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We investigate the magnetoelectric �or inverse spin-galvanic� effect in the two-dimensional electron gases
with both Rashba and Dresselhaus spin-orbit couplings using an exact solution of the Boltzmann equation for
electron spin and momentum. The spin response to an in-plane electric field turns out to be highly anisotropic,
while the usual charge conductivity remains isotropic, contrary to earlier statements.
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I. INTRODUCTION

Spin phenomena in semiconductor structures lie at the
very heart of the emerging field of spintronics and are to a
major and still growing direction of solid-state research.
Among the plethora of concepts and ideas, the magnetoelec-
tric effect in the two-dimensional electron gas �2DEG�,
sometimes also referred to as the inverse spin-galvanic ef-
fect, has attracted particular interest from both
experimental1–5 and theoretical6–10 points of view. This effect
amounts in spin accumulation as a response to an applied
in-plane electric field and is, therefore, a possible key ingre-
dient toward all-electrical spin control in semiconductor
structures, a major goal in today’s spintronics research.

We find it important to emphasize that the phenomenon
studied below is not the intrinsic spin Hall effect,11,12 though
it would manifest in a very similar manner. The mechanisms
involved in these two phenomena are, however, very differ-
ent. In particular, the momentum relaxation due to the impu-
rity scattering is necessary for the spin accumulation inves-
tigated in present paper, contrary to the intrinsic spin Hall
effect where ballistic regime is preferred.11,12

In this paper, we investigate the magnetoelectric effect in
2DEG’s with both Rashba and Dresselhaus spin-orbit cou-
plings. Our study is based on an exact analytical solution to
the Boltzmann equation for electron spin and momentum in
the presence of �-function shape static impurities. Regarding
the spin degree of freedom, our solution neglects off-
diagonal elements of the semiclassical distribution matrix in
the eigenbasis �or helicity basis� of the single-particle Hamil-
tonian, an approximation which is shown to be valid at suf-
ficiently high temperatures common in experiments.

As a result, the magnetoelectrical effect, i.e., the magnetic
response to an in-plane electric field, turns out to be highly
anisotropic, whereas the usual charge anisotropy remains iso-
tropic, contrary to earlier statements.13

The paper is organized as follows. First, we present an
analytical solution of the semiclassical spin-incoherent Bolt-
zmann equation. Second, we solve the spin-coherent kinetic
equation. Finally, we discuss the plausibility of solutions ob-
tained and apply them for investigations of the electric cur-
rent and spin accumulation.

II. SOLUTION OF THE KINETIC EQUATION

We consider the Hamiltonian as a sum of the kinetic en-
ergy and two spin-orbit coupling terms: Rashba14 and

Dresselhaus.15 Then, the Hamiltonian takes the form

H =
�2�kx

2 + ky
2�

2m
+ ���xky − �ykx� + ���xkx − �yky� . �1�

Here, �x,y are the Pauli matrices, kx,y are the electron wave
vectors, and m is the effective electron mass. Introducing the
angle �k, so that

tan �k =
�kx + �ky

�kx + �ky
, �2�

we obtain the following spinors as the eigenfunctions of the
Hamiltonian H:

�±�x,y� =
1
�2

eikxx+ikyy� 1

±e−i�k
� . �3�

The energy spectrum has the form

E± =
�2k2

2m
± ���kx + �ky�2 + ��kx + �ky�2, �4�

where k=�kx
2+ky

2. The velocity matrix in the helicity basis
�3� is not diagonal, and its elements read

vx
11�22� = �kx/m ± �� cos �k + � sin �k�/� , �5�

vx
12�21� = ± i�� sin �k − � cos �k�/� , �6�

vy
11�22� = �ky/m ± �� cos �k + � sin �k�/� , �7�

vy
12�21� = ± i�� sin �k − � cos �k�/� . �8�

For the diagonal elements of the velocity matrix, we also use
simplified notations v11�22��v±.

In the following, it will be convenient to use polar coor-
dinates kx=k cos 	, ky =k sin 	. Then, the spectrum read E±
=�2k2 / �2m�± �k�
	, where


	 = ��2 + �2 + 4�� sin 	 cos 	

is the generalized spin-orbit interaction constant for a given
direction of motion. The wave vectors for a given energy
read
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k± = �
m

�2
	 +�� m

�2�2


	
2 +

2mE

�2 , �9�

and the expression for �k takes the form

tan �k =
� cos 	 + � sin 	

� cos 	 + � sin 	
.

We model the influence of impurities using �-potential
scattering V=���x ,y�. The scattering probability between the
states with k ,s and k� ,s� then read

w�ks;k�s�� =

�2

m�
�1 + ss� cos��k − �k��	��Esk − Es�k�� ,

�10�

where � is the relaxation time which relates to � as �
=�3 / �m�2�. Note that the spin-dependent factor in Eq. �10�
does not depend on the particular form of V�x ,y� in the Born
approximation. We expect, therefore, that such a simple scat-
tering model as �-function shape static impurities is quite
reliable for the description of spin-dependent transport phe-
nomena.

A. Spin-incoherent kinetic equation

In general, the equation has the form

�fs�k�
�t

+ vs
�fs�k�

�r
+ �− eE�

�fs�k�
��k

= � �fs

�t
�

coll
. �11�

Here, s=± is the spin index, and vs are the diagonal elements
�5� and �7� of the velocity matrices.

To solve Eq. �11�, we follow the standard procedure
widely spread in literature �see Ref. 16, or any textbook on
solid state physics�. We write down the distribution function
as fs= fs

0+ fs
1+ fs

2, where fs
0 is the Fermi distribution and fs

1,2

� fs
0. Then, at zero temperature gradient and constant electric

field in the linear-response regime, Eq. �11� takes the form

− eEvs
−
�f0�Esk�

�Esk
� = St�fs�k�	 . �12�

Assuming elastic scattering, fullfilling the microreversibility
condition, the scattering operator can be written as

St�fs�k�	 = �
s�

 d2k�

�2
�2 �w�ks;k�s���fs
1�k� + fs

2�k� − fs�
1 �k��

− fs�
2 �k��	� , �13�

where w�ks ;k�s�� is given by Eq. �10�.
We would like to emphasize that besides above-

mentioned conventional assumptions, our solution is exact. It
means that in contrast to a number of previous works, we do
not make any further approximation from this point.

The solution of Eq. �12� has the form

fs
1 = − �eEvs
−

�f0�Esk�
�Esk

� , �14�

fs
2 = − s

�eE

�
	

−

�f0�Esk�
�Esk

���ax cos 	 + bx sin 	�ex + �ay cos 	

+ by sin 	�ey	 . �15�

Here, fs
1 is the conventional solution of the Boltzmann equa-

tion, whereas an addition fs
2 is usually discarded since it is

much smaller than fs
1. However, this anisotropic addition

plays an important role in the spin accumulation mechanism,
as it is shown below.

In order to define the unknown coefficients ax,y, bx,y, we
substitute fs

1,2 into Eq. �12� �see Appendix for details� and get
the following equations:

ax

�2 + �2 − ��2 − �2�
4��

−
bx

2

= ��
1 +
��2 + �2�2

4�2�2 � ��2 − �2�
�2 + �2 − 1�� , �16�

bx

�2 + �2 − ��2 − �2�
2��

− ax = ��2 − �2� . �17�

The equations for ay and by can be obtained from Eqs. �16�
and �17� by the substitution ax→by, bx→ay. From these
equations, one can easily find that ax=by =−��2+�2� and
ay =bx=−2��.

Finally, we substitute �5� and �7� into Eq. �14�, sum up fs
1

and fs
2, and write down the solution of Eq. �12� in the fol-

lowing elegant form:

fs = fs
0 + �− eE�k

��

m

−

�f0�Esk�
�Esk

� . �18�

This solution should be compared with the expression in the
absence of spin-orbit coupling which can be formulated in
terms of the velocity as follows:

fs = fs
0 + �− eE�vs�
−

�f0�Esk�
�Esk

� , �19�

where vs=�k /m is the velocity. Note that this latter relation
holds only in the absence of spin-orbit coupling.

B. Spin-coherent kinetic equation

Since we deal with the constant electric field only, the
equation reads17

�− eE�
� f̂�k�
��k

+
i

�
�Ĥ, f̂�k�	 = � � f̂

�t
�

coll
. �20�

Following Ref. 17, we rewrite Eq. �20� in the helicity basis
where the Hamiltonian is diagonal, and the equation takes
the form

eE

�

�

�k
� f11 f12

f21 f22
� +

ieE

2�

��k

�k
� f21 − f12 f22 − f11

f11 − f22 f12 − f21
�

+
i

�
� 0 f12�E+ − E−�

f21�E− − E+� 0
� = St� f̂�k�	 , �21�

where
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��k

�k
=

�2 − �2

k
	
2 �ex sin 	 − ey cos 	� . �22�

The collision term reads17

St� f̂�k�	ss1
= −
 d2k�

�2
�2 �
s�,s1�

����Es�k� − Esk� + ��Es1�k�

− Esk�	Ks�s1�
ss1 fs�s1�

�k�� − ��Es�k − Es1�k��

� �Ks1�s1�
ss� fs�s1

�k� + Ks1�s1�
s�s1fs1�s1�

�k�	� , �23�

where

Ks�s1�
ss1 =


�2

4m�
�1 + ss�s1s1� + ss�ei��k−�k�� + s1s1�e

−i��k−�k��	 .

�24�

Equation �24� was derived for �-potential scattering intro-
duced above, and each Ks�s1�

ss1 contains either sin��k−�k�� or

1±cos��k−�k��, depending on the product of ss�s1s1�.
In order to simplify Eq. �21�, we assume k
	�T, where T

is the temperature. This assumption will be discussed later in
detail. Now, we expand the Fermi distribution function
f0�Esk� in terms of k
	 /T, so that Eq. �21� in the linear-
response regime takes the form

� eEv11�f0�E+k�
�E+k

eE

2
v12
 �f0�E+k�

�E+k
+

�f0�E−k�
�E−k

� +
i

�
f12�E+ − E−�

eE

2
v21
 �f0�E+k�

�E+k
+

�f0�E−k�
�E−k

� +
i

�
f21�E− − E+� eEv22�f0�E−k�

�E−k

� = St� f̂�k�	 . �25�

Though Eq. �25� is still quite cumbersome, it is easy to check
that f12= f21=0 and f11�22� given by Eq. �18� represent the
solution. The details of calculations can be found in Appen-
dix. Thus, the solution for the spin-incoherent Boltzmann
equation is the same as for the spin-coherent kinetic equation
at high temperatures. This can be explained in what follows.

III. RESULTS AND DISCUSSION

Note that the off-diagonal elements of the distribution
function have essentially quantum mechanical origin since
they correspond to the off-diagonal elements of the density
matrix. Classically, an electron can be in only one state of
two, and, therefore, off-diagonal terms vanish here. In con-
trast, in the spin-coherent kinetic equation, the off-diagonal
terms can be essential. However, in the real samples, the
quantum effects are negligible at room temperatures because
of the temperature smearing. Indeed, the spin-orbit coupling
constant 
	 is of the order of 10−11 eV m for typical InAs
samples. To be specific, let us take n-type InAs quantum well
containing the 2DEG used for photocurrent measurements at
room temperature.18 The parameters are as follows: � /�
=2.15, mobility is about 2�104 cm2/ �V s�, and free carrier
density is 1.3�1012 cm−2. The latter allows us to estimate
characteristic Fermi wave vector kF=�2
ne�3�106 cm−1.
Thus, the spin-orbit splitting energy kF
	 is about 3 meV,
that is much smaller than Troom=25 meV, and our solution is
suitable for description of a large variety of experiments.

To study the spin accumulation, we calculate the net spin
density, whose x ,y components read

�Sx,y� = �
s

 d2k

�2
�2Sx,y�k,s�fs�k� , �26�

where Sx�k ,s�= s
2 cos �k and Sy =− s

2 sin �k are the spin expec-
tation values. �We do not consider Sz component, since it is
zero.�

The integral over k can be taken easily, making the sub-
stitution �=E�s ,k� and assuming that −�f0��� /��=��EF−��.
This assumption is reasonable with respect to the system
studied in Ref. 18 from which one can deduce a Fermi en-
ergy of the order of 100 meV, which is clearly larger than
room temperature. Since our solution is valid for tempera-
tures much higher than the spin-orbit splitting energy kF
	,
the inequality describing the applicability of our results ob-
tained below reads

kF
	 � T � EF.

The rest integrals over the polar angle can be taken ana-
lytically. After some algebra, we have

�S� =
em�

2
�3� � �

− � − �
�E . �27�

Then, the magnitude of the spin accumulation �S�
=��Sx�2+ �Sy�2 is given by

�S� =
eEm�

2
�3
��2 + �2 + 2�� sin�2Eêx� . �28�

It is interesting to note that �S� depends on the direction of
the electric field �see Fig. 1�, i.e., the spin accumulation is
anisotropic. To our knowledge, this interesting feature was
not noticed in the literature so far. If �=0, then �S�
=eEm�� / �2
�3� that is in agreement with Refs. 6 and 8. If
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the electric field is applied along the x direction �the case
studied in Ref. 9�, then the spin density is �S�
=eEm���2+�2 / �2
�3�. This result contradicts to Ref. 9,
where the spin density has some strange kinks as a function
of m�2 /�2 and m�2 /�2. However, one can see from Eq. �28�
that the kinks in the dependencies of �S� on � �or �� could
not take place.

Relying on the effect depicted in Fig. 1, the following
spintronic device can be proposed. Let us attach two pairs of
contacts to the 2DEG, so that the first pair provides the elec-
tric current along the crystallographic axis corresponding to

the minimal spin accumulation �i.e., �11̄0	 axis for �001	-
grown InAs samples18�, and the second one is connected
along the perpendicular axis. Then, the spin accumulation
depends strongly on which contacts the transport voltage is
applied, and its anisotropic contribution can be extracted eas-
ily using optical methods2–5 or just measuring the magneti-
zation. To give an example, applying the electric field of
20 V/m �which corresponds to the current density of
1 mA/cm�, we obtain the magnetization difference of the
order of 106�B / cm2, where �B is the Bohr magneton. This is
comparable to the Pauli magnetization at the magnetic fields
of a few gauss. It is also interesting to note the small char-
acteristic switching time ��10−13 s of the device proposed.
Therefore, besides the fundamental importance of such an
experiment, our four terminal device could find some appli-
cations as a high-speed spin switch.

At the end of the discussion, let us turn to the charge
current, whose density can be found as

j = − e�
s

 d2k

�2
�2vsfs�k� . �29�

The integral over k in �29� can be taken in the same manner
as in �26�, and, after some algebra, the conductivity tensor �
takes the form

�yy�xx� =
e2�


�2�m��2 + �2�
�2 + EF� , �30�

and, most surprisingly, �xy�yx�=0. It is convenient to express
�yy�xx� via the electron concentration �31� in a 2DEG with
spin-orbit interactions

ne =
mEF


�2 + � m

�2�2�2 + �2



. �31�

Then, the conductivity takes much simpler form, namely,
�yy�xx�=e2ne� /m. This is the Drude formula, i.e., the conduc-
tivity is just a number �not a tensor�, though the distribution
function �18� is anisotropic. This result is in contrast with the
findings of Ref. 13, where a subtle approximation generated
off-diagonal elements in the conductivity tensor.19 This arti-
fact is absent in our truly exact solution: The electrical con-
ductivity is isotropic for any relation between � and �. The
latter simplifies essentially the relation between the spin and
charge current densities, which takes the form

�S� =
m2

2
�3ene
� � �

− � − �
�j . �32�

We find it useful to write down Eq. �32� in the basis 1
�2

�1;1�,
1
�2

�1;−1�. Then the relation between �S� and j takes the sim-
pler form

�S� =
m2

2
�3ene
� 0 � − �

� + � 0
�j . �33�

From this equation, one can easily see that the spin accumu-
lation is strongly anisotropic if the constants � and � are
close to each other. The reason of such an anisotropy is the
angular dependence of the dispersion law �4�. Indeed, the
spin-orbit splitting is different for different direction of the
momentum. Therefore, the spin precession frequency de-
pends essentially on the direction of the electron motion.
This leads to the anisotropic spin relaxation times �see e.g.,
Ref. 20�, and, thus, the anisotropy of the spin accumulation
occurs. In particular, the electric current of arbitrary strength

applied along the �11̄0	 crystallographic axis does not lead to
any spin accumulation at �=�. The latter is due to the van-

ishing spin splitting along the �11̄0	 axis �see e.g., Ref. 21�.
Equations �32� and �33� are the main results of our work,

which can be applied directly to experimental studies of
current-induced spin accumulation in �001	-grown InAs
samples. The theory developed here is, of course, applicable
to arbitrary oriented heterostructures after a few minor
changes regarding the spin-orbit coupling terms in the
Hamiltonian.

IV. CONCLUSIONS

In summary, we solved the semiclassical Boltzmann equa-
tion analytically for 2DEGs with arbitrary large spin-orbit
interactions of both Rashba and Dresselhaus types. More-
over, we demonstrated that this solution is also suitable for
the spin-coherent case at sufficiently high temperatures com-
mon to experiments. Using this solution, we discovered the
anisotropy of the current-induced spin accumulation, though

FIG. 1. Spin accumulation �in arbitrary units� vs direction of the
electric field in polar coordinates for different Rashba and Dressel-
haus constants: A, �=3�; B, �=2.15�; C, �=�. Curve B corre-
sponds to the real situation in n-type InAs �Ref. 18�.
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the conductivity remains isotropic. Finally, our analytical
study is expected to be a reliable starting point for further
investigations of spin-dependent electron transport.
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APPENDIX: THE COLLISION INTEGRAL
CALCULATIONS

To take the integrals of the form � d2k�
�2
�2 F�k� ,Es�k��, it is

convenient to perform the substitution Es�k�=��, where
F�k� ,Es�k�� is a given function, and Es�k� is the dispersion
relation �4�.

1. Spin-incoherent case

The first term of St�fs�k�	 given by Eq. �13� reads

�
s�

 d2k�

�2
�2w�ks;k�s���fs
1�k� + fs

2�k�	 = �fs
1�k� + fs

2�k�	�
s�



0

2
 d	�

�2
�2 
 d��
m

�2�1 − s�
m
	�/�

2

�� m

�2�2


	�
2 +

2m��

�2 �
�2

m�
��Esk − ���

�
1 + ss�
��2 + �2�cos�	 − 	�� + 2�� sin�	 + 	��


	
	�
� =

1

�
�fs

1�k� + fs
2�k�	 . �A1�

The rest terms of St�fs�k�	 containing fs
1 and fs

2 given by Eqs. �14� and �15�, respectively, read

�
s�

 d2k�

�2
�2w�ks;k�s���− fs�
1 �k��	 = 
−

�f0�Esk�
�Esk

� � �
x,y

− seEx,y

2�
	
� ��4 − �4�

�2 + �2 �cos 	

sin 	
� + 2��� sin 	

cos 	
�

� 
1 +
��2 + �2�2

4�2�2 � ��2 − �2�
�2 + �2 − 1��� , �A2�

�
s�

 d2k�

�2
�2w�ks;k�s���− fs�
2 �k��	 = 
−

�f0�Esk�
�Esk

��
x,y

seEx,y

2�
	

cos 	�ax,y + bx,y

�2 + �2 − ��2 − �2�
2��

�
+ sin 	�bx,y + ax,y

�2 + �2 − ��2 − �2�
2��

�� . �A3�

Substituting Eqs. �A1�–�A3� into the master equation �12�, one can easily establish Eqs. �16� and �17� for unknown coefficients
ax,y, bx,y.

2. Spin-coherent case

To prove the solution of Eq. �25�, we take the integrals in its right-hand side in a similar way as before. Indeed, after the
substitution of f11�22� given by Eq. �18� and f12= f21=0 into the collision term, we have

St� f̂�k�	11�22� =
f11�22�

�
� �

x,y
eEx,y
−

�f0�E+�−�k�

�E+�−�k
� 1

�
	
� ��2 + �2�cos 	 + 2�� sin 	

��2 + �2�sin 	 + 2�� sin 	 cos 	
� , �A4�

St� f̂�k�	12�21� = ±
i��2 − �2�

2�
	
�
x,y

eEx,y� sin 	

− cos 	
�
−

�f0�E+k�
�E+k

−
�f0�E−k�

�E−k
� . �A5�

Using Eqs. �A4� and �A5� and the velocity matrix elements �5�–�8�, one can easily prove that the spin-incoherent solution �18�
with f12= f21=0 satisfies Eq. �25�.
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