The current and voltage have a fixed
phase relationship: the voltage lags behind current with a
phase � /2. For a quantum capacitor at low frequency, there
exists a charge relaxation resistance Rq=h / �2e2� for a single
channel plate; therefore, the charge buildup time is the RC
time �RC=RqC�. For C�=1 fF and Rq=h / �2e2�, this RC time
is about �RC=13 ps. If the external voltage reverses sign, the
charge accumulation will follow the voltage and will also
reverse sign in due time. When frequency is low, namely,
when ��1/�RC=77 GHz, the charge buildup follows the ac
bias almost instantaneously just like a classical capacitor;
thus, the capacitance is positive. When frequency is high,
there is a phase difference between the ac bias and the charge
buildup. For frequencies comparable to 1/�RC, the charge
buildup cannot follow the ac bias; thereby, the capacitance
may be negative.

While the above argument explains why it is possible to
have negative capacitance, it would indicate a critical fre-
quency to be near 77 GHz. Our results �Fig. 1� show that the
calculated �c is actually much smaller. This is because there
exists a second relevant time scale in the QD, i.e., the dwell
time �d which is the time spent by electrons inside the QD.
The dwell time �d can be calculated for specific systems.9

Importantly, at resonance, the electrons can dwell inside the

FIG. 1. Frequency-dependent capacitance C���� versus fre-
quency. Main figure is for CR and inset is for CI. Here,
�L=10 �eV �for the curve with the open circle�, 50 �eV �open
square�, 100 �eV �open triangle�, and 200 �eV �open diamond�.
Here, Co=1 fF.
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quantum dot for a long time. For instance, for our QD with
�L=10 �eV, we found �d=260 ps while �RC=12 ps �since
C�=0.9 fF�. In other words, �d	�RC. Such a �d corresponds
to a frequency of 4 GHz, much less than 1/�RC. In other
words, when ac frequency is greater than 1/�d, the charges
dwell inside the quantum dot and cannot respond to the ac
voltage change. As a result, current lags behind voltage,
leading to a negative capacitance.10 This picture agrees very
well with the numerical results �Fig. 1�.

Having determined the general behavior of C���� for the
quantum capacitor, in the following, we determine how to
simulate this quantity using a classical circuit. Expanding
Eq. �1� into a Taylor series to second order in � with the help
of Eq. �3� at resonance, we obtain

C���� = C� + i�C�
2 h

2e2 − �2C�
3 h2

4e4 + �2C�
2 h2

12��Le2 ,

�4�

where C�=C��0� on the right-hand side is the static electro-
chemical capacitance. This result is equivalent to that of a
classical RLC circuit as follows. For a classical RLC circuit
with capacitance C�, resistance Rq, and inductance Lq, the
dynamic conductance is

G��� = − i�C�/�1 − �2LqC� − i�C�Rq� . �5�

Expanding this expression in power series of �, we obtain

G��� = − i�C� + �2C�
2 Rq + i�3C�

3 Rq
2 − i�3C�

2 Lq. �6�

Because for a capacitor G���=−i�C����, we obtain the re-
sult that our quantum capacitance �Eq. �4�� is equivalent to
the classical RLC circuit model of Eq. �6�. Comparing these
two equations, we readily identify Rq=h / �2e2�—a result
first obtained by Büttiker et al..2 Importantly, another
quantity—the equivalent inductance—is identified as
Lq=h2 / �12�e2�L�. In terms of dwell time �d and charge re-
laxation resistance Rq, we obtain

Lq = Rq�d/12, �7�

where �d=4� /�L.
What is the reason that a quantum capacitor at finite fre-

quency needs to be modeled by a classical RLC circuit �in-
stead of a RC circuit�? This is due to the role played by the
large dwell time �d of the QD. When electrons dwell for long
time �d inside the QD, the interaction between electrons be-
comes an important piece of physics which, in our theory, is
modeled by the induced self-consistent potential UI,II dis-
cussed above. Such an interaction gives rise to the physics of
induction, resulting to the quantity Lq of Eq. �7�. Indeed, the
explicit dependence on �d by Lq also confirms the important
role played by the dwell time. Because Lq is determined by
�d, as well as fundamental constants h and e, it is of purely
quantum origin and can be called quantum inductance.

Figure 2 compares the fitting of classical RLC circuit �Eq.
�5��, with the full quantum result of Eq. �1�. They compare
very well for the entire range of the frequency—if we treat
Rq as a function of �. Indeed, while Rq has so far been a
constant h / �2e2� as identified through the Taylor expanded
equations �Eqs. �4� and �6��, it is actually a function of � by
the more general expression Eq. �5�. The inset of Fig. 3 plots
the general Rq=Rq��� obtained numerically, and we observe
it to be a slowly increasing function of �. As expected, in the
small frequency limit, Rq��� recovers the result of half resis-
tance quantum. For �L=50 �eV, Rq��� deviates from h /2e2

at about 5 GHz. We have also attempted using three constant
parameters C�, Lq, and Rq=h / �2e2� into Eq. �5� to compare
with the full quantum result of Eq. �1�, and a reasonable
agreement is obtained �inset of Fig. 2� although not as good
as that shown in Fig. 2.

The situation is somewhat different for quantum induc-
tance Lq when the system is off resonance �
E�0 in Eq.
�3��. In this case, the dwell time �d becomes too small to be
relevant and another time scale becomes important, namely,
the tunneling time �t for electrons to go in and/or out of the

FIG. 2. Comparison of the full quantum capacitance C����
�solid line� to that obtained by the classical RLC circuit model
�dotted line� for �L=50 �eV. Here, Re�C����� is indicated by open
circle. Inset: similar fit but using three constant parameters.

FIG. 3. The dynamic conductance G��� �unit e2 /h� versus gate
voltage at different frequencies �=1.2, 3, and 5 GHz. Solid line,
Re�G� /�; dotted line, Im�G� /�. Other parameters: 
=500 mK,
�=3000, V0=−0.85, 
V0=0.003, C0=4 fF, and temperature
50 mK. For purpose of illustration, we divided G��� by �. Inset:
frequency-dependent Rq �unit h /e2� vs frequency.
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QD. The further away E is from E0, the longer is �t. Hence,
in Eq. �7�, �d should be replaced by �t for off resonance. Our
result shows that the fitting of full quantum capacitance
C���� using classical parameters C�, Lq, and Rq��� is still
quite good for off resonance. This further supports the con-
clusion that the frequency-dependent quantum capacitance
can be described by a classical RLC circuit with static elec-
trochemical capacitance, charge relaxation resistance, and a
quantum inductance.

Note that our result �Eq. �7�� is obtained using Lorentzian
line shape for the Green’s function that is a good approxima-
tion at low frequency. Now, we compare our result with the
high-frequency admittance for a single-channel wire against
a macroscopic gate calculated using the Luttinger model.13

The low-frequency expansion of gate capacitance is given in
the last equation of Ref. 13, from which we can identify Lq to
be

Lq =
1

3g2C�Rq
2, �8�

where the interaction parameter g is related to electrochemi-
cal capacitance via

C� =
Lg2

RqvF
, �9�

with L the length of the wire and vF the Fermi velocity.
Substituting Eq. �9� into Eq. �8�, we have

Lq =
L

3vF
Rq. �10�

We see that if we identify �d�4L /vF, Eqs. �7� and �10� are
the same. In another word, a spinless Luttinger liquid has a
capacitance with a high-frequency inductance of the same
form as in Eq. �7�.

Finally, we perform a numerical calculation of the dy-
namic conductance for the device structure of Ref. 5. In
terms of scattering matrix, the DOS of Eq. �2� for a capacitor
can be rewritten as4,6

DI��� = i� dE

2�

f − f̄

�2�2 �1 − sLL
† �E+�sLL�E�� , �11�

with5 sLL
† �E�= �r−ei
� / �1−rei
�, 
=2�E /
, r2=1−TQPC,

and TQPC=1/ �1+exp(−�Vg+V0� /
V0)�, which is the trans-
mission coefficient of the QPC in the experimental setup.5

Figure 3 shows the dynamic conductance G��� vs gate volt-
age Vg using our theory presented above. When
�=1.2 GHz �open circle�, our results agrees very well14 with
the experimental data of Ref. 5. When �=3 GHz �open
square�, our theory predicts that the imaginary part of G���,
which is the electrochemical capacitance, goes to negative.
For even larger frequency �=5 GHz, the effect is more sig-
nificant. To understand why one can observe a negative ca-
pacitance at small frequency such as 3 GHz, we note that
since electron entering the QD has to first pass the QPC,5 this
QPC serves as a barrier �with an effective barrier height 1 /��
that is controlled by the gate voltage. At small gate voltage,
TQPC is nearly zero and goes to 1 at large Vg. Hence, the
effective � for small gate voltage is quite large, making �c
much smaller. Since the experiment of Ref. 5 is performed at
�=1.2 GHz, we assume that it is not too difficult to push the
frequency to 3 GHz so that the effect of quantum inductance
can be observed experimentally. Indeed, a single-wall carbon
nanotube transistor operated at 2.6 GHz has been
demonstrated15 and measurement of current fluctuation at
frequency from 5 to 90 GHz has been reported.16

In summary, we found that at finite frequency, a quantum
capacitor consisting of a quantum dot and a large metal con-
ductor is equivalent to a classical RLC circuit with three
basic parameters: a static electrochemical capacitance C�, a
charge relaxation resistance Rq, and a quantum inductance
Lq. It is found that Lq�Rq�, where � is the characteristic
time scale for the quantum dot such as the dwell time �d or
the tunneling time �t. Due to the phase delay by the quantum
inductance, the dynamic current can lag behind the applied
ac voltage, giving rise to a negative capacitance. Our numeri-
cal results show that this effect should be detectable experi-
mentally using the present device technology.
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