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We investigate the influence of an electromagnetic environment, characterized by a finite impedance Z���,
on the Kondo effect in quantum dots. The circuit voltage fluctuations couple to charge fluctuations in the dot
and influence the spin exchange processes transferring charge between the electrodes. We discuss how the
low-energy properties of a Kondo quantum dot subject to dynamical Coulomb blockade resemble those of
Kondo impurities in Luttinger liquids. Using previous knowledge based on the bosonization of quantum
impurity models, we show that low-voltage conductance anomalies appear at zero temperature. The conduc-
tance can vanish at low temperatures even in the presence of a screened impurity spin. Moreover, the quanti-
tative determination of the corresponding Kondo temperature depends on the full frequency-dependent imped-
ance of the circuit. This is demonstrated by a weak-coupling calculation in the Kondo interaction, taking into
account the full distribution P�E� of excited environmental modes.
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I. INTRODUCTION

Recent progress in controlling the electronic properties of
semiconductor-based nanostructures provides new ways of
probing the physics of strong correlations and envisions a
rich interplay with truly mesoscopic effects. One of the most
prominent examples is certainly the discovery of the Kondo
effect in quantum dots.1,2 While in metals containing a small
amount of magnetic impurities the increased magnetic scat-
tering of the electrons at low temperature results in an in-
creased resistance, the mesoscopic realization displays in-
stead a zero-bias peak in the conductance.3 This setup opens
also a way for the study of various mesoscopic phenomena
in the presence of strong correlations, such as nonequilib-
rium transport regimes4–6 and finite-size effects in the
electrodes.7,8

One should emphasize that the unitary conductance, a fea-
ture in the charge sector, is currently taken as the fingerprint
of the Kondo effect, a property of the impurity spin being
screened by the conduction electron spins. Yet it is not obvi-
ous that unitary conductance and spin screening should al-
ways coincide. In fact, one should bear in mind that conduc-
tance through a single or a double junction is sensitive to the
circuit environment, made, for instance, of a resistance R.
The parameter r=R /RK defines the normalized resistance
with RK=h /e2. For such an Ohmic bath, in a strongly resis-
tive single junction of resistance Rt�RK and capacitance C,
with charging energy Ec=e2 /2C, a low-bias anomaly
dI /dV��V /Ec�2r appears. This phenomenon is called dy-
namical Coulomb blockade �DCB� �see Refs. 9 and 10 for a
review�. It has been extensively studied in normal single-
tunnel junctions with resistive leads both experimentally11–13

and theoretically,14–22 as well as for general scatterers,23,24 in
normal double-tunnel junctions,25,26 superconducting
junctions,27–29 and single barriers in semiconductors.30 On
the other hand, for transparent junctions with Rt�RK, the

same phenomenon occurs, but only below an exponentially
small DCB energy scale ẼC�Ece

−RK/2Rt. Only when at least
one channel becomes fully transparent does the dynamical
Coulomb blockade disappear and a linear I�V� is
recovered.19,23,24,31,32 Coming back to the Kondo problem,
one readily sees the difficulty encountered in trying to guess
the low-temperature behavior. On one hand, the zero-
temperature regime being fully transparent, one might think
that the Kondo effect—and the unitary conductance—are not
affected by an Ohmic bath. Yet at any finite temperature, the
transmission being less than 1, DCB should reappear. In
other words, it is not clear whether the Kondo temperature is
lower or higher than a DCB energy scale. This problem ob-
viously cannot be solved without reconsidering how the cou-
plings leading to the Kondo effect �and the unitary-
conductance peak� renormalize at low energy in the presence
of environmental fluctuations. This is the issue we address in
the present paper.

Previous investigations of the Kondo effect with dynami-
cal Coulomb blockade focused on the regime where the
quantum dot is near the charge degeneracy point, with a
noisy back gate directly coupled to the quantum dot.33–36 In
this case, a Kondo model for the charge degree of freedom
can be derived, with a direct coupling of the dissipation to
this charge variable. On general grounds this leads to a com-
petition between the Kondo screening of the charge doublet
by the electrons and the localization effect due to the Ohmic
environment.

Here, we concentrate rather on the usual spin Kondo ef-
fect, with environmental electromagnetic fluctuations in the
electrodes. In this case, dissipation induces a markedly dif-
ferent effect on the Kondo physics. Indeed, only the interlead
spin exchange processes involve charge fluctuations across
the device and hence dominantly couple to the environment.
One then assists to a competition between several Kondo-
type strong-coupling fixed points in the absence of localiza-
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tion effects. Different conduction regimes may then be ap-
proached, depending on the dissipation strength and
microscopic couplings.

At weak dissipation, one expects to preserve the usual
Kondo effect, but dephasing of the couplings involving
charge transfer affects the determination of the Kondo tem-
perature TK below which the spin is eventually screened on a
quantitative level. For this purpose we examine how the per-
turbative regime of the Kondo model is modified by a gen-
eral dissipative environment in the formalism of the P�E�
theory. Focusing on a circuit with a finite zero-frequency
impedance Z��=0�=R, but keeping a complete description
of the environment characterized by the above low-energy
Ohmic behavior and a higher-energy tail related to the circuit
capacitances, we explicitly calculate how those parameters
influence the temperature scale TK at which the Kondo reso-
nance forms. At temperatures lower than TK, we can apply
previous knowledge37–41 on the Kondo effect between Lut-
tinger liquids �to which our setup is equivalent in some low-
energy limit only� to capture the current-voltage relation.
This extends the previous mappings for single or double
junctions.21,31 For the weak-dissipation regime, we thus find
that non-Ohmic behavior, thus DCB, prevails in the presence
of particle-hole asymmetry. Particle-hole symmetry can be
restored for some specific values of the dot gate voltage,
allowing for a unitary conductance, albeit with anomalous
corrections.

At large dissipation, which may be more challenging to
realize experimentally, the electron transfer processes are
even more strongly suppressed. As soon as the environmen-
tal impedance R reaches half the quantum value h /e2, a ge-
neric non-Ohmic transport regime develops �valid indepen-
dently of particle-hole symmetry, but with unbalanced left-
right couplings�, where the Kondo effect occurs through the
strongest coupled electrode only. With balanced couplings, a
two-channel Kondo regime may be feasible and represents a
generalization of a recently proposed42,43 and experimentally
studied setup44 with strong Coulomb-blockaded leads, for-
mally realizing the limit r�1. We note that our proposal
does not suffer from a low-energy cutoff set by the level
spacing in the leads. Notice that weak dissipation �R�RK� is
not sufficient to reach such a non-Fermi-liquid fixed point.

The paper is organized as follows. In Sec. II we give a
characterization of the Ohmic environment and introduce the
various physically relevant scales for the problem. In Sec. III
we propose a phenomenological model describing how the
Kondo effect may be affected by those environmental fluc-
tuations. This model is analyzed both at weak coupling, tak-
ing into account the full spectral function P�E� of the envi-
ronment, and at strong coupling �zero temperature�, using a
low-energy mapping onto a Luttinger chain through
bosonization, explicitly derived in the Appendix. We con-
clude the paper with an outlook on possible future theoretical
developments and experimental signatures of dynamical
Coulomb blockade on the Kondo physics.

II. ENVIRONMENTAL COULOMB BLOCKADE

A. Circuit theory

In this part we briefly summarize the basics of circuit
theory.9,10 This enables us to also introduce some notations

that will be used along the paper. The device we are inter-
ested in consists of a nano-object, which can be an artificial
atom, a molecule, or another interacting system, connected to
reservoirs by two tunnel junctions. Let us call S this interact-
ing system. Each time an electron tunnels in or out of the
system S, this electron can excite modes in the electromag-
netic environment, describing the circuit external to the tun-
nel junction. As the environment comprises S itself, the cru-
cial part is to properly describe the tunnel junctions. A
semiphenomenological approach able to capture these effects
has been developed by Ingold and Nazarov10,14 and Devoret
et al.17 The environment is modeled by its own impedance
Z��� �now arbitrary�, leading to an impedance Zt��� seen by
the junction. We denote by Q the charge displacement at the
surface of the capacitance caused by a tunneling event. Note
that Q is a collective variable. We also define � the phase
conjugate to Q satisfying �� ,Q�= ie. Let us now derive the
correlation functions of the phase variable � in the case of
Ohmic fluctuations.

B. Ohmic-phase fluctuation spectrum

Working with imaginary frequencies, we can parametrize
the bosonic Green function45 for the phase variable as

G��i�� � ���i����− i��� �1�

=2�	 RK

Z�i��

�
 + RKC�2�−1

, �2�

where the first contribution in Eq. �2� defines the frequency-
dependent impedance Z��� of the circuit,10 while the second
is associated with the junction capacitance C �see Sec. III A
for details�. We take �=1 in the following. For an Ohmic
environment, the circuit resistance is given by R=Z��=0�,
which from Eq. �2� yields the natural cutoff frequency �R
=1/ �RC�. However, even for strong dissipation �R�RK�, �R

is a very large frequency, at which Z��� cannot be reduced to
its zero-frequency value. The circuit impedance typically de-
cays as Z�����R / 
�
Cl=R��l /� for � larger than �l; �l

=1/ �RCl�, and Cl is a measure of the leads capacitance.9 To
simplify further calculations, we will model46 this tail of the
circuit impedance Z��� by a pure capacitive decay Z���
�R�l /�. This allows us to rewrite the phase correlations as

G��i�� = 2�
R

RK
	
�
 +

�2

�c
�−1

, �3�

where �c=�l�R / ��l+�R� is an effective cutoff. We intro-
duce also the related effective capacitance Ceff controlling
the high-frequency tail of the phase fluctuations �c
=1/ �RCeff�. Using simple complex analysis, we can extract
the real-frequency spectral function

Im G���� = 2�
R

RK
	� +

�3

�c
2�−1

, �4�

which obeys
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G��i�� = −
 d�

�

Im�G�����
i� − �

. �5�

Fourier transforming in imaginary time 	 yields

G��	� = −
 d�

�

1

e−
� − 1
Im�G�����e−�	, �6�

where 
=1/ �kBT� is the inverse temperature, and performing
the analytic continuation 	→ it to real time t, we get the
usual formula10

J��t� � ����t� − ��0����0��

= 

0

� d�

�

2 Re�Zt����
RK

� cos��t� − 1

tanh�
�/2�
− i sin��t�� ,

�7�

where Zt���= �i�C+1/R�−1 is the impedance seen by the
junction. Since charge transfer processes are associated with
the operator ei� �see Sec. III A�, it is useful to consider the
real-time correlation function �ei��t�−i��0��=eJ��t�, which by
Fourier transformation

P�E� =
1

2�



−�

�

dteJ��t�+iEt �8�

describes the probability P�E� that the electron exchanges an
energy E with the environment during the tunneling process.

At zero temperature and for long time,

J��t� � − 2r ln�i�ct� , �9�

where r=R /RK is the dimensionless resistance of the circuit,
which leads to the low-energy behavior10

P�E� � Ar
E2r−1

�c
2r for E � �c, �10�

with Ar=e−2r
 /��2r�. This power law is, however, cut off for
energies larger than �c; in this range, the probability decays
as

P�E� � 2r
�c

2

E3 for E � �c. �11�

We finally mention some useful properties10 of the P�E�
function: �i� detailed balance P�E�=0 for E�0 at T=0, �ii�
normalization �0

+�dEP�E�=1, and �iii� integral equation

EP�E� = 2r

0

E

d�
P���

1 + �� − E

�c
�2 . �12�

In the next section we analyze how the Kondo effect oc-
curring in mesoscopic quantum dots is modified by the pres-
ence of such an Ohmic environment.

III. NOISY KONDO EFFECT

A. Derivation of the model

In this section, we consider a single quantum dot con-
nected to two metallic leads in the Kondo regime and inves-

tigate how the Kondo effect is affected by the presence of
environmental Coulomb blockade. We assume that electro-
magnetic fluctuations are modeled by an impedance Z���
�R closing the circuit as described above. The equivalent
circuit depicted in Fig. 1 is the one of a single-electron tran-
sistor.

A model Hamiltonian describing this situation can be
written as H=Hdot+Hleads+Htun+Hbath, where

Hdot = �
�

�dd�
†d� + Und,↑nd,↓, �13�

Hleads = �
k,�,�=L/R

�kck,�,�
† ck,�,�, �14�

Htun = �
k,�

�tLei�Ld�
†ck,�,L + tRei�Rck,�,R

† d�� + H.c. �15�

Hbath describes the environmental degrees of freedom con-
sisting of a collection of harmonic oscillators, alternatively
expressed by a phase correlator such as Eq. �2�. In these
equations, ck,�,�

† creates an electron with energy �k in lead
�=L ,R with spin � and d�

† creates an electron in the dot with
spin �. Hdot is the usual Anderson Hamiltonian, where �d is
the dot energy controlled by a gate voltage Vg, while U de-
scribes the Coulomb interaction within the dot. The phases
�� appearing in the tunneling Hamiltonian are related to the
voltage fluctuations �V� felt by an electron during a tunnel-
ing event through the L /R junction as follows:

���t� = e

−�

t

�V��t��dt�. �16�

The phases �� are conjugate to the charge Q� on the junction
capacitance � such that ��� ,Q��= ie. As they originate from
the same bath, the phases �� are clearly not independent. In
order to relate the voltage fluctuations in the junction � to
Z���, we use the standard effective-circuit description:10

when an electron tunnels in the left junction, it feels an en-
vironment that can be modeled by the right junction in par-
allel with Z���. The left and right junctions are simply mod-
eled by a tunneling resistance Rt in parallel with capacitances
CL and CR. This description is consistent with the single-
electron tunneling terms in Eq. �15� and may be derived

FIG. 1. �Color online� Schematic representation of a circuit with
a dot coupled to two leads and an impedance Z.
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more microscopically by coupling independently each of the
tunneling operators to the bosonic charge modes in the
circuit.25,47 Neglecting the Kondo correlations for a moment,
the setup of Fig. 1 is simply a double junction, which has
been treated in great detail in Ref. 10 in the sequential re-
gime. For a quantum mechanical description of the double
junction in series, it turns out to be more convenient to work
with the charges q=QL−QR and Q=

CRQL+CLQR

CL+CR
being un-

coupled in the absence of tunneling; q corresponds to the dot
charge quantized in units of e, and Q is simply the total
charge carried by the capacitance C=

CLCR

CL+CR
that couples di-

rectly to the impedance Z. One may then introduce the
phases � and � conjugate to Q and q, respectively, related to
the phases �� by �L= �C /CL��+� and �R=−�C /CR��+�. In
the equivalent circuit, we neglected the part corresponding to
the gate voltage controlling the number of electrons on the
dot. This approximation is justified, as the capacitance Cg
associated with the gate in general satisfies Cg�C� and gate
voltage fluctuations usually play a minor role �their contri-
bution has been addressed in Ref. 48�.

Since we are interested in the Kondo regime, where the
real charge fluctuations in the dot are suppressed, it is con-
venient to perform a generalized Schrieffer-Wolff transfor-
mation or, equivalently, integrate out the dot charge degrees
of freedom. The complication due to the time dependence of
the tunneling term in Eq. �15� can be circumvented by a few
additional assumptions. First we will assume that 
�V
� 
�d
,
U+�d which constitutes no serious limitation. We further
suppose that the energy excitations of the environmental
bosonic modes � are small enough to satisfy �� 
�d
, U
+�d. Under these two conditions, the dot is modeled by a

spin S� described by a Kondo-like Hamiltonian HK, involving
phase-dependent couplings

HK = �
�,


J�,
ei���−�
� �
k,�,k���

ck,�,�
†

	��,��

2
ck�,��,
 · S� , �17�

where

J�,
 � 2t�t
�− 1

�d
+

1

U + �d
� . �18�

In Eq. �17� we should a priori include a dressed potential
scattering term

HV = �
�,


V�,
ei���−�
� �
k,�,k���

ck,�,�
† ck�,��,
, �19�

where V�,
�2t�t
� −1
�d

− 1
U+�d

�. Nevertheless, the coupling
constants V�
 turn out to be either irrelevant or marginal. As
they are not modifying our weak-coupling analysis, we ne-
glect these terms. However, these terms associated with
particle-hole symmetry breaking are important near the
strong-coupling fixed point as we will see.

The omission of the environment fluctuations with respect
to �d or U in Eq. �18� means that during a virtual charge
fluctuation or cotunneling event49 no energy is exchanged
with the environment. This assumption is justified by the low
value of the circuit cutoff frequency �l. It contrasts, for in-

stance, with previous treatments of so-called inelastic
cotunneling25 or coupling with local phonon modes.50 We
expect that going beyond this approximation would lead to
small corrections to the model defined above, and their treat-
ment �see Ref. 50 for a different setup and simpler environ-
ment� is clearly beyond the scope of the present paper.
Therefore, the elementary Kondo couplings result from
“quasielastic” cotunneling �in the sense of Ref. 49�, where
the initial and final states of the spin-flip transition may,
however, involve different environmental energies. The inter-
lead or “backscattering” Kondo couplings JLR and JRL now
include the effects of the environment, embodied by the dy-
namical phase �L�t�−�R�t�=��t�. This dynamical phase
clearly modifies the behavior of these couplings, which we
will analyze in the next two subsections. On the contrary,
within our quasielastic approximation, the intralead cou-
plings JLL and JRR are not dressed by phase fluctuations.

B. Weak Kondo coupling analysis

1. Poor-man’s scaling

The Hamiltonian �17� can be regarded as the usual Kondo
model, where the interlead spin processes J�,
, with ��

transferring charge between the electrodes, are dressed by
fluctuating phases described by the Ohmic spectrum of Eq.
�2�. The case of strong Coulomb blockade, corresponding to
R=�, has been previously studied in Ref. 43. The calculation
of observables to lowest order amounts to computing the
diagrammatics at order J2. Clearly the renormalization of the
JLR vertex depends on the combination JLR�JLL+JRR�, such
that a single unpaired ei� term occurs and does not affect the
usual renormalization equation

JLR� = JLR + JLR�JLL + JRR�

�−��

�

d�
�0���
− �

, �20�

where �0���=1/2W is the free-electron density of states and
W is the electronic bandwidth. Following the poor-man’s
scaling philosophy, we introduce here a small shift �� in the
running cutoff � and compute the resulting change in the
Kondo coupling. This flow starts at some high-energy initial
cutoff D�min�U ,W� and reduces towards lower energies as
long as it is perturbatively controlled. Introducing dimen-
sionless couplings j�,
��0J�,
 yields

djLR

d ln �
= − jLR�jLL + jRR� . �21�

On the contrary, the JLL process is obtained from the com-
bination JLL

2 +JLR
2 , so that the second term involves the com-

bination of two exponential phase factors. This amounts to
replacing in the diagrammatics the free electronic Green
function G0�	�= �cR

†�	�cR�0�� by a mixed one:

Gmix�	� = �cR
†�	�cR�0�ei��	�e−i��0�� �22�

�G0�	�eJ��	�. �23�

We denote �mix its associated density of states. Performing
the analytic continuation of the above Green function at zero
temperature, we find the simple formula
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�mix��� = �0

0


�


dEP�E� . �24�

The renormalization equation thus reads

JLL� = JLL + JLL
2 


�−��

�

d�
�0���
− �

+ JLR
2 


�−��

�

d�
�mix���

− �
,

�25�

leading to the flow equation

djLL

d ln �
= − jLL

2 − jLR
2 


0

�

dEP�E� . �26�

In the following we analyze this result.

2. General considerations

The flow equations �21� and �26� are the main result of
this section. They describe the weak-coupling behavior of
the Kondo model in a generic environment characterized by
the P�E� distribution, under the quasielastic approximation.
We now specialize to the case of Ohmic dissipation, for
which P�E� was discussed in Sec. II.

Although the complete form of P�E� is complicated, un-
der the assumption that �c�U �consistent with the quasi-
elastic approximation� we can roughly sketch the behavior of
the flow in a simple two-step picture with respect to the
energy scale �c. At the beginning of the flow, ���c and the
energy integral in Eq. �26� is unity since P�E� is a probabil-
ity. One thus recovers the usual Kondo flow equations; i.e.,
dissipation is ineffective in this case. This can be understood
by the disappearance of DCB at high energy and will give
rise to an initial strong renormalization of all Kondo cou-
plings as if Coulomb blockade was absent.

This flow continues until � reaches �c, where the anoma-
lous low-energy behavior of P�E� given by Eq. �10� comes
into play. At this stage, it is useful to introduce new dimen-
sionless couplings ��,
��Ar /2r�� /�c�rj�,
 for ��
, and
��,�= j�,�, which allow us to rewrite the flow equations as

d�LR

d ln �
= r�LR − �LR��LL + �RR� , �27a�

d�LL

d ln �
= − �LL

2 − �LR
2 . �27b�

Let us first give some general comments on these equations.
First we notice that the dissipation affects the interlead cou-
plings, Eq. �27a�, and makes them irrelevant, at least as long
as �LL+�RR is not too large. This is consistent with the pic-
ture where charge transfer across the quantum dot is sup-
pressed by DCB and has the clear consequence of diminish-
ing the Kondo temperature at increasing values of r �see also
the discussion in Sec. III B 3 and corresponding Fig. 2�. Sec-
ond, these flow equations are reminiscent of those obtained
for the tunneling through a magnetic impurity in a Luttinger
liquid,38 although we did not obtain them from bosonization.
This identification will be put on rigorous grounds in Sec.
III C by virtue of an exact mapping between the two prob-

lems. This also allows the computation of transport proper-
ties of the device at low temperature, which the weak-
coupling calculation is unable to capture.

The above two-step argument thus shows that the slow
onset of DCB at the scale �c reinforces the flow with respect
to a pure Luttinger flow of the type �27�, so that the decrease
of the Kondo temperature with increasing dissipation will
not be as pronounced as in the case of a pure Luttinger chain.

We also note that the cutting of P�E� at �c is certainly not
quantitative since P�E� is a broad distribution, and we will
solve the flow, Eqs. �21� and �26�, numerically, with the full
evaluation of P�E� according to the integral, Eq. �12�, as
performed below.

A final remark concerns the case of strong Coulomb
blockade for r�1. In this regime, the Coulomb charging
energy Ec=e2 /2C emerges as a natural cutoff56 with P�E�
���E−Ec�. For this case the two-step argument becomes
exact43 and leads to a strong renormalization of the Kondo
temperature.

3. Kondo temperature

We start for simplicity by considering the solution of the
pure Luttinger liquid case, described by Eqs. �27�. This cor-
responds to the regime of large �c, ignoring the mixing of
boson excitation energies in the initial Kondo coupling. The
results displayed in Fig. 2, however, illustrate in the simplest
manner the role of the parameter r. The first general effect is,
as expected, a systematic decrease of the Kondo temperature
TK with increasing r, marking a systematic onset of a strong-
coupling regime. We note that TK remains nonzero even for
strong dissipation, contrarily to the noisy “charge” Kondo
effect,33,34 in which voltage fluctuations act as a fluctuating
magnetic field would act in the spin Kondo problem, which
may prevent the formation of the Kondo resonance. Apart
from this quantitative effect, we infer from Fig. 2 that dissi-
pation can furthermore discriminate between several strong-
coupling fixed points. Indeed when the impedance R be-
comes comparable to the quantum value RK, the interlead

FIG. 2. �Color online� Flow of the Kondo couplings �LR�� /D�
�solid line� and �LL�� /D� �dashed line� according to Eqs. �27� �i.e.,
pure Luttinger liquids� for different values of r. The initial values of
the Kondo couplings at scale �=D are taken here as �LL=�LR

=0.1 �with L-R symmetry�.
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couplings �LR are strongly driven to zero. This should clearly
lead to qualitatively different transport properties compared
to the case of weak dissipation. This also allows for a stabi-
lization of a two-channel Kondo effect by DCB for the case
of balanced �LL and �RR couplings. These aspects are con-
firmed by the strong-coupling analysis performed in Sec.
III C.

The solution of the flow, Eqs. �21� and �26�, with Ohmic
dissipation, using the full P�E� function determined by Eq.
�12�, is shown in Fig. 3. It illustrates the general fact that the
full distribution function P�E� of the environmental modes
�or equivalently the complete frequency-dependent imped-
ance of the junction in the circuit� affects the determination
of the Kondo temperature in a significant quantitative man-
ner. This is also seen by a systematic study of the Kondo
temperature �defined here by the criterion jLL��=TK�=10� as
a function of dissipation r and for several values of the ef-
fective impedance Ceff in Fig. 4.

C. Transport anomalies

1. Equivalence to the Kondo model between Luttinger liquid
leads

The previous weak-coupling analysis already informs
about the type of ground state favored by the environment.
More sophisticated tools are, however, necessary to make
precise statements on the nature of the ground state and to
compute low-temperature and low-voltage properties. Here
we will formulate the low-energy equivalence between the
Hamiltonian �17� and the problem of a S=1/2 magnetic im-
purity weakly coupled to two Luttinger liquids, in the tun-
neling geometry. This equivalence has already been shown at
the Hamiltonian level for a nonmagnetic impurity by Safi
and Saleur21 �see also Ref. 34� and can be easily extended to
the Kondo model through bosonization of the lead
electrons,32 as derived in the Appendix. The final result of
this calculation allows us to identify the effective interaction
parameter of the Luttinger chain as

K =
1

1 + 2r
. �28�

The problem of a magnetic impurity in a Luttinger liquid has
been analyzed using weak-coupling renormalization-group
equations and a stability analysis of the strong-coupling limit
by Fabrizio and Gogolin;38 see also Ref. 39 for a conformal
field theory analysis. It is thus not surprising that the low-
energy limit �27� of the flow, Eqs. �21� and �26�, reproduces
those results. We emphasize that the flow equations obtained
for the alternative “side” geometry51,52 differ from the
present “tunneling” geometry ones by a relevant scale di-
mension 1�K of the interlead couplings rather than the ir-
relevant scale dimension 1/K�1 �as r�0� found above. The
resulting physics is thus markedly different for the two cases.

2. Strong-coupling analysis

The low-energy physics and therefore transport and ther-
modynamic properties are dominated by the vicinity of the
strong-coupling fixed point. In order to analyze the low-
energy physics, two distinctive regimes arise depending on
the value of r.

Small values r�1/2. The previous weak-coupling analy-
sis has shown that all Kondo interaction terms are driven to
strong coupling such that the usual one-channel Kondo phys-
ics should a priori be recovered. However, for a more pre-
cise statement the vicinity of this fixed point should be con-
sidered. A detailed analysis shows that particle-hole
symmetry-breaking terms are relevant at the one-channel
Kondo fixed point. One indeed finds that potential scattering
terms like Vc†c in Eq. �19� have a scaling dimension �1
+K� /2= �1+r� / �1+2r��1 and are therefore relevant. In a
one-dimensional infinite Luttinger liquid chain, such a term
“cuts” the chain into two semi-infinite chains below an en-
ergy scale T*.37 Therefore, the ultimate fixed point which the
system reaches for T=eV=0 corresponds to an insulating
one.38–40 The analysis of the operator content at this insulat-
ing fixed point allows us to predict the scaling behavior with
temperature or bias voltage. Here we focus on the differential

FIG. 4. �Color online� Kondo temperature TK as a function of
dissipation r for several values of the dimensionless effective ca-
pacitance ceff=1 ,2 ,5 ,10,20 �from bottom to top�.

FIG. 3. �Color online� Flow of the Kondo coupling jLL�� /D�
�solid lines� according to Eqs. �21� and �26� and the corresponding
integrated distribution �0

�dEP�E� �dashed lines� for the dissipation
strength r=1, initial couplings jLL= jLR=0.1, and several values
of the dimensionless effective capacitance ceff=DRKCeff

=1 ,2 ,5 ,10,20 �from bottom to top�.
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conductance dI /dV between the left and right leads. The
leading irrelevant operator corresponds to a hopping term
between the two leads and has dimension �1+1/K� /2=1+r
�1. We note that particle-hole symmetry-breaking effects
can be tuned to zero, using the dot gate voltage. The Kondo
resonance may therefore develop in transport for some par-
ticular value of the gate voltage Vg

*, as specified in Eq. �29b�
below. The finite-temperature corrections to the unitary limit
are given by the leading irrelevant operator nearby this per-
fectly transmitting fixed point when particle-hole symmetry
is imposed. This operator has dimension 2K and is irrelevant
for K�1/2.39 These results imply an anomalous behavior of
the differential conductance at low temperature:

dI

dV
� a� eV

T* �2r

for Vg � Vg
*, �29a�

dI

dV
� 2GK	1 − b� eV

TK
�2r� for Vg = Vg

*, �29b�

with GK=1/RK=e2 /h and a and b dimensionless nonuniver-
sal prefactors. At finite temperature T and zero bias voltage,
the energy eV should be replaced by T in Eqs. �29�. The
conductance in Eq. �29a� is similar to the conductance
through a single tunnel junction. One may also wonder how
the conductance is modified when Vg slightly deviates from
Vg

*, since particle-hole symmetry is relevant at this perfectly
transmitting fixed point and the resonance is very sharp. Fol-
lowing Ref. 37, it can be shown that the width of the reso-
nance scales as T�1−K�/2 where Vg deviates from Vg

*. The dif-
ferential conductance escapes from the unitary limit as
follows:

dI

dV
� 2GK	1 − b� �

eV
�2r/�1+2r�� for Vg � Vg

*, �30�

where � is a characteristic energy scale related to �Vg=Vg

−Vg
*, which vanishes as �Vg

2/�1−K� at resonance.37

Large values r�1/2. For large values of r, dissipation
dominates the renormalization-group flow in Eq. �27a� and
the Kondo coupling JLR renormalizes to zero. Therefore co-
herent charge transfer between the left and right leads is
suppressed, without, however, completely inhibiting the
Kondo effect, similarly to what occurs in the case of strongly
Coulomb blockaded leads.42,43 Indeed the Kondo couplings
JLL and JRR are still driven to strong coupling according to
Eq. �27b�. A two-channel Kondo fixed point can be reached
provided JLL=JRR. By analyzing the operator content of the
strong-coupling two-channel fixed point, it has been shown
to be stable against particle-hole symmetry-breaking terms
for K�1/2 or, equivalently, r�1/2.38,39 Indeed, the leading
irrelevant operator near the two-channel Kondo fixed point
occurs in the flavor sector and has dimension 1/ �2K�=2r
+1, and is therefore irrelevant for r�1/2.39 This operator
will therefore dominate the transport properties below the
two-channel Kondo temperature T2CK. For JLL�JRR the two-
channel Kondo fixed point is unstable and a single-channel
Kondo effect occurs in the strongest coupled channel �either
left or right�. The transport for this situation is characterized

by the leading irrelevant operator corresponding to a hopping
term between the two leads as for r�1/2 with dimension
�1+1/K� /2=1+r�1. From this above analysis we can infer
the anomalous behavior of the differential conductance
dI /dV between the left and right leads at low energy:

dI

dV
� c� eV

T1CK
�2r

for JLL � JRR, �31a�

dI

dV
� d� eV

T2CK
�2r−1

for JLL = JRR, �31b�

where c and d are nonuniversal numbers and T1CK is the
one-channel �either left or right� Kondo temperature. Notice
the absence of GK, peculiar to the two-channel Kondo effect
in Eq. �31b�, due to the tunneling geometry. A third, non-
noisy electrode would be necessary to obtain this behavior;
see Refs. 42 and 43.

This analysis can be directly extended to a quantum dot
operating as a spin-1 impurity. The low-energy physics re-
sembles then that of a spin-1 impurity embedded between
two Luttinger liquids, recently studied in Ref. 53.

IV. CONCLUSION

In this paper we investigated the impact of environmental
Coulomb blockade on the Kondo effect in the case of mod-
erate to highly resistive leads. An Ohmic resistance of the
environment exceeding RK /2 induces a suppression of the
interlead Kondo interactions, without, however, preventing
the formation of a strong-coupling state, due to the remain-
ing intralead processes. When the tunneling amplitudes be-
tween the left and right leads are equal, even a two-channel
Kondo effect can be reached. For an environmental resis-
tance smaller than RK /2 the Kondo effect can fully develop
between both leads. However, the fully transparent fixed
point is stable only when particle-hole symmetry is main-
tained with the dot plunger gate voltage. On a qualitative
level these results imply anomalous low-temperature trans-
port properties through the device, even though the Kondo
effect survives. More quantitatively, the Kondo temperature
below which those features start to appear was shown to
depend sensitively not only on the dissipation strength, but
rather on the full spectral function of the excited environ-
mental modes. Although strong-resistive effects may be dif-
ficult to detect in actual experiments, due to the difficulty in
the realization of well-coupled highly dissipative setups in
semiconducting quantum dots, such a reduction of the Kondo
temperature at moderate dissipation as well as nonlinearities
in the I�V� characteristics should be observed.

Theoretically, it would be interesting to go beyond the
quasielastic approximation by which our phenomenological
Kondo model is applicable. This approximation may rather
underestimate the environmental effects. A generalization of
this study to orbital Kondo effects or mixed spin-orbital
Kondo setups can also be performed along the same line,54

merging the present situation with the previously studied de-
coherence effects on the Kondo effect in the charge sector.
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APPENDIX: EQUIVALENCE BETWEEN THE NOISY
KONDO PROBLEM AND THE KONDO MODEL

IN LUTTINGER LIQUIDS

We provide here the derivation for the low-energy map-
ping of the Kondo model �17� in an Ohmic environment onto
the usual Kondo model between Luttinger liquids.

The free electronic part of Eq. �14� is first conveniently
expressed as a chiral Hamiltonian for left and right elec-
trodes:

Hleads = − ivF

−�

+�

dx�
��

c�,�
† �xc�,�. �A1�

We bosonize each channel, keeping the Klein factors explic-
itly:

c�� =
1

�2�a
F�� exp�i

�c� + �− 1���s�

�2
� . �A2�

This allows us to express the above Eq. �A1� in terms of
charge and spin bosons in each channel:

Hleads =
vF

4�



−�

+�

dx�
�

��x�c��2 + ��x�s��2. �A3�

Using the identity for the electron density operator,

c��
† c�� =

1

2�

�x�c� + �− 1���x�s�

�2
, �A4�

and the bosonization dictionary �A2�, we can now reexpress
the Kondo Hamiltonian �17�. To clarify the resulting expres-
sion, we define the following basis change between the L and
R channels:

�c �
�cL + �cR

�2
, �A5a�

� f �
�cL − �cR

�2
, �A5b�

�s �
�sL + �sR

�2
, �A5c�

�sf �
�sL − �sR

�2
. �A5d�

We have to also perform a similar transformation on the
Klein factors55 and introduce for this purpose four alternate
Klein fermions Fc, Ff, Fs, and Fsf, which obey

Fsf
† Fs

† = Fe↑
† Fe↓, �A6a�

FsfFs
† = F2↑

† F2↓, �A6b�

Fsf
† Ff

† = Fe↑
† F2↑, �A6c�

Fc
†Fs = Fe↑

† F2↑
† . �A6d�

All other bilinears of the original Klein factors are easily
computed from the above expression—e.g., Fe↓

† F2↑
=Fe↓

† Fe↑Fe↑
† F2↑=FsFsfFsf

† Ff
†=FsFf

†.
We also introduce spin anisotropies of the exchange con-

stants, with the new notation �JF
�, JF

z , JB
�, JB

z �, where the
subscript F �B� stands for JLL=JRR �JLR=JRL� and the super-
script � �z� for the x ,y �z� spin orientations, respectively. We
assumed here perfect symmetry between the left and right
couplings not to overburden the notation, although this will
not affect the validity of the mapping we want to establish.
The final expression for the Kondo term �17� then reads

HK =
JF

�

4�a
S+Fse

i�s�Fsfe
i�sf + Fsf

† e−i�sf� + H.c. +
JF

z

2�
Sz�x�s

+
JB

�

4�a
S+Fse

i�s�Ffe
i�f+i� + Ff

†e−i�f−i�� + H.c.

+
JB

z

4�a
SzFf

†e−i�f−i��Fsf
† e−i�sf − Fsfe

i�sf� + H.c. �A7�

We see that the environmental boson � occurs naturally as
a systematic shift of the “flavor” field � f describing the
charge transfer between the two electrodes. To define a
simple effective environment, we consider the combined ef-
fective action for both the local density bosons �integrating
all x�0 in Eq. �A3�� and the environmental boson from Eq.
�2�:

S0 =
1



�
�n


�n
�
�c
2 + 
� f
2 + 
�s
2 + 
�sf
2 +
RK

2R

�
2�

=
1



�
�n


�n
�
�c
2 + 
� f�

2 + 
�s
2 + 
�sf
2 + 
��
2� ,

where

� f� = �K�� f + �� , �A8�

�� = �K��2R

RK
� f −�RK

2R
�� , �A9�

and

K �
1

1 + 2R/RK
. �A10�
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Therefore the role of the Ohmic environment on the Kondo
effect is to replace all exponential terms ei�f in the bosonized

expression by ei�f�/�K. Starting from a standard magnetic
impurity between two Luttinger liquid leads characterized

by an interaction parameter K �without environmental
modes�, with the open boundary bosonization condition,38

leads to the same final expression, thus proving the desired
equivalence.
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