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The tight-binding description of covalent bonding is used to propose a four-level, bond-order potential for
elemental silicon. The potential addresses both the � and � bonding and the valence of this sp-valent element.
The interatomic potential is parametrized using ab initio and experimental data for the diamond cubic, simple
cubic, face-centered-cubic, and body-centered-cubic phases of silicon. The bond-order potential for silicon is
assessed by comparing the predicted values with other estimates of the cohesive energy, atomic volume, and
bulk modulus for the �-Sn, bc8, st12, and 46 clathrate structures. The potential predicts a melting temperature
of 1650±50 K in good agreement with the experimental value of 1687 K. The energetics of various high-
symmetry point defect structures and the structure and energetics of small silicon clusters are investigated. The
potential also provides a robust description of surface reconstructions; it notably predicts with high fidelity the
surface formation energy of the �111� 7�7 dimer adatom stacking fault configuration.
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I. INTRODUCTION

Because of its great technological importance, silicon is
one of the most intensely studied elements in the Periodic
Table.1 Numerous synthesis and processing methods have
been developed to enable its use in microelectronic devices.2

Deposition tools, such as molecular-beam epitaxy �MBE�,
enable the growth of very high crystalline quality silicon at
deposition rates of 1–10 Å/s provided the substrate tem-
peratures are above �450 °C.2 This process enables atomic
monolayer control of the growth surface to be achieved by
manipulating the thermally activated atomic assembly pro-
cesses. Ion implantation can also be used to create amor-
phous layers on the surface of silicon which can then un-
dergo epitaxial regrowth at temperatures well below the
melting temperature.3 The solid phase epitaxial growth rate
is well described by an Arrhenius dependence on tempera-
ture �as the temperature increases, the epitaxial growth rate
increases�, with an experimentally derived activation energy
of 2.7 eV for silicon.4

There is significant interest in the use of modeling meth-
ods to better understand the atomic assembly mechanisms
during these vapor phase and solid-state epitaxial growth
processes. Numerous computational techniques have been
developed to address atomic interaction during atomic struc-
ture simulation. Density-functional theory �DFT� calculates
the full electronic configuration of a system of atoms using
first-principles quantum mechanics. The DFT method is
computationally expensive and is typically employed only
for small systems �on the order of 10–100 atoms�.5 Kinetic
Monte Carlo �KMC� employs a database of known �mea-
sured or precomputed� activation barriers for atomic migra-
tion and computes jump probabilities between lattice sites to
simulate the evolution of a system of atoms. When on-lattice
approaches are used, this method is much more computation-
ally efficient than DFT and is capable of simulating systems

containing many millions of atoms.6,7 However, the KMC
approach requires significant a priori knowledge of the dif-
fusion processes, their associated energetics, and surface re-
action rates. The compilation of a complete set of this atomic
scale information is nontrivial.8

Molecular-dynamics �MD� methods lie between the ab
initio and Monte Carlo approaches in both computational
efficiency and predictive validity.9 Molecular-dynamics
methods solve Newton’s equations of motion for atom posi-
tions in a system using a potential-energy function �an inter-
atomic potential�. They have been successfully used to study
the surfaces of transition metals during their assembly from
the vapor phase using embedded atom method �EAM�
potentials.10,11 The approach has also been extended to ion
assisted deposition12 and surfactant mediated growth.13

These studies have significantly contributed to the develop-
ment of modern ion-beam assisted deposition tools for the
growth of metallic superlattice structures.14

Silicon is covalently bonded and more complex to model
than the close-packed metals. In contrast to the close-packed
phases preferred by metals, silicon has an open diamond cu-
bic structure under ambient equilibrium conditions.15 Be-
cause of sp3 hybrid bonding, each atom is tetrahedrally co-
ordinated and large energy penalties are incurred by
distortions of the lattice. The strong angular dependence of
the interaction energy cannot be accounted for by the EAM-
type potentials used for close-packed metals. Angularly de-
pendent interatomic potentials are necessary to accommodate
the complexity of the covalent bond.

The covalent bonding in silicon arises from electrons in
the s and p orbitals.16 The s orbital is radially symmetric
while the three p orbitals are orthogonal to each other. The s
and p orbitals can overlap to form � and � bonds. The �
bond orbitals are symmetric with respect to the bond axis,
whereas � bonds are antisymmetric about the same bond
axis rotation.16 Silicon contributes two s and two p electrons
to its covalent bonds. In order to maximize the valence elec-
tron orbital overlap, the s and p orbitals form four sp3 hy

PHYSICAL REVIEW B 75, 155207 �2007�

1098-0121/2007/75�15�/155207�10� ©2007 The American Physical Society155207-1

http://dx.doi.org/10.1103/PhysRevB.75.155207


brids at the expense of a small energy penalty �the promotion
energy�. This hybridization is responsible for the tetragonal
structure of diamond cubic silicon.16 The bond order, or
strength of the bond, is one-half the difference of the number
of bonding electrons and antibonding electrons. It assumes a
maximum value of unity for a � bond and two for a � bond
when the bonding orbitals are fully occupied and the anti-
bonding states are empty.

Numerous groups have attempted to incorporate these
physical concepts underlying covalent bonding in many-
body interatomic potentials.17–26 This has led to semiempir-
ical sets of equations that attempt to approximate the phe-
nomenological nature of the bond. An assessment for the
GaAs system has shown that this approach has resulted in
mixed success.27 Pettifor and co-workers have shown that it
is possible to derive an analytic, many-body interatomic po-
tential by coarse graining the electronic structure within the
orthogonal two-center tight-binding �TB� representation of
covalent bonding.28–32 These analytic bond-order potentials
�BOPs� explicitly link the bond order �and therefore bond
energy� to the positions of atomic neighbors. Applications of
the approach to the GaAs system and hydrocarbons have
given encouraging results.27,33 This paper explores the appli-
cation of the BOP formalism developed by Pettifor and co-
workers to elemental silicon. The resulting interatomic po-
tential is assessed by comparison of its predictions with
experimental and ab initio data.

II. ANALYTIC BOND-ORDER POTENTIALS

The derivation of the functional format of the BOP from
the TB model has been detailed elsewhere.28–32 Here, we
introduce this format and define the precise form employed
for use with the Si elemental system. The potential-energy
function �E� is expressed as the sum of bonding Ubond, repul-
sive Urep, and promotion energy Uprom terms

E = Ubond + Urep + Uprom, �1�

where the bonding energy incorporates elements of both the
s and p nature of the covalent bond, the repulsive energy is

represented by a pairwise interaction, and the promotion en-
ergy represents the energy penalty associated with the orbital
hybridization needed to achieve the sp3 bonding environ-
ment.

The bond energy is written as follows:

Ubond = − ��
j=i1

iN

��,ij��,ij + �
j=i1

iN

��,ij��,ij� , �2�

where i1 , i2 , . . . , iN is a list of neighbors of atom i, �� and ��

are the � and � bond orders, and �� and �� are the corre-
sponding bond integrals. The bond-order terms describe the
dependence of the ij bond strength on the local configura-
tions. The bond integrals �� and �� are pairwise functions of
the interatomic distance rij.

��,ij = ��,0GSP��rij� , �3�

��,ij = ��,0GSP��rij� , �4�

where ��,0 and ��,0 are constants, and GSP is a Goodwin-
Skinner-Pettifor function.34 The pairwise repulsive energy
�Urep� is written similarly as

Urep =
1

2 �
j=i1

iN

�ij , �5�

�ij = �0GSP��rij� , �6�

where �0 is a constant, and the GSP format takes the form

GSPx�rij� = � r0

rij
�nx

exp	nx�� r0

rc,x
�nc,x

− � rij

rc,x
�nc,x�
 , �7�

where x=� ,� ,� define the function type, and r0, rc, n, and
nc are constants. The GSP function is further modified by
application of a cubic function S�rij�, so that GSP�rij�
→GSP�rij�S�rij�, to ensure a smooth cutoff of the interaction
energy as rij approaches rcut. This spline is of the form

S�rij� = �
1, rij � r1

� rij − rcut

r1 − rcut
�2	3r1 − 2rij − rcut

r1 − rcut
+ n�1 −

rij

r1
��1 + nc� r1

rc
�nc�
 , r1 � rij � rcut

0, rcut � rij .
� �8�

FIG. 1. �Color online� Self-returning �a�, �c�, �d�, and �e�� and
interference �b� hopping paths of lengths 2 and 4 which contribute
to �a� �2�, �b� R4�, �c� �4�, �d� �2�, and �e� �4�.

FIG. 2. Dihedral angle formed between atoms kijk�.
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The � bond order ���� for the ij bond is given by

�ij,� = �1 +

�2�
i + �2�

j + � 	�

�ij,�
�2

+ R4�
ij + �̃2�

i �̃2�
j �2 + 
�̃4��

�1 + 
�̃4��2 �
−1/2

, �9�

where


�̃4� =

�4�

�
�4� + �2�
i �2�

j
, �10�

�̃2�
i �̃2�

j =
�2�

i �2�
j

�
�4� + �2�
i �2�

j
, �11�

and 	� is a parameter. The terms �2�
i , �4�

i , and R4�
ij represent

the specific self-returning hopping paths illustrated in Fig. 1.
They can be written as

�2�
i = �

k�i,j
gjik,�

2 ��ik,�

�ij,�
�2

, �12�

�4� = �
k�i,j

gjik,�
2 ��ik,�

�ij,�
�4

+ �
k�i,j

gjik,�gkik�,�gk�ij,���ik,�

�ij,�
�2��ik�,�

�ij,�
�2

+ �
k,k��i,j

�gjik,�gikk�,��2��ik,�

�ij,�
�2��kk�,�

�ij,�
�2

, �13�

Rij,4� = �
k,k��i,j

gjik,�gikk�,�gkk�j,�gijk�,���ik,�

�ij,�
���kk�,�

�ij,�
�

���k�j,�

�ij,�
� , �14�

where

gjik,� = 1 + p�cos � jik − 1� . �15�

Here, p is a parameter. The format of the angular term g has
been simplified from the form found in Ref. 32 by assigning
a value of 0 to the parameter b�.

The � bond order ���� for the ij bond is given by

�ij,�� = �1 +
�2�

i + �2�
j

2
± ��4�

i + �4�
j

2
�1/2�−1/2

, �16�

where the terms �2� and �4� represent the specific self-
returning hopping paths of lengths 2 and 4 illustrated in Figs.
1�d� and 1�e�. The parameter c� found in Ref. 32 for the
equivalent � bond-order expression is assigned a value of 1
here. The self-returning hopping paths of lengths 2 and 4 can
be written as

�2�
ij = �

k�i,j
�sin2 � jik

p

1 + p
��ik,�

�ij,�
�2

+ �1 + cos2 � jik���ik,�

�ij,�
�2� ,

�17�

�4� = �
k,k��i,j

�sin2 � jik sin2 � jik��̂ik
2 �̂ik�

2

+ sin2 � jik sin2 �ijk��̂ik
2 �̂ik�

2 + sin2 �ijk sin2 �ijk��̂ jk
2 �̂ jk�

2

+ sin2 �ijk sin2 � jik��̂ jk
2 �̂ jk�

2 �
cos��k − �k��

4
, �18�

where the dihedral angle �k−�k�, defined in Fig. 2, can be
found from

cos2��k − �k��� =
2�cos �kik� − cos � jik� cos � jik�2 − sin2 � jik sin2 � jik�

sin2 � jik sin2 � jik�
, �19�

and �̂ is defined as

�̂ik
2 =

p

1 + p
��ik,�

�ij,�
�2

− 	��ik,�

�ij,�
�2

, �20�

where 	 is a constant.
The promotion energy �Uprom� can be expressed as

Ui
prom = 		1 − �1 + �

j�i
�A

�ij,�

	
�2�−1/2
 , �21�

where A is a constant.
The preceding equations fully define the fourth moment

approximation BOP.28–32 In order to use the potential for
simulations, 19 parameters must be determined. These in-
clude 13 GSP ��0, ��,0, ��0, n�, n�, n�, nc,�, nc,�, nc,�, rc,�,
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rc,�, rc,�, and r0�, one angular �p�, two promotion energy �A
and 	�, two cutoff �r1 and rcut�, and one bond-order �	��
parameters. A least-squares fitting algorithm was employed
to fit the parameters to a database of experimental and ab
initio properties of silicon. This database included experi-
mental cohesive energies for a silicon dimer and the diamond
cubic �dc� phase,15 local-density-approximation-density-
functional-theory �LDA-DFT� estimates for the energy, and
bulk modulus of the simple cubic �sc�, face-centered-cubic
�fcc�, and body-centered-cubic �bcc� phases,35,36 and experi-
mentally determined elastic moduli �c11, c12, and c44� for the
dc phase.37 Calculations of the �2�1� Si�100� surface recon-
struction energy �−0.054 eV/Å2� were also used to help fit
the parameters. Table I lists the best-fit values of all the pa-
rameters. The bulk material properties predicted by the BOP

are compared with the corresponding experimental data and
tight-binding calculations used for fitting in Table II.

III. POTENTIAL EVALUATION

The parametrized Si BOP was assessed by examining pre-
dicted properties relevant to the atomic assembly of epitaxial
thin films grown from the vapor phase. These include the
binding energy and structure of the Si trimer, tetramer, pen-
tamer, and hexamer; atomic volume, cohesive energy, and
elastic constants for various solid Si phases; the melting tem-
perature; various Si defect formation energies, and the rela-
tive surface free energies for �100�, �110�, �111�, and �113�
surface reconstructions in the dc Si crystal.

A. Small clusters

The MBE of silicon thin films generally involves the
deposition of silicon monomers.38,39 However, with the ad-
vent of efficient laser vaporization techniques, the vapor
phase deposition of small silicon clusters can also be
envisioned.40–42 Therefore, reasonable predictions of small
silicon cluster energies and structures are important. The
structure and bond energies of silicon clusters are heavily
reliant on both the angular and radial components of the
interatomic potential. Thus, examination of cluster properties
is a useful means of testing the BOP. A conjugate gradient
method43 was used to calculate the relaxed structure and
binding energies for small silicon clusters and the results are
summarized in Table III along with the Hartree-Fock �HF�
predictions.44,45

Three possible configurations for the Si trimer, the linear
chain, the bent chain, and the equilateral triangle, were ex-
amined. The BOP Si potential predicted that the equilateral
triangle had the lowest energy. Data for the linear chain and
equilateral triangle were not available for HF
calculations.44,45 HF calculations predicted that the bent
chain has the minimum energy at an apex angle of �80°.
The apex angle that minimizes the energy of the bent chain
was found to be �111.6° using the BOP, matching the mini-
mum of the angular term, Eq. �15�.

TABLE I. Si BOP parameters.

Function Parameter Value

Angular p 0.7315

Bond order 	� 0.53741

�0 1.01155

��,0 2.22435

��,0 0.19631

n� 8.74294

n� 2.94459

n� 4.04032

nc,� 2.52315

GSP nc,� 6.53303

nc,� 29.4822

rc,� 14.932

rc,� 11.6751

rc,� 2.77118

r0 2.349

r1 3.1

rcut 3.6

Promotion A 1.85202

	 10.17996

TABLE II. Comparison of the BOP fitted bulk properties with reference data compiled from experimental
�denoted by †� and tight-binding calculations. c44 is relaxed. The BOP predictions are listed first followed by
the reference data in parentheses.

Dimer dc fcc bcc sc

Ec �eV/at.� −2.61
�2.41a,†�

−4.63 �−4.63b� −4.08 �−4.15b� −4.03 �−4.19b� −4.43 �−4.29b�

B �GPa� 92.29 �97.88b� 80.95 �93.54b� 74.09 �111.3b� 126.43
�105.6b�

c11 �GPa� 134.89 �165.78c�
c12 �GPa� 70.98 �63.94c�
c44 �GPa� 84.03 �79.62c�
aReference 15.
bReferences 35 and 36.
cReference 37.
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TABLE III. Structures, bond lengths, and binding energies predicted for Sin �n=3−6� small clusters.
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Four Si tetramer structures were examined including the
linear chain, the square, the trigonal pyramid, and the corner-
capped triangle. The BOP Si potential predicted that the
square had the lowest energy. The HF calculations indicated
that the square and the capped triangle had the lowest energy
�around −8.85 eV�. Both the bond length and energy of the
square predictions of the BOP agree well with the HF calcu-
lations. However, there are some deviations for the other
higher-energy structures. For example, the Si4 linear-chain
structure has two separate bond lengths, as shown in Table
III. The BOP predicted that the 2-3 bond is significantly �
�0.4 Å� longer than the 1-2 bond, whereas the HF method
predicted that the 2-3 bond is shorter ��0.1 Å� than the 1-2
bond. This arises because the BOP overestimates the
�-bonding nature in the 1-2 bond.

The BOP predictions for the Si pentamer and hexamer
structures are comparable to the HF results. With BOP, the
lowest-energy pentamer is the planar pentagon; however, this
was not the most stable structure with HF.44,45 The planar
pentagonal structure favored by the BOP does not provide a
significant energetic advantage over the competing high-
symmetry cluster structure’s predicted energies in BOP pre-
dictions. The planar pentagon structure is preferred by BOP
due to the minimal amount of bond bending required to ob-
tain the structure �bond angles of 108°�. The edge-capped
trigonal bipyramid was found by the BOP to be the
minimum-energy hexamer structure, in agreement with the
HF predictions.44,45

In general, the BOP Si potential prefers larger atomic
spacing in clusters than the HF calculations. The source for
this discrepancy arises from the selection of the target dimer
separation in the BOP parametrization �2.336 Å�. The HF
underestimates the dimer separation at 2.227 Å ��0.11 Å
shorter than the experiment�.15 Even though the BOP does
not predict the same low-energy structures for Si clusters as
those predicted by the HF calculation �with the exception of
the Si hexamer�, the improvement of the predictions of the
overall binding energies for different clusters compared to
other potentials is anticipated to improve the simulations of
vapor deposition simulation.

B. Bulk structures

During vapor deposition, many different bonding configu-
rations can be encountered by atoms and molecules depos-
ited on the surface. Therefore, it is important for a potential
to accurately describe a wide variety of crystalline phases.
Many crystalline polymorphs of elemental silicon have been
observed. These include the dc,15 the �-Sn structure,46 the
bc8 structure,47 the st12 structure,47 and the Si46 clathrate
structure.48 These phases, along with additional model crys-
tal structures such as sc, fcc, and bcc, were examined. Figure
3 compares the BOP predictions of atomic volume, cohesive
energy, and bulk modulus for different phases to those of our
LDA-DFT calculations using the VASP calculation
package.49–52 Note that the LDA-DFT values presented are
not the same values to which the potential was fitted. To
compare only the energy difference between different
phases, the energies were shifted so that the energies pre-

dicted by the BOP and LDA-DFT for the diamond cubic
phase exactly matched.

The atomic volumes, cohesive energies, and bulk moduli
of crystalline structures predicted by the BOP Si potential are
in reasonable agreement with the LDA-DFT calculations per-
formed. The atomic volumes predicted by the BOP shown in
Fig. 3�a� are within ±3% of the LDA-DFT results, with the
exception of the bcc and bc8 structures �both within ±8%�.
The cohesive energies, summarized in Fig. 4�b�, are within
±6% of the LDA-DFT results. The bulk moduli, summarized
in Fig. 4�c�, are within 50% of the LDA-DFT results. This
level of bulk modulus prediction is within the acceptable
predictive range limitations found within the TB model from
which the BOP is derived.53 The Cauchy pressure

FIG. 3. �Color online� �a� Atomic volume, �b� cohesive energy,
and �c� bulk modulus for a variety of physical and theoretical struc-
tures as calculated by BOP and LDA-DFT. The values in the shaded
region represent fitted values.
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�c12–c44
relaxed� was calculated to be −13.05 GPa, in good

agreement with the experimental value of −16.0 GPa.54 It
should be mentioned that interatomic potentials using an
environment-independent repulsive term tend to incorrectly
predict a positive Cauchy pressure.55 The BOP resolves this
problem by the incorporation of promotion energy.28–32

At standard temperature and pressure �273 K and 1 atm�,
the lowest-energy crystalline phase of Si has the diamond
cubic structure.15 The dc structure has an atomic volume of
�20 Å3/at. and a cohesive energy of 4.63 eV/at.15 If suffi-
cient pressure ��12.5 GPa� is applied to Si, it will distort
from the fourfold coordinated dc structure to a sixfold coor-
dinated �-Sn phase.46 This transition is also accompanied by
an electronic shift from the semiconducting to metallic
state.46 When pressure is removed from �-Sn phase silicon,
it does not return to the dc phase. Instead, it follows a lower-
energy kinetic path to the bc8 phase at a pressure of
�8 GPa.46 A similar process is required to form the st12
phase; however, increased temperature is necessary when re-
leasing pressure on the �-Sn phase due to a less energetically
preferable kinetic pathway for reconfiguring into the st12
structure. The Si46 clathrate structure is obtained through an
undescribed set of materials processing involving Na and
K.48

To explore the bulk energetics, the binding energy vs
atomic volume curves for the structures were examined, and
results are shown in Figs. 4�a� and 4�b�, respectively, for
BOP and LDA-DFT calculations. It is apparent that at a very
high pressure, the transition from dc to �-Sn is properly
modeled by the BOP. The BOP also correctly places the bc8
phase as a stable phase at an intermediate pressure. The Si46
clathrate structure is also found to be energetically favorable
at sufficiently high relative volume �under tensile stresses�,
matching previous theoretical investigations of the phase.48

Comparison between Figs. 4�a� and 4�b� indicates that, in
general, the BOP reproduces well the volume-dependent
relative energies of different phases of the LDA-DFT calcu-
lations.

Examining the bulk phonon spectrum of the diamond cu-
bic phase is also a useful method of evaluating the perfor-
mance of the potential near equilibrium. This calculation is
performed by annealing a sample crystal of sufficient size
�512 atoms were employed� and calculating the velocity-
velocity autocorrelation function of the system. The vibra-
tional spectrum for the system can then be calculated by
taking the Fourier transform of the correlation function. The
resulting vibrational spectrum is illustrated in Fig. 5. The
highest peak calculated is at 550 cm−1, which is within �5%
of the experimentally observed highest intensity peak at
520 cm−1.56

C. Melting temperature

The predicted melting temperature �Tm� can affect surface
structures, evaporation rates, and surface diffusion. Near the
melting temperature, the interatomic spacing is significantly
larger than the separation at room temperature to which the
potential has been fitted. Therefore, the melting temperature
can be a combinational measure of the strength of the inter-
atomic bond �depth of the interatomic potential well� and the
shape of the interatomic potential at large separation. During
deposition large interatomic separation distances are fre-

FIG. 4. �Color online� Binding energy vs relative volume �with
respect to equilibrium dc volume� curves for a range of Si bulk
structures. �a� BOP Si and �b� LDA-DFT.

FIG. 5. �Color online� The local phonon spectral density for
c-Si. The vertical dashed line represents the experimentally ob-
served strongest peak.
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quently encountered. It is therefore important to examine the
melting temperature.

The Tm estimate was determined following the approach
by Morris et al. in which a half-liquid/half-solid supercell is
allowed to achieve an equilibrium temperature under con-
stant pressure.57 A large supercell �2160 atoms, 60 plans of
36 atoms each� was used and two temperature control re-
gions were applied, one well above Tm and one well below.
After 20 ps, the supercell was 1

2 melted and 1
2 crystalline.

The temperature control regions were then removed and the
system allowed to reach thermal equilibrium �assumed to
occur within 500 ps�. At equilibrium, the boundary between
the liquid and solid phases will have stopped moving, and
the temperature of this equilibrated region is taken as the
melting temperature. The Tm obtained in this manner has an
uncertainty of ±50 K �obtained from variations in repeated
runs�.

The BOP silicon potential predicts a melting temperature
of 1650±50 K. This temperature range includes the experi-
mentally observed value of Tm=1687 K.58 It indicates that
the BOP models well the interaction of silicon at large sepa-
ration distances.

D. Point defects

There is a high probability of defect formation during
vapor deposition and solid phase epitaxy. The equilibrium
population of the defects is determined by the defect energy.
The lifetime of these defects is also determined by kinetics
�with the exception of the vacancy�; higher temperatures re-
sult in significantly lower defect concentration. We have ex-
amined several important defects including the three low-
energy interstitials and the vacancy.59 The interstitial
positions and notations are shown in Fig. 6.

The defect formation energy 
Ef can be expressed fol-
lowing the approach by Finnis60 as


Ef = lim
N→�

	E�N,x� −
Nd

N
E�N,0�
 ,

where E�N ,0� is the total energy of a perfect crystal with N
lattice sites, E�N ,x� is the total energy of a crystal with N
lattice sites and x defects, and Nd is the number of atoms in
the defected crystal. The number of lattice sites N used for
each sample was 1536, well beyond the point of convergence
for this material. The BOP predicted formation energies of
the examined point defects are compared to those predicted
from LDA-DFT calculations in Table IV.59,61–64

Precise defect formation energies were not expected be-
cause defects were not incorporated in the fitting process. As
a result, the relative order of the defect energies predicted by
the BOP and ab initio calculations is not exactly the same.
For example, the BOP predicts that the T interstitial has the
lowest energy, whereas the LDA-DFT predicts that the
X-split interstitial has the lowest energy. Nonetheless, the
BOP predicted interstitial energies are generally close to pre-
vious LDA-DFT calculations. The vacancy formation energy
of 2.759 eV predicted by the BOP also well matches the past
GGA-DFT value of 3.17 eV.65 The vacancy volume was
seen to shrink during energy minimization. This again
matches the observations from ab initio calculations.66

E. Surface reconstructions

A robust description of surface morphology is an impor-
tant part of the simulation of vapor phase deposition. The
most common surfaces that are used for crystal growth in
silicon are the �100� and �111� surfaces. The widely observed
surface reconstructions for those surfaces are the �2�1�
dimer row67,68 and the �7�7� dimer adatom stacking fault

TABLE V. Surface energies relative to the corresponding unre-
constructed surface. All energies are in eV/Å2.

Surface BOP Ab initio/TB

�100� �2�1� −0.046 −0.054a

�110� �2�1� adatom −0.131 −0.190b

�113� �3�2� −0.139 −0.036c

�111� �7�7� DAS −0.379 −0.403d

aReference 79.
bReference 73.
cReferences 74–76.
dReference 77.

FIG. 6. �a� The diamond cubic lattice and three low-energy in-
terstitial configurations: �b� tetrahedral, �c� hexagonal, and �d�
110�-split.

TABLE IV. Point defect formation energy in eV.

BOP
LDA-DFT/
GGA-DFTa

T 2.636 3.7—4.8

H 3.846 4.3—5.0

X 3.876 3.3

Vacancy 2.759 3.3—4.3

aReferences 59 and 61–64.
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�DAS�,69 respectively. At low temperatures, the �100� surface
is often seen to have a c�2�4� buckled dimer
configuration.70 It is thought that at higher temperatures, the
buckled dimers oscillate at a high frequency such that they
appear to be symmetrical.68,71,72 The BOP was fitted approxi-
mately to the �100� �2�1� surface energy. Here, we examine
the �100� �2�1� adatom, the �110� �2�1� adatom,73 the
�113� �3�2� DAS,74–76 and the �111� �7�7� DAS.69 These
surfaces are illustrated in Fig. 7. The energies of surfaces
were calculated from the surface area, number of atoms, bulk
cohesive energy, and total energy of the computational su-
percell of the reconstructed surface. Each supercell had be-
tween 1000 and 2200 atoms with reconstructed top and bot-
tom surfaces. The calculated surface energies relative to the
unreconstructed surfaces are compared with the ab initio/TB
data in Table V.

It can be seen from Table V that the surface free energy
relative to the unreconstructed surface is within 0.06 eV/Å2

for each surface except the �113� �3�2� surface. However,

this is not an issue because there is no clear minimum energy
reconstruction for the �113� surface in the literature.74–76

Most importantly, the highly complex �111� �7�7� surface
reconstruction is found to be stable with nearly the same
relative free energy as tight-binding calculation.77 The BOP
shows a marked improvement in the calculation of surface
energies over other available silicon interatomic potentials.78

IV. CONCLUSIONS

A bond-order potential capable of predicting a range of
cluster, bulk, and surface properties for elemental silicon has
been developed. Its 19 free parameters were obtained by fit-
ting to experimental and ab initio data for the bulk properties
of many silicon phases and the surface free energy for the
�100� �2�1� reconstruction of the dc surface. The potential
has the following characteristics.

�1� The energies and bond lengths, the atomic volume,
cohesive energy, bulk modulus of many phases, melting tem-
perature, point defect formation energy, and surface free en-
ergy are all relatively well predicted. A negative Cauchy
pressure is correctly predicted. The cohesive energy vs
atomic volume curves predicted for different phases are in
good agreement with LDA-DFT calculations. The predicted
vibrational spectrum for silicon also well matches experi-
ment.

�2� Neutral point defect energies predicted by the BOP
compare reasonably well with the DFT calculations.

�3� Surface reconstruction free energies were accurately
calculated by the Si BOP for the �100�, �110�, �113�, and
�111� surfaces, with a notable success for the �111� �7�7�
surface energy.
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