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We discuss a general form of the exchange energy for a homogeneous system of interacting electrons in two
spatial dimensions, which is particularly suited in the presence of a generic spin-orbit interaction. The theory
is best formulated in terms of a generalized fractional electronic polarization. Remarkably, we find that a net
generalized polarization does not necessarily translate into an increase in the magnitude of the exchange
energy, a fact that, in turn, favors unpolarized states. Our results account qualitatively for the findings of recent

experimental investigations.
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INTRODUCTION

In most cases, as a first step in assessing the role of the
electronic interactions, an analysis of the role played by the
exchange energy is illuminating and most often very useful.
As we show here, the exchange energy acquires particularly
interesting and unusual properties in two dimensions in the
presence of spin orbit of the Rashba type. In this case, the
chiral nature of the single-particle states involved competes
with standard requirements that are commonly identified
with the exchange interaction.

The interplay of spin-orbit coupling and Coulomb inter-
action is unexplored, except for the initial and limited work
of Refs. 1 and 2, where some quasiparticle properties were
investigated. Most of the work is relevant in the high-density
limit in which only weak corrections to the standard behavior
were identified. Systematic studies of the mean-field phase
diagram of this interesting system are provided elsewhere.>~

Alongside the general theoretical relevance of such sys-
tematic studies, a timely practical application of such an
analysis can be found in the study of spin-polarization states
in two-dimensional hole systems in a GaAs heterostructure.®

The expression for the exchange energy per particle in a
homogeneous electron liquid is well known.” In particular,
for the two-dimensional case, which is of relevance in the
present discussion, the formula is given by

&(1 +p)2+ (1= p)3?
3T ry ’

5x,0(rsvp) == (1)
where we measure energy in Rydbergs and the significance
of the subindex 0 will be presently made clear.

In Eq. (1), the parameter p is defined as follows:

n,—n_
p=—", 2)
n

where n is the particle number density and n, refers to the
particle density corresponding to the two spin subbands.
rs=1/\e’?én is the usual density parameter in two dimen-
sions. It is important to note that Eq. (1) is obtained under
the assumption that the spins are quantized along a common
arbitrary quantization axis Z. Therefore, when, as in this par-
ticular case, the label * refers to the orientation T| of the
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spin, p assumes the meaning of a fractional spin polarization.
It is easy to see that the exchange energy (1) monotonically
attains its maximum magnitude for p=1, and therefore fa-
vors the polarization of the system. In fact, within the
Hartree-Fock approximation, a transition to a fully spin po-

larized state occurs for r = 8(23_"\5) =2.01.7

As we will presently show, this scenario changes in inter-
esting ways in the presence of the spin-orbit interaction. In
the quasi-two-dimensional electronic systems present in a
high-quality semiconducting heterostructure, the latter can
come in different guises ranging from Rashba and Dressel-
haus couplings to terms induced by the application of an
external magnetic field.® The following is a systematic study
of the effects of spin-orbit interactions of various types on
the exchange energy and the polarization properties of a
clean two-dimensional system. The theory can be elegantly
formulated in a compact way by introducing a generic form
of spin-orbit coupling, something that allows us to draw
quite general conclusions.

The paper is organized as follows: Sec. I introduces our
model Hamiltonian including a spin-orbit coupling of ge-
neric form. Section II describes the solution of the corre-
sponding noninteracting problem in terms of the generalized
polarization. In Sec. III, which represents the main part of
the paper, the role of the exchange energy is studied in detail.
In particular, it is demonstrated there that the presence of
spin-orbit coupling leads to a qualitatively different relation
between this quantity and the generalized polarization. Sec-
tion IV contains a discussion of recent experiments on the
polarization of holes in GaAs heterostructures in the light of
these findings. Finally, some general remarks and conclu-
sions are provided in the last section.

I. MODEL HAMILTONIAN

We consider the following generic model two-

dimensional electronic system described by the Hamiltonian’
A\ ~ ) 1 e’
anzHO,n'i__E A Al (3)
i 2% |- r;

where the single-particle terms are of the form
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with the motion taking place in the x-y plane. In Eq. (4), we
have defined p,=p,*ip, and 6.,=6,+id,. Here, n is an in-
teger number assuming values from O to 3. In view of its
structure, we will refer to the second term in Eq. (4) as a
generalized spin-orbit coupling.

In the simplest case, n=0 corresponds to the familiar Zee-

man coupling with y= gMZBB for which the standard result [Eq.
(1)] applies. More complicated n=0 expressions are contem-
plated in the Appendix.

For n>0, Eq. (4) describes different types of bona fide
spin-orbit interactions. In particular, for n=1, we obtain a
form equivalent to the Rashba'®!' or Dresselhaus'? spin-
orbit Hamiltonians, appropriate for two-dimensional conduc-
tion electrons in III-V semiconductors. Furthermore, the
cases n=2 and n=3 are appropriate for holes in III-V semi-
conductors such as GaAs. Explicit expressions are provided
in the Appendix.

From a physical point of view, the n=2 term arises in the
presence of an external in-plane magnetic field, the coeffi-
cient y being proportional to the value B of such field. For
hole carriers in GaAs heterostructures, this term is the domi-
nating low-field effect in the high-symmetry growth direc-
tions [001] and [111], for which the Zeeman term can be
safely assumed to be approximately vanishing.®

Finally, the n=3 term corresponds to a Rashba spin-orbit
coupling for holes, the value of v being in this case approxi-
mately proportional to the value of the average electric field
of the confining potential.'?

II. NONINTERACTING ELECTRONS

The eigenstates of Eq. (4) are plane waves, a fact that
allows one to write the spin-orbit term in the form
—y(hk)" o8y, where §) is defined as follows:

S == sin(ngy)x + cos(ngpy)y. (5)

Here, ¢ =arctan(k,/k,) is the polar angle spanned by k. The
unit vector §, determines the direction of the quantization
axis for the particular value of the wave vector k. The two
possible spin orientations immediately give the eigenstates

ezk r +1
el = 55\ g ) ©)
with energies'*
2K
= " + y(hk)". (7)

Note that in view of the structure of the spinors, the inte-
ger n can be seen as a spin direction winding number.

It is not difficult to show? that a class of determinantal
many-body states with compact momentum space occupa-
tion, which are homogeneous and isotropic in the plane of
motion, is uniquely determined by the areal density n and the
fractional polarization p defined as in Eq. (2).>!% It must be
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immediately noted here that in the general case, p should not
be interpreted as a spin polarization for this is, in general,
vanishing in these states. p does merely determines the two
Fermi vectors k, of the so-called spin-split subbands via the
relations

ky=~\2mn(1 % p), (®)

which uniquely determine the occupation numbers ny, of the
subbands.

It is readily found that the noninteracting energy per par-
ticle (in Rydbergs) of such Slater determinants is given by

1 +p2 _2n/2 (1 +p)1+n/2 _ (1 _p)1+n/2
> VT a

5(0) p)= ()
n (rssp) S r? Ton )
where we have defined the dimensionless coupling
mn—leZ(n—Z)
Y=""z 7 (10)

ﬁn—Z

The first term in Eq. (9) is the contribution of the kinetic
energy, while the second corresponds to the spin-orbit inter-
action.

In this case, minimization of the total energy with respect

to the value of p, #:O, leads to the (finite) ground-state
value of the equilibrium generalized polarization pf??i)n. Inter-
estingly, the result only depends on the dimensionless quan-
tity

g=2"2yr;", (11)

so that it can be compactly expressed as follows:

p
g forn=0
2
g -5 forn=1
0 4
=3
i g forn=2
—3g*+6g%-2+2(1-2¢%%
g\/ g g 5 ( g) for n=3.
L g
(12)

For small coupling, this quantity behaves as

0 _ n(n-—
pim')n_g"' 8

2 4 0(e9). (13)

One can then immediately notice that since for n=1 we have
g=V27%r,, in this case, the high-density regime is equivalent
to a vanishing spin orbit. The opposite is obtained for n=3,
since g=212%/r,. For quadratic spin orbit g=2%, and the
fractional generalized polarization p is independent of the
density.

It is also useful to define here the depopulation coupling
strength 7;0) as the particular value of 7y for which, at a given
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FIG. 1. Plot of the exchange energy per particle &£,,(r,p) (in Ry
units) as a function of p. Here, r,=1. The different values of n are
noted, and the limiting curve n= is also displayed (dashed line).

density, the upper band empties and p
obtained from Eq. (12) to be given by

—1 This is readily

1
- forn=0

—0) _ Iy

Yo = 2 (14)
22_1 forn=1,2,3.

III. EFFECTS OF EXCHANGE

We turn next to the effect of exchange. If translational
invariance is not broken, a single Slater determinant can be
constructed with plane-wave states characterized by generic
orientation of the spin-quantization axis §, and occupation
numbers ny,. The total exchange energy can be written in the

following elegant general form:3*
1+ M/.L,§k : §k’
Ec=-5 > Vi T 5 Ml
Kk =

(15)

which represents a functional of ny, and . Equation (15)
immediately reduces to the familiar textbook result when
Sx=2. In this case, only states with parallel spin contribute.
Making use of Eq. (5) in Eq. (15) leads to the following
result for the exchange energy per particle (in Rydbergs):

gx,n(rsvp) = gx,()(r.wp) + 5gx,n(rs’p)’ (1 6)

where the correction to Eq. (1) can be obtained from the
following quadrature:

\'2 T+p Tp
O, ,(rep) = x dx ydy

TsJ\1op T-p

2 1—-cosné
X — do. (17
0 Vx“+y —2xycos 6

The resulting exchange energy is plotted in Fig. 1 as a
function of p. We notice that for p=0, the exchange energy is
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independent of the spin-quantization axis orientations S§y.
This can be understood by realizing that the corresponding
many-body state can be constructed by repeated application
of by,by_, an operator that creates a spin singlet and is there-
fore independent of the spin-quantization direction. As a con-
sequence, the §, dependence of all the physical quantities
(e.g., the exchange and the spin-orbit energies) stems only
from the existence of regions of momentum space where
Ny # Ng_. It is also important to remark that only for n=0 is
the magnitude of the exchange energy maximum for p=1.
For the other cases, the minimum occurs at p= pi20.915
(although this is not obvious from Fig. 1) for n=1 and at
p=0 for n=2.

The different behaviors of the exchange energy in the
various cases lead to dissimilar results.

For n=0, the fact that the minimum of &, occurs at
p=1 leads to an enhancement of p,,,, i.e., to the familiar
enhancement of the spin polarization. The opposite is true for
n=2 since in these cases the minimum of &, , occurs at
p=0.

For completeness, we remark that in the limiting case of
very large winding number 7, the result can be obtained sim-
ply neglecting the cos n6 contribution in Eq. (17). For com-
parison, the corresponding curve is shown as a dashed line in
Fig. 1. Note that in this case, the magnitude of the exchange
energy is minimum for p=1, the value being given by

lim gx,n(rsv 1) ==

n—00 3 7Trs

(18)

The situation for the n=1 case is more complex, although
in all cases the exchange only leads to a very small
deviation from p . Specifically, p,,, is shghtly enhanced
for p(ol) < p1 and shghtly diminished for p”?l)n> p,, being un-
renormalized for pml)n— Dy

A similar argument leads one to conclude that the critical
value ¥, for which the upper spin band empties (at fixed r,)
decreases from its noninteracting value for n=0 (g=1),
while it does increase in the other cases.

Studying the limit of small p is of particular interest, since
it corresponds to a determination of the generalized suscep-
tibility. In this case, a direct inspection of the integral of Eq.
(17) leads to the following asymptotic formula:

8\2 ¢
-, (19)
3mry 1y

gx,n(r.wp) ==

where we have defined the quantity

Y (20)

The resulting value for p,,;, is then given by

8

—_— 21
1-C,ry @D

Pmin =
Equation (21) simply expresses the fact that in this limit,
the effect of the interactions is to renormalize the noninter-

acting result pmm— g via the denominator (1-C,r,)~". Inter-
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FIG. 2. Plot of the fractional generalized polarization p,,;, as
function of the parameter y for different values of r,. Here, n=2.
The increase of the depopulation value 7y, with r, is manifested.

estingly, the latter corresponds to an enhancement only for
n=0.

In particular, for n=0, we recover the well-known
Hartree-Fock differential instability occurring at rs=%.7 On
the other hand, for n=1, we have C;=0, the whole renormal-
ization effect being solely associated with correlation effect.
Finally, for n=2, C, is (ever increasingly) negative leading
to a perhaps iconoclastic exchange driven quenching of the
generalized polarization.

Expression (21) is valid in the limit of y—0 or, for
n>1, when r, is large. The generic case when p,,;, is not
small must be obtained numerically. As an example, we
show in Fig. 2 the value of p,,;, as a function of the dimen-
sionless coupling strength 7y for different values of the den-
sity parameter r, in the case of n=2. We notice that for low
densities, the depopulation value 7y, for which p,,,=1, is
considerably increased by exchange. This is in stark contrast
with the familiar n=0 case. In particular, for the n=2 case of

Fig. 2, we have:
1 1 1
Y=+ —=—-—]r,, 22
) ( 12 977)” (22)
where the second term represents the increase of the depopu-

lation field due to exchange effects. In this particular case,
the correction is linear in the density parameter r.

IV. APPLICATION TO SPIN POLARIZED HOLE SYSTEMS

Spin-polarization experiments have recently been per-
formed on GaAs two-dimensional hole systems with growth
direction along [113] and [100].° In these studies, the mag-
nitude of the in-plane depopulation field B, when only one
band is occupied, is surmised from the measured longitudinal
magnetoresistance. While a small suppression of B, with re-
spect to its noninteracting value Bg is observed in the [113]
case, basically no suppression is observed for the [100]
growth direction. This must be contrasted with the fact that,
as discussed in Ref. 6, in the absence of spin-orbit interaction
and at the densities under consideration, the expected ratio
for electrons is of order Bg/Bd~ 10.

The experiments of Ref. 6 are carried out at somewhat
low densities (r,=10-15), a regime in which a simple
Hartree-Fock treatment, as well as somewhat more sophisti-
cated analytical treatments designed to approximately in-
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clude correlation effects, generally fails to provide reliable
quantitative results. On the other hand, Monte Carlo analysis
of the system being to date nonexistent, it is reasonable to
expect that many of the qualitative features established by a
study of the exchange energy will prove sufficiently robust to
justify such a preliminary discussion.

In these quantum wells, the introduction of a magnetic
field induces, in the effective Hamiltonian of two-
dimensional holes, the spin dependent terms given in Egs.
(A3), (A4), and (A7) of the Appendix. All these terms can be
reduced to some of the generic forms contemplated by our
model Hamiltonian [Eq. (4)]. The corresponding coupling
strength 7y for each of these terms can then be extracted, as,
for instance, explicitly done in Egs. (A5), (A6), and (A8).
One can then make use of the definitions (10) and (11),
alongside suitable numerical parameters, to determine the
relevant dimensionless coupling strength.

For our numerical estimates, we use values appropriate
for the case of Ref. 6. In particular, W=200 A for the width
of the quantum well, m=0.2m, for the effective mass,
e=124 for the background dielectric constant, and
n=3X10"" cm™? for the hole density (corresponding to
ry=10).

We first consider the [113] growth direction. In this case,
the various physical properties are anisotropic in the plane,

the principal directions being given by x=[110] and

y=[332]. For the density under consideration, the depopu-
lation field is approximately given by B;= 10 T along x and
B,=5 T along y. This gives the following results for various
dimensionless couplings. For Eq. (A3), we have

lg3,/=0.19 and |g},|=0.09. (23)
For Eq. (A4),

|gos| = 0.23
Finally, for Eq. (A7),

and |gy;| = 0.03. (24)

lgo: =0.14 and |gy,| = 0.16. (25)

We recall here that Eq. (A3) is a term of type n=2, while
Egs. (A4) and (A7) are both of type n=0. We note that the
quadratic spin orbit, although in general smaller, has a
strength which is comparable to that of the terms of the Zee-
man type.

For the [100] growth direction, the Zeeman term
[Eq. (A7)] is vanishing, and the depopulation magnetic field
is approximately B;=10 T. Therefore, we obtain that the
quadratic spin orbit and the Zeeman term cubic in B have
comparable strength: |gos| =g, | =0.2.

These estimates suggest that the apparent quenching of
the many-body enhancement of the spin susceptibility is due
to the presence of a large n=2 spin-orbit coupling. Moreover,
the presence of a sizable n=3 Rashba spin-orbit term would
also result in a reduction of the generalized polarization. This
is consistent with the experimental finding that the suppres-
sion is most noticeable for [100] quantum wells, for which
the quadratic spin orbit is comparatively stronger.

From our theory, one can moreover surmise that a larger
many-body enhancement of the susceptibility is expected in
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the limit of very low densities when, due to the ock? and k3
dependences, the n=2 and n=3 terms become less relevant.
The enhancement should also be more noticeable in the limit
of a very narrow well. In the particular case of the [113]
growth direction, this happens because the linear Zeeman
term [Eq. (A7)] can, in principle, become dominant. For the
[100] growth direction, on the other hand, the term (A7)
vanishes while the cubic Zeeman term [Eq. (A4)] is largest,
this in spite of the ~W* proportionality of the coupling
strength. The reason is that the depopulation field is large in
a very narrow well. This is obtained since B,~ 1/W*? while
the magnitude of the quadratic spin orbit [Eq. (A3)] behaves
like ~W?"3, thereby losing its relevance.

It should be kept in mind that, being based on a perturba-
tive treatment and not taking in account orbital effects, these
conclusions should be taken at best as qualitative.'

DISCUSSION AND CONCLUSIONS

The main conclusion of our analysis is that in the pres-
ence of quadratic and cubic spin-orbit interactions, the mag-
nitude of the exchange energy decreases with increasing gen-
eralized polarization. This results in a quenched value of p
and in a corresponding increase of the value of the depopu-
lation coupling 7y, By the same token, the corresponding
generalized susceptibility is also quenched. This interesting
phenomenon stems from the in-plane rotation of the spin-
quantization axis induced by the spin-orbit coupling proper
(n=1,2,3) and from the universal structure of Eq. (15),
which only depends on the momentum space occupation
(i.e., the generalized polarization p) and the spin orientations
Sk. As one can verify by making use of the very same equa-
tion, for a given value of p, the only difference between the
various spin-orbit interactions stems from the different form
acquired by Sy. Since for larger n the spins are “less paral-
lel,” it is clear that the magnitude of the exchange energy
will decrease for larger n.

Being based on a study of the exchange energy only, our
theory can be expected to be strictly valid in the high-density
limit. The reason is that it is in this regime that the exchange
energy represents the first interaction correction to the non-
interacting result, with correlation effects becoming com-
paratively smaller as r, decreases. On the other hand, at not
too low densities, the physics of the exchange is still ex-
pected to give qualitatively reasonable results. This conclu-
sion appears to be corroborated by the apparent observed
reduction of the many-body enhancement of the spin suscep-
tibility in dilute hole systems in which, beside the familiar
Zeeman term, the magnetic field also induces large quadratic
spin-orbit interactions.

It is not difficult to prove that, when the spin-orbit cou-
pling terms described by Eq. (4) are present in isolation, the
many-body states, as parametrized by r, and p, are also self-
consistent solutions of the Hartree-Fock equations.** On the
other hand this is not the case when multiple concomitant
terms are present. In such situations, the circular symmetry is
broken, and the interacting problem is considerably more
complicated. Such situations must be treated case by case. In
particular, the spin-quantization directions §, must be deter-
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mined self-consistently.!” This problem has nontrivial solu-
tions in the case of broken symmetry states, like, for in-
stance, in the case of ferromagnetic phases.*

As a final remark we stress is that since the generalized
fractional polarization does not correspond directly to an ac-
tual magnetization, strictly speaking, one cannot draw direct
conclusions about the enhancement of the spin-spin response
from measurements of the depopulation field B,. In general,
the spin susceptibility is enhanced by the exchange, in a way
similar to the usual case without spin orbit.* The bare spin-
spin susceptibility involves the response to a pure n=0 per-
turbation, which, from an experimental point of view, is not
straightforward to realize for the case of hole systems of Ref.
6. In fact, as we have argued, the external magnetic field
induces also a change of the n=2 spin-orbit coupling.

A detailed study of the linear spin-spin response and of
the phase diagram, within the framework of the Hartree-Fock
approximation and in the presence of spin-orbit coupling,
will be the subject of future publications. Interestingly, the
transition to a ferromagnetic state occurs at densities that are,
in general, larger than in the absence of spin-orbit
interaction.>*

APPENDIX

We obtain and discuss here the spin dependent contribu-
tions to the effective Hamiltonian appropriate to the highest
two-dimensional heavy-hole subband in the presence of an
in-plane magnetic field B=B,X+ B,y for a typical III-V semi-
conductor quantum well. The specific numerical value of the
parameters will be chosen to be appropriate to the case of
GaAs.

We begin by approximately describing the motion of the
holes in the bulk through the standard Luttinger
Hamiltonian,'® which in spherical approximation takes the
form

Hh=—L{(%‘Fif’)f’z—z?@'f))z], (A1)
2my 2

where ji are 4 X4 spin-3/2 matrices and, for the moment,
cubic corrections have been neglected. For GaAs, y,;=6.85
and y=(y,+v3)/2=2.5. Within this context, the effect of the
magnetic field can be described by introducing the Zeeman

Hamiltonian f]z=—2k,uBB .J, where for GaAs k=1.2, a con-
venient choice of the vector potential being provided by
A=zB%-zB,y.

As a specific model case, we consider here the confine-
ment associated with an infinite rectangular well of width W.
The corresponding effective Hamiltonian for holes in the
highest two-dimensional subband can be written as

Hy=Eo(p) + 8Hyy + 6Hos, (A2)

where &(p) is the subband energy dispersion for B=0, and

51:12  and 515103 are spin dependent terms associated with the
external magnetic field with subindices indicating the value
of the integer n and the power of their dependence on the
magnetic field. Their explicit form can be found by making
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use of perturbation theory® in B and in the wave vector k.
For the first term, we obtain

N a,u,BW2 B+p36'_ + B_p%@;
oMo == 2 2

where B,=B,*iB, and the explicit form of the numerical

. L __ 10247 3k
coefficient is given by 4= 5 3Gy1109 2 For the second

: (A3)

term, we find

. moW?\2B36_+B6
5H=b3(°>+‘ —* A4
03 Mp 7T2ﬁ2 7 ( )
k(1?—6) 275
where b=T_8(2‘yl 55 We should remark that the

present results do differ from the ones one would infer from
the corresponding formulas appearing in Ref. 8. For GaAs,
we have a=-0.2 and b=1.5.

With a suitable spin rotation, these contributions can be
both transformed to the form of generic spin-orbit defined in

our model Hamiltonian [Eq. (4)]. In particular, 8H,, and

6IEIO3 are of the type n=2 and n=0, respectively. Because of
the isotropy implied by the spherical approximation, the
value of the corresponding coupling strength +y extracted by
comparison to Eq. (4) only depends on the magnitude of the
magnetic field B and is immediately found to be

ausW’B
Y21 = # (A5)
and
Wmg \?
Y03 = bﬂ%( Trzﬁ20> B, (A6)

for 51:121 and 5ﬁ03, respectively.
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For a given growth direction, these results can be ex-
tended beyond the spherical approximation to include the
appropriate cubic anisotropy as, for instance, done in Ref. 8.
Following this procedure, one then obtains in Eq. (A2) an
additional anisotropic linear Zeeman term. By choosing co-
ordinates along the principal axes, this can be generally ex-
pressed as

2 MB A o
5H01 = ?(ngxO-x + gyByUy) . (A7)
As it turns out, this term vanishes (even beyond the spherical
approximation) for the high-symmetry growth directions

[100] and [111]. However, in the case of the [113] growth
direction, Eq. (A7) is nonvanishing and the principal axes x

and y are along the [110] and [332], respectively. A pertur-
bative estimate of the suitable Landé g factors for the case of
an infinite rectangular well gives® g.=-0.17 and g,=0.41.
The coupling strength 7, as defined in Eq. (4), of this n=0
term depends on the direction of the magnetic field, and is
given by

SiB

Yo1 =" B, (A8)
2

for the particular case of an external field of magnitude B

along one of the two principal axes (i=x or y).

Finally, we mention that including a transverse electric
field, one can develop a perturbation theory in £, and k to
obtain a term corresponding to the n=3 spin-orbit coupling
appearing in Eq. (4). In this case, the explicit form of the
coefficient reads

512 W* c
9h3776(7’1 2% 3y, +10%)

Y= (A9)

This again differs from the corresponding expression sur-
mised from Ref. 8.
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