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The hopping mobility of charge carriers in disordered organic host-guest systems with a bimodal Gaussian
density of states is studied. Two semianalytical models are used, viz. a relatively simple Mott-type model and
a more advanced but computationally less efficient effective medium model. The latter model has been gen-
eralized, in order to be able to include the effect of different wave function extensions of the host and guest
molecules. It is shown that energetic disorder can result in a pronounced charge carrier concentration depen-
dence of the mobility. This provides an explanation so far for unresolved issues concerning the guest concen-
tration dependence of the measured hole mobility in some well-characterized host-guest systems. It is also
argued that treating the mobility as a carrier concentration dependent quantity is highly relevant to the mod-
eling of carrier transport in organic light emitting devices �OLEDs�, consisting of an organic matrix material
with embedded fluorescent or phosphorescent dye molecules.
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I. INTRODUCTION

Disordered organic semiconducting host-guest systems
are employed in several types of devices. In organic light
emitting diodes �OLEDs�, e.g., hole transporting guest mol-
ecules have been used to decrease the barrier for hole
injection,1,2 fluorescent dye molecules can be added to tune
the emission color3 and phosphorescent dye molecules con-
taining heavy metal atoms are used to harvest both singlet
and triplet excitons.4 Fluorescent dye molecules have also
been used to obtain light amplification in organic thin films
using cascade energy transfer.5 In xerography, molecularly
doped polymers are used as photoreceptors.6 In any organic
electronic material, guest molecules can also be present as an
unintended result of nonideal preparation processes. The
presence of guest molecules has a strong effect on the trans-
port properties if their HOMO �highest occupied molecular
orbital� states and/or LUMO �lowest unoccupied molecular
orbital� states lie within the energy gap of the host material.
At small concentrations, such guest molecules give rise to a
decrease of the mobility, �, as a result of charge carrier trap-
ping on the molecule. In some systems, this only continues
until, at certain guest concentration, a minimum in the mo-
bility is reached. For larger guest concentrations, the mobil-
ity increases with concentration as a result of direct hopping
between the guest molecules.7

The effect of guest molecules on the mobility has been
modeled in various ways. When the energy levels of the
guest molecules are well below the host energy levels in
between which hopping takes place, the guest sites can be
viewed as traps. Within the so-called multiple-trap-and-
release model, the effective mobility is given by ��x�
= f�x���0�, where x is the guest molecule concentration, ��0�
is the mobility in the absence of guest molecules, and f�x� is
the fraction of charge carriers that on average reside on a
host site. Within this model, direct guest-to-guest hopping is
neglected, which is appropriate at sufficiently small guest
concentrations. Neglecting disorder of the host and guest en-
ergy levels, and assuming sufficiently deep trap energies, so

that Boltzmann statistics is applicable, the mobility reduction
is then given by the Hoesterey-Letson �HL� formula

��x�
��0�

=
1

1 + x exp� �

kBT
� , �1�

where � is the energy difference between the host and trap
energy levels, and kBT is the thermal energy.8 The presence
of guest molecules thus reduces the mobility by a factor 2
for a concentration x1/2=exp�−� / �kBT��. This defines the
boundary between the host-to-host �HH� hopping regime
�x�x1/2�, in which the presence of the guest molecules does
not significantly affect the mobility, and the host-guest-host
�HGH� hopping regime �x1/2�x�xmin�. In the latter regime,
trapping at guest molecules reduces the mobility signifi-
cantly. A second crossover, to a guest-to-guest �GG� hopping
regime, occurs at the guest concentration xmin at which the
mobility is minimal, if there is such a minimum. Qualita-
tively, the results of time-of-flight measurements of the mo-
bility in organic host-guest systems provide support for this
picture.9 However, proper quantitative analyses should take
the disorder of the energies of the host and guest sites into
account. This was done by Wolf et al.,10,11 Fishchuk et al.,12

and Arkhipov,13 who developed quantitative models for the
mobility in host-guest systems, in all cases assuming a bimo-
dal Gaussian density of states �DOS�. Recently, Fishchuk et
al. extended their model in order to include the transition
around x=xmin between the HGH and GG hopping regimes.14

In spite of this progress, the theoretical models developed
so far still lack an important ingredient: the mobility does not
only depend on the guest concentration, but also on the
charge carrier concentration, c. It is the purpose of this paper
to demonstrate the relevance of this effect, by showing the
results from a model for the dependence of the mobility on x
and c, for the case of a bimodal Gaussian DOS. We discuss
the relevance of this effect for OLEDs, and argue that it
might provide an explanation for an unresolved discrepancy
between the ��x� curves observed from time-of-flight �TOF�
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experiments for certain well-characterized amine-based host-
guest systems and the so far available models.15,16 The ob-
served values of x1/2 and the rate of decrease of the mobility
beyond x1/2 were for some systems significantly larger than
predicted from the results of Monte Carlo calculations.10 The
mobilities were derived from the trajectories of single par-
ticles in an otherwise empty box, so that a possible charge
carrier concentration dependence of the mobility was ne-
glected.

The notion that the hopping mobility in disordered or-
ganic systems can depend on the carrier concentration is not
new.17,18 For a unimodal Gaussian DOS, several semianalyti-
cal models lead consistently to such a dependence above a
certain minimum critical carrier density �Ref. 19 and refer-
ences therein�. Numerical results from a Master Equation
approach and an analysis of the experimental current-voltage
characteristics of single-carrier polymer LED type are fully
consistent with the semianalytical results.20 In a unimodal
Gaussian DOS the mobility becomes carrier concentration
dependent when the Fermi energy �with respect to the top of
the Gaussian� is equal to EF=−�DOS2/ �kBT�, with �DOS the
width of the Gaussian DOS, i.e., at a crossover carrier
concentration19

ccross-over =
1

2
exp�−

1

2
ŝ2� , �2�

with ŝ��DOS/ �kBT�. Below this carrier concentration, the
carriers act as independent particles �Boltzmann limit�: the
shape of the density of occupied states is independent of the
carrier concentration. In contrast, above ccrossover the occupa-
tion probability of the deepest guest states is so large that
their effectiveness as trap sites decreases significantly with
increasing carrier concentration. As a result, the mobility in-
creases with increasing carrier concentration. In disordered
organic systems, � varies typically from 0.05 to 0.15 eV, so
that at room temperature ŝ varies typically from 2 to 6. For
ŝ=5, e.g., the crossover concentration is approximately 10−6.
The actual carrier concentration in 80 nm single-layer
OLEDs, at typical operational conditions, is significantly
larger, viz. typically 10−5 to 10−4 in the center of the layer,
and even larger near the injecting electrodes. In multilayer
OLEDs, containing electron and hole blocking layers, the
carrier concentration in the emissive layers can be of the
order 10−3.21 Disorder is thus expected to give rise to an
appreciable carrier concentration dependence of the mobility
in such systems. The effect is expected to be even larger for
host-guest systems, where the relevant carrier concentration
is the ratio between the carrier density and the �small� guest
density.

This paper is organized as follows. The theoretical models
used are discussed in Sec. II. We have developed a model for
treating the mobility in the HGH-GG transition region that
goes beyond the approach presented by Fishchuk et al.,14 in
two respects: �i� the carrier concentration dependence of the
effect is taken into account, and �ii� the possibility that the
wave function extensions of the host and guest molecules are
different is included. In Sec. III, results are given for a bi-
modal Gaussian DOS with various widths of the host and

guest DOS, and in Sec. IV, a quantitative analysis of these
results is given. In Sec. V the model is used to analyse TOF
mobilities of amine-based systems, as discussed above. Sec-
tion VI contains a summary and concluding remarks.

II. THEORETICAL MODELS

In a previous publication, on the mobility in a unimodal
Gaussian DOS, we have presented a critical comparison of
the carrier concentration dependence of the mobility, as de-
duced from all available semianalytical models.19 Perhaps
the simplest, and yet successful, model is the Mott-type
model developed by Martens et al.19,22 �“Martens model”�.
We have found that its relative simplicity makes it possible
to calculate the carrier and guest concentration dependent
mobility for transport in a bimodal Gaussian DOS in a com-
putationally efficient way. From a physical and computa-
tional point of view, the model developed by Movaghar and
Shirmacher �MS�, using a modified effective medium
approximation,19,23 represents the other extreme. The MS
model is physically more rigorous than the Martens model.
However, for the case of the mobility in a unimodal Gaussian
DOS, a comparison with the numerically exact results from a
Master Equation approach did not allow us to conclude that
the MS model is indeed significantly better than the more
simple and computationally much more efficient Martens
model.19 In Sec. IV, we show that for a bimodal DOS the MS
model is in some cases better than the Martens model, al-
though the latter model already contains all the essential
physics. First, we find that the MS model provides a better
description of the mobility at the transition between the two
HGH and GG hopping regimes. Second, the use of the MS
model makes it possible to consider host and guest molecules
with different extensions of their wave functions. In this sec-
tion, we briefly introduce both methods. Only the mobility in
the limit of zero applied field is considered.

A. Mott-type model Martens et al.

The total DOS is assumed to be the sum of a Gaussian
host and guest DOS, centered at energies E=0 and E=−�,
with widths �DOS,h and �DOS,g, and with volume site densi-
ties Nh and Ng, respectively. The site positions are random.
The guest concentration is defined as x� Ng /Nt, where Nt is
the total site density, Nt�Nh+Ng. Millar-Abrahams hopping
rates between localized sites are assumed �see Ref. 19 and
references therein�. The hopping rate between two sites at a
distance R is proportional to exp�−2�R�, where � is the in-
verse of the effective extension of the localized wave func-
tions. Unless specified otherwise, we assume that Nt /�3

=10−3 �so that �−1=0.1�a, with a the average intersite dis-
tance�, and that � is equal for host and guest sites. Within the
Martens model, the conductivity is given by

� = �0 exp�− 2�R* −
E* − EF

kBT
� , �3�

where �0 is a prefactor that will be treated as a constant. The
mobility is defined as ��� / �nq�, with n the carrier density
and q the elementary charge. It is assumed to be governed by

R. COEHOORN PHYSICAL REVIEW B 75, 155203 �2007�

155203-2



hops over a distance R*, from the Fermi energy EF to an
effective “transport energy” E*. R* and E* are determined
from the following two requirements:22

�i� Each site has on average B neighbor sites within a
radius R* and with an energy in the range �EF ;E*	, and

�ii� R* and E* are taken such that � is maximized.
B is a “percolation parameter.” In the original version of

the Martens model B=1 was taken. However, we have

shown in Ref. 19 that the model needs to be modified, and
that B should be taken larger. As in Ref. 19, we take here
B=1.969. This choice affects the guest concentration depen-
dence of the mobility near the mobility minimum, at
x=xmin, but not the relative mobility decrease upon the intro-
duction of a small concentration of guest molecules.
Straightforward application of these two requirements leads
to the transcendental equation


 2

�
� 4B

9�

�3

Nt
�1/3 �1 − x�exp�−

�e*�2

2
� +

x

y
exp�−

�e* + ��2

2y2 �
��1 − x	�erf� e*


2
� − erf� eF


2
�� + x�erf� e* + �

y
2
� − erf� eF + �

y
2
���4/3 − ŝh = 0, �4�

from which E* can be deduced. Here y=�DOS,g /�DOS,h, e*=E* /�DOS,h and �=� /�DOS,h, EF /�DOS,h, and erf is the error
function. R* is then given by

R* = � 3

2�

B

Nt
�1/3 1

��1 − x	�erf� e*


2
� − erf� eF


2
�� + x�erf� e* + �

y
2
� − erf� eF + �

y
2
���1/3 . �5�

The mobility follows by first calculating the Fermi energy,
for the temperature and carrier concentration of interest,
using Fermi-Dirac statistics, then deriving E* and R* from
Eqs. �4� and �5�, and finally calculating � from Eq. �3� and
�=� / �qcNt�. The hopping process can be described as “vari-
able range hopping” when R*	a, and as “nearest neighbor
hopping” when R*
a. For typical organic semiconductors
with a unimodal Gaussian DOS, with � in the range
0.05 to 0.15 eV, the mobility is around room temperature in
the nearest neighbor hopping regime.

In this paper we will mostly be interested in the reduction
of the mobility due to the presence of guest molecules, i.e.,
in generalizations of Eq. �1�. A key result that has emerged
from earlier studies of the mobility in disordered systems
with a Gaussian DOS �see Ref. 19 and references therein� is
that for small carrier concentrations, in the tail of the DOS,
the transport energy level E* and the radius R* are to a very
good approximation independent of the carrier concentration.
It follows then from Eq. �3� that the conductivity is only
dependent on the carrier concentration via EF�c�. The mobil-
ity enhancement, defined as the ratio ��c� /��c=0�, does
therefore not depend on the wave function decay length and
on the percolation parameter. For the case of a unimodal
Gaussian DOS, it was shown in Ref. 19 �Fig. 7� that
��c� /��c=0� even does not depend on the precise form of
the hopping model that is assumed; an exact expression is
given by Eq. �29� in Ref. 19. For a bimodal Gaussian DOS,
with guest concentration x, it follows using Eq. �3� that the
mobility enhancement is given by

��x,c�
��0,0�

� lim
c0→0

��x,c�
c

c0

��0,c0�
� lim

c0→0

c0 exp�EF�x,c�
kBT

�
c exp�EF�0,c0�

kBT
� .

�6�

This may be viewed as a generalized form of Eq. �1�.
For the case of a bimodal Gaussian DOS, Arkhipov has

applied the transport energy level concept to obtain a gener-
alized expression for the mobility reduction in the limit of a
small carrier concentration.24 Using the EF�c� relationship
given by Eq. �A2� in Ref. 19 �an excellent approximation for
ŝ
2 and for carrier concentrations well below the crossover
concentration�, it follows that c depends in the following
way on EF and x:

c = exp�EF + �

kBT
+

1

2
ŝg

2�x + exp� EF

kBT
+

1

2
ŝh

2��1 − x� . �7�

For x�1, and � /�DOS,h	1, so that the transport energy
level is independent of x, the mobility can then be obtained
using Eq. �6�

��x,0� �
1

�1 − x� + x exp� �

kBT
+

1

2
ŝg

2 −
1

2
ŝh

2���0,0� .

�8�
This result agrees for x�1 with the slightly more general
expression, given without derivation by Arkhipov.24 The mo-
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bility has the same functional dependence on x as in the HL
formula. However, the guest concentration beyond which the
mobility is reduced by a factor of two is increased or de-
creased by the introduction of disorder, depending on the
difference between the Gaussian widths of the host and guest
densities of states

x1/2 =
1

exp� �

kBT
+

1

2
ŝg

2 −
1

2
ŝh

2� , �9�

for x1/2�1.
As long as the transport level is independent of c and x,

Eq. �6� provides an excellent approximation for the carrier
concentration dependence of the mobility. The approxima-
tion breaks down at large carrier concentrations �above
c
10−2−10−1� and near the guest concentration at which a
crossover takes place between the HGH and GG hopping
regimes. The wave function decay length, the percolation
parameter, and final state filling effects become then impor-
tant. The results given in Sec. III have been obtained using
the full theory �Eqs. �3�–�5�	. However, it is instructive to
apply Eq. �6� for the simple case without disorder, i.e.,
�DOS,h=�DOS,g=0. When the guest and carrier concentrations
are small, E*=0 and R*= �3B / �4�Nt�	1/3=0.779a. The exact
expression for the carrier concentration is

c =
x

1 + exp�− � − EF

kBT
� +

1 − x

1 + exp�−
EF

kBT
� . �10�

Equation �10� can be written as a quadratic equation in
exp�−EF / �kBT�	, so that using Eq. �6� an analytic expression
for ��x ,c� can be obtained in a straightforward manner. The
result is shown graphically in Fig. 1, in the form of a contour
plot for the log10 of the mobility reduction, as a function of
the carrier and guest concentration, for x1/2=10−5. At room
temperature, this corresponds to �
0.29 eV. In the lower
right hand part of the diagram, the HL formula is valid, and
in the upper left hand part, the presence of guest molecules
does not affect the mobility �small guest concentration and
large carrier concentration�. In the narrow transition zone

near the line c=x, for x
x1/2, the mobility is strongly depen-
dent on the carrier concentration.

B. Movaghar-Shirmacher (MS) model

Within the effective medium approximation used by
Movaghar and Schirmacher, the conductivity is expressed as
an integral over contributions from all sites.23 A slightly sim-
plified expression for the conductivity, introduced in Ref. 19,
is

� �
q2

kBT

�R2�
6

BMS�0�
−


+


g�E��1�E�dE , �11�

where �R2�=ANt
−2/3 �with A a number of the order 1� is the

average of the square of the hopping distance, BMS is a “per-
colation correction factor” with a numerical value BMS
=exp�1�, g�E� is the density of states, and �0 is the hopping
attempt frequency. Throughout the paper, we assume that �0
does not depend on the molecules in between which the hop-
ping takes place. The dimensionless function �1�E�, which
gives the contribution from sites with energy E, is given by

�1�E� =
4�

BMS
�

−





g�E��dE��
0


 R2

exp�2�R +
�E − EF� + �E� − EF� + �E − E��

2kBT
� +

1

�1�E��

dR . �12�

The denominator of the argument in the radial integral sup-
presses contributions due to hopping from sites with energies
far from EF, and due to hopping to sites that are far away or
for which �1 is small �hopping to sites at which carriers are
effectively strongly trapped�. So far, the MS model was used
only for hopping between molecules with equal decay

lengths of their wave functions, �−1. The tunnel rate between
two sites varies then as exp�2�R� with the intersite distance
R. The tunnel rate between two chemically different sites,
with wave function decay lengths �−1 and �−1, would be
proportional to exp���+��R	. In order to be able to model
the mobility in a system with a bimodal DOS, g�E�=gh�E�

FIG. 1. Guest concentration �x� and carrier concentration �c�
dependence of the mobility in a host-guest system without energetic
disorder �ŝh= ŝg=0� and with the energy difference between the host
and guest states, �=11.51kBT, such that x1/2=exp�−� / �kBT�	
=10−5. The figure shows contours of equal mobility, expressed as
log10 ���c ,x� /��0,0�	.
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+gg�E�, with different wave function decay lengths for the
host and guest molecules, �h

−1 and �g
−1, respectively, we use

Eq. �12� with an effective value of 2� that depends in the
following way on the energies E and E�:

2�ef f�E,E�� = 2�h
gh�E�
g�E�

gh�E��
g�E��

+ ��h + �g��gh�E�
g�E�

gg�E��
g�E��

+
gg�E�
g�E�

gh�E��
g�E��

�
+ 2�g

gg�E�
g�E�

gg�E��
g�E��

. �13�

This is a simple approximate method for taking the nature of
the molecules that most strongly contribute to the hopping
conduction into account, for any combination of initial and
final state energies. Eq. �13� is exact in the zero host or guest
concentration limits, and for the case of equal values of �h
and �g.

III. RESULTS

In order to demonstrate the relevance of the carrier
concentration dependence of the mobility in host-guest
systems, we first show the results of calculations of the
mobility in a series of systems with a host DOS with a width
that is varied from ŝh=0 to ŝh=6, and for a fixed width of
the guest DOS, ŝg=4. All calculations were done for the
case exp�−� / �kBT�	=10−5, as in Fig. 1, corresponding to
�=0.29 eV at room temperature. Figure 2 shows the corre-
sponding total densities of states, on a log10 scale, for guest
concentrations from 10−6 to 10−1. Figure 3 shows for these
four systems contours of equal values of the log10 of the ratio
��x ,c� /��0,0�, calculated using the Martens model. The ref-
erence mobility is thus the mobility of the host material, in
the limit of a very small carrier concentration �c�ccrossover�.

From a comparison between Figs. 1 and 3�a�, it is seen
that the carrier concentration range in which the mobility is

strongly carrier concentration dependent �the region in be-
tween the dashed curves� is increased with the introduction
of disorder of the guest molecules. The upper dashed curve is
the ��x ,c� /��0,0�=0.5 contour line, and the lower dashed
curve is the line at which the mobility is equal to two times
the mobility in the c=0 limit. Disorder of the guest mol-
ecules also shifts the x1/2 point, obtained in the small-c limit,
to smaller values. The value x1/2=3.3�10−9, predicted by
Eq. �9�, is found to agree excellently with the numerically
calculated result.

When also the host DOS is disordered, the mobility does
not only increase with c upon filling of the guest states, but
it also increases upon filling of the host states, viz. when
c
ccrossover �for x=0�. This effect is visible in Figs. 3�b� and
3�c�. With increasing width of the host DOS, the guest con-
centration range within which the mobility is reduced due to
trapping at guest sites is reduced. For the c=0 limit, this is
described by Eq. �9�. Both figures also reveal the transition
between the HGH and GG hopping regimes, at a guest con-
centration around 10−1, depending on the carrier concentra-
tion and on ŝh.

When the host DOS becomes even wider, a point is
reached at which the �x ,c� area within which the mobility is
decreased �with respect to the reference mobility for small x
and c� vanishes. The overlap between the host and guest
DOS is then very large, so that the guest DOS hardly affects
the shape of the total DOS �see Fig. 2�d�	. For the set of
parameters studied, this happens when ŝh=5.85. Figure 3�d�
shows that for the case ŝh=6 the mobility is for all
�x ,c�-points larger than the reference mobility.

Figure 4 shows more clearly than Fig. 3 how the mobility
varies at large guest concentrations, around and above the
crossover to the GG hopping regime. Figures 4�a� and 4�b�
give results for the Boltzmann limit, and Fig. 4�c� shows the
effect of the carrier concentration dependence of the mobil-
ity, by giving results for the Boltzmann limit �dashed curves�
and for a carrier concentration c=10−4. The thin full and

FIG. 2. Densities of states of host-guest systems with a bimodal
Gaussian DOS, given on a log10 scale, for guest concentrations
x=10−6, 10−5 . . .10−1. The energy difference �=11.51kBT between
the host and guest states is such that x1/2=exp�−� / �kBT�	=10−5.
The reduced width of the guest DOS is ŝg=4, and the reduced width
of the host DOS is ŝh=0 �a�, ŝh=2 �b�, ŝh=4 �c�, and ŝh=6 �d�.

FIG. 3. Guest concentration �x� and carrier concentration �c�
dependence of the mobility in a host-guest system with a bimodal
Gaussian DOS with ŝg=4, x1/2=exp�−� / �kBT�	=10−5, and ŝh=0
�a�, ŝh=2 �b�, ŝh=4 �c�, and ŝh=6 �d�. The figure shows contours of
equal mobility, expressed as log10 ���c ,x� /��0,0�	, calculated
from the Martens model. The shapes of the corresponding densities
of states are given in Fig. 2.
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dashed curves were calculated using the Martens model, and
the thick full curves were calculated using the MS model.
The following set of default parameters was used: ŝh= ŝg=4,
�h

−1=�g
−1=0.1a, and exp�−� / �kBT�	=10−5, so that

� / �kBT�=11.51.
Figure 4�a� shows that a larger width of the guest DOS

leads to a shift of the effective x1/2 point to lower guest
concentrations, as given by Eq. �9�, and to a smaller mobility
in the GG regime. These Martens model calculations reveal
only a weak dependence of the guest concentration at which
the mobility is at a minimum on the width of the guest DOS,
and suggest that the HGH-GG transition can be quite abrupt.
However, the lower two curves in Fig. 4�b� �for ŝg=4 and
�g

−1=0.1a� show that within the more sophisticated MS
model the minimum is less deep, and shifted to a slightly

smaller guest concentration. The difference between the re-
sults from both models is only significant in a narrow con-
centration range around the minimum. The upper curve in
Fig. 4�b� shows the mobility for the case of guest molecules
for which the wave function extension is two times larger
than that for the host molecules. As a result, the guest con-
centration at which the mobility is smallest is shifted from
approximately 0.1 �10%� to approximately 0.03 �3%�, and
the mobility for the x=1 system is increased by more than
four orders of magnitude.

The dashed curves in Fig. 4�c� �Boltzmann regime�
show that in the HGH-regime an increase of � �so that x1/2
=exp�−� / �kBT�	 is decreased� has a similar effect on the
mobility curves as an increase of the width of the guest DOS
�Fig. 4�a�	. When modeling experimental data, it is thus im-
portant to have independent information about at least one of
these parameters. The full curves in Fig. 4�c� �for c=10−4�
show the large effect of the carrier concentration on the mo-
bility curves:

�1� The guest concentration above which the mobility is
reduced by a factor of two is strongly increased.

�2� In the HGH-regime the curves are not anymore always
linear �on a double-log scale�.

�3� In the HGH-regime, the average slope of the curves
becomes more negative than −1.

�4� Although the effect decreases with increasing guest
concentration, a carrier concentration of c=10−4 even
increases the mobility around the mobility minimum
�x�10−1�, viz. by a factor 3 to 4. The position of the mini-
mum is not strongly affected.

In Sec. V, some consequences for the analysis of experi-
mental results are given.

In Fig. 5, the situation close to the mobility minimum is
investigated in more detail. The thick curves show the carrier
concentration dependence of the mobility for the case of an
equal width of the host and guest DOS �ŝ=4�, for equal wave

FIG. 4. The mobility in a bimodal Gaussian DOS, as a function
of the guest concentration �x� and as a function of various other
parameter values, calculated from the Martens model �thin lines�
and the Movaghar-Shirmacher model �thick lines�. The default pa-
rameter values are ŝh= ŝh=4, exp�−� / �kBT�	=10−5, �h

−1=�g
−1

=0.1a, and c→0 �Boltzmann limit�. �a� Dependence on the width
of the guest DOS, ŝg. �b� Dependence on the wave function decay
length of the guest molecules, �g

−1. �c� Dependence on the displace-
ment � �expressed as x1/2=exp�−� / �kBT�	� between the host and
guest densities of states, for the Boltzmann limit �dashed curves�
and for c=10−4 �full curves�.

FIG. 5. The mobility in a bimodal Gaussian DOS, as a function
of the guest concentration �x� and for various values of the carrier
concentration �c�, calculated from the Movaghar-Shirmacher model
�thick lines�. Parameter values: ŝh= ŝh=4, exp�−� / �kBT�	=10−5,
and �h

−1=�g
−1=0.1a. The dotted lines have been obtained from the

c=0 curve using Eq. �20�. The thin line �1� is the result for c=0,
obtained from the Martens model. The dashed lines �2� and �3� are
approximations for small c and large and small x, respectively,
given by Eqs �18� and �16�, respectively.
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function decay lengths ��−1=0.1a�, and for exp�−� / �kBT�	
=10−5 �as for the two lower curves in Fig. 4�b�	, calculated
using the MS model. It is seen that the carrier concentration
dependence of the mobility increases with decreasing guest
concentration. This is explained in the next section. As a
consequence, xmin increases with increasing carrier concen-
tration, from �0.09 in the Boltzmann limit to �0.16 for
c=10−2 for the set of parameters used. The thinner curve �1�
shows the result from the Martens model for the mobility in
the Boltzmann limit. The predictions from both models are
only significantly different in the range 0.05�x�0.5, in
which the crossover to the direct guest-to-guest hopping re-
gime takes place.

IV. ANALYSIS

In this section a more quantitative analysis is given of the
results shown in Sec. III.

Figure 3 revealed that there is a critical value for the
width of the host DOS, beyond which the presence of guest
molecules with a certain fixed width and energetic shift of
the DOS does not give rise to a decrease of the mobility. An
estimate for this critical value can be obtained by taking in
Eq. �9� x1/2 equal to xmin, the guest concentration at which the
mobility is minimal. This suggests the criterion

ŝh 

2
�

kBT
+ ŝg

2 + 2 ln xmin. �14�

Taking xmin
0.1 �from Fig. 3�c�	, the critical value of ŝh
would then be equal to 5.87, for the parameter set used in
Fig. 3. The agreement with the exactly calculated value
�5.85� is excellent. Eq. �14� was also found to provide a good
description of the variation of the crossover width of the host
DOS for smaller values of ŝg, in the range from 0 to 4.

Figures 3�b� and 3�c� show that contour lines for which
��x ,c�=��0,0� �so that log10 ���x ,c� /��0,0�	=0� are to a
good approximation straight lines over a large part of the
diagrams. These lines connect �x ,c�-points at which the de-
crease of the mobility by the introduction of guest molecules
is precisely compensated by the increase of the mobility due
to the carrier concentration dependence of the mobility. We
have not been able to derive general expressions for these
contour lines. The empirical expression

log10 c = �1

2
+

1

2
��DOS

kBT
�2

/� �

kBT
��log10 x , �15�

provides a good description of the zero contours for systems
with ŝh= ŝg, and with parameter values close to those used in
Fig. 3�c�. For ŝ=4 and exp�−� / �kBT�	=10−5, the slope of the
zero contour that follows from Eq. �15� is equal to 1.195, in
excellent agreement with the numerically calculated value.

Figure 4 and line �1� in Fig. 5 show that the guest-
concentration dependent mobility curves as calculated from
the Martens model can show a pronounced change of the
slope at the crossover between the two transport regimes. We
find that such discontinuities are accompanied by a simulta-
neous change of the energy E* and the distance R* �see Sec.
II�. E.g., line �1� in Fig. 5 shows a discontinuous slope at x

=0.24. At that point the transport energy decreases with in-
creasing x from approximately −1.9�kBT to −7.6�kBT.
This shift is depicted in Fig. 6, which also shows the DOS at
this guest concentration. The transport level thus shifts from
a position well in the host DOS �guest-limited hopping re-
gime� to an energy where the guest DOS is slightly larger
than the host DOS �guest-to-guest hopping regime�. At the
same time, R* increases from �1.00�a to �1.25�a. We
regard the results from the MS model as more accurate than
the Martens model, because the function �1�E� that is used
within that model �see Sec. II B� gives states at any energy a
certain �energy-dependent� weight, whereas the mobility as
calculated from the Martens model depends only on the den-
sity of states below a certain energy �E*�. Within the MS
model, the transition is therefore somewhat smeared out. As
the mobility curve is strongly asymmetric in the region close
to the minimum, the minimum is shifted downward, from
approximately xmin=0.15 �Martens model� to xmin=0.09 �MS
model�.

As a rough, first quantitative estimate of the value of xmin,
one might take the guest concentration at which the curves
that describe the mobility deep in the HGH and GG hopping
regimes cross. We first discuss this approach for the case of
very small carrier concentrations �Boltzmann regime�. The
mobility in the HGH-regime is given by Eq. �9�. For suffi-
ciently large values of � and/or �DOS,g �as compared to
�DOS,h�, so that the guests effectively act as deep traps, Eq.
�9� can be simplified to

�gc�x,0� �
exp�−

�

kBT
−

1

2
ŝg

2 +
1

2
ŝh

2�
x

��0,0� . �16�

Using Eq. �23� in Ref. 19, the x dependence of the mobility

in the guest-to-guest hopping regime may for small Ŝg be
written as

�gg�x,0� � Cg exp�−
1

x1/3�6B

�

�g

Nt
�1/3� . �17�

where the prefactor Cg depends on �DOS,g, T, �0, and Nt. The
reference mobility, ��0,0�, is given by an expression analo-

FIG. 6. Shift of the transport level, as calculated from the Mar-
tens model, at the crossover guest concentration x=0.24 for line �1�
in Fig. 5, for the case ŝh= ŝh=4, exp�−� / �kBT�	=10−5, �h

−1=�g
−1

=0.1a, and a carrier concentration well below the crossover value
�Boltzmann limit�. The figure also shows the total density of states
�full line� and the partial host and guest densities of states �dashed
lines�.
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gous to Eq. �17�, with x=1. Assuming, for simplicity, that
Ch=Cg, it follows that in the guest-to-guest hopping regime

�gg�x,0� � exp�− �6B

�

�g

Nt
�1/3� 1

x1/3 −
�h

1/3

�g
1/3����0,0� .

�18�

This analysis is applied in Fig. 5, where curve �2� gives the
mobility as predicted by Eq. �18�, with B=1.80 as the param-
eter that best fits the large-x part of the result from the Mar-
tens model �curve �1�	, and curve �3� gives the mobility for
small x �Eq. �16�	. Curve �2� provides a good approximation
for large concentrations. The intersection between curves �2�
and �3� occurs for a guest concentration that is close to the
value where the mobility from the Martens model shows a
clear change of the slope. Qualitatively, also the trends in
xmin that are observed in Fig. 4 when varying ŝg, �g

−1, and �
are explained well from the intersection method, described
above. However, the more precise values, obtained from the
MS method, tend to be systematically somewhat smaller.

The observed upward shift of xmin with increasing carrier
concentration �Fig. 5� can be explained from the following
simple model. The carrier concentration dependence of the
mobility at a fixed value of x can, to a first approximation, be
obtained using the approximation that the transport level is
fixed �see Sec. II�. The mobility enhancement is then only
determined by the variation of the Fermi level energy with c
�see Eq. �6�	. When the host DOS at EF is small with respect
to the guest DOS �i.e., when the host DOS is sufficiently
narrow, the displacement between the host and guest DOS is
sufficiently large, and the carrier density is sufficiently
small�, EF�x ,c� is only determined by the shape of the guest
DOS. The mobility enhancement is then given by an expres-
sion that is analogous to that given by Eq. �28� in Ref. 19 for
a unimodal Gaussian DOS

��x,c�
��x,0�

�
x

c
exp�EF,g� c

x
�

kBT
+

1

2
ŝg

2� , �19�

where EF,g�c /x� is the Fermi energy in the normalized guest
DOS, centered at E=0, for a carrier concentration c /x. Equa-
tion �19� expresses that, under the conditions considered, the
mobility enhancement is governed by the same expression as
for the case of a unimodal DOS, provided that the carrier
concentration is renormalized by a factor 1 /x. This explains
why the enhancement increases with decreasing x, and why
xmin increases with increasing carrier concentration, as noted
already above. The carrier concentration at which the mobil-
ity is enhanced by a factor 2 is given by the renormalized
version of Eq. �2�, i.e., ccrossover�x�= �x /2�exp�−ŝg

2 /2�. In Fig.
3�a�, these crossover concentrations are indicated by the
lower dashed line.

In Ref. 19, a simple analytical expression was given that
provides a good approximation to the right-hand-side part of
Eq. �19�. For the case of a host-guest system with ŝh= ŝg= ŝ,
it would have the form

��x,c�
��x,0�

� exp�1

2
�ŝ2 − ŝ��2c

x
��� , �20�

with

� � 2
ln�ŝ2 − ŝ� − ln�ln�4�	

ŝ2 . �21�

Using this approach, and the MS result for c=0, the dotted
curves shown in Fig. 5 are obtained. The approach is very
good for values of c /x up to almost 10−2, i.e., for the host
material up to c=10−2 and near the mobility minimum up to
c=10−3. It can also be concluded from the figure that the
upward shift of xmin with the carrier concentration is quite
accurately predicted by the model.

V. EFFECT OF THE CARRIER CONCENTRATION
ON THE TIME-OF-FLIGHT MOBILITY

Extensive systematic studies of the guest concentration
dependence of the mobility in organic host-guest systems
have been carried out in the 1990s by the Borsenberger
group at Kodak,6 using time-of-flight �TOF� experiments.
This has resulted in important novel insights, e.g., concern-
ing the origin of energetic disorder �see e.g., Ref. 25� and
concerning the effect of disorder on the hopping mobility.10

However, for relatively large trap depths, above 0.25 eV, im-
portant discrepancies between the experimental and theoret-
ical ��x� curves were found to remain.15,16 This can be seen
from Fig. 6, which gives the TOF mobilities for three proto-
type systems, reproduced from Borsenberger et al.,16 consist-
ing of an inert �nonconductive� polystyrene matrix, di-
p-anisyl-p-tolylamine �DAT�, di-p-tolylphenylamine �DTP�
or diphenyl-p-tolylamine �DPT�, which act as a host mate-
rial, and tri-anisylamine �TAA�, which acts as the guest
material.

TAA molecules are hole traps in all systems studied, with
�=0.07, 0.27, and 0.34 eV as obtained from cyclic
voltammetry16 in the DAT, DTP, and DPT hosts, respectively.
Borsenberger et al. expressed their surprise about two obser-
vations for the TAA:DPT system:

�1� The slope of the log10��� versus log10�x� curve is ap-
proximately −1.5, whereas from the generalized HL formula
�Eq. �8�	 a value of −1 is expected, and

�2� The effective x1/2 concentration is for the TAA:DPT
system almost two orders of magnitude larger than the value
x1/2=exp�−� / �kBT�	=1.2�10−6 that would be expected
from Eq. �8�, if the width of the host and guest DOS would
be equal.

It follows from Eq. �8� that the observed value of x1/2
could, in principle, be explained as the result of a different
Gaussian width of the host and guest DOS. However, that
would not explain the large negative slope of the mobility
curve.

We show in this section that these observations can be
understood as a result of a carrier concentration dependence
of the mobility. In a typical TOF experiment, such as de-
scribed in Ref. 16, a thin sheet or charge carriers is created
by a short optical excitation in a �100 nm �-Se hole-
generation layer near one of the electrodes, in a stacked
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electrode/semiconductor/electrode device over which a volt-
age difference V is applied. The optimum between a large
signal but small space charge effects is typically obtained for
areal carrier densities around na=2�10−2CaV /q, where Ca
=� /L is the capacitance per unit area. Here, � is the dielec-
tric constant �typically, �r=3� and L the device thickness
�typical value: L=10 �m; V is then typically 300 V�. It fol-
lows that na
1014 m−2. The initial width of the charge sheet
is determined by the optical absorption and carrier mobility
in the hole-generation layer. It may be assumed to be around
100 nm, or less. When the charge sheet moves to the other
electrode, its shape changes. In the case of a constant mobil-
ity and diffusion coefficient, diffusion leads to a symmetric
broadening, and to a decrease of the peak concentration. As-
suming that the Einstein relation is valid, and that the initial
sheet would have a �-function shape, the diffusive broaden-
ing would lead to a width �x=
�kBT / �qV�	�L at the exit
electrode. For V=300 V and T=300 K, the width is then
1.0% of the device thickness, so for L=10 �m, the width
would be 100 nm. If the initial width of the charge sheet is
indeed around 100 nm, or less, its average width during
transfer through the layer is roughly �100–200 nm. The av-
erage carrier density is then �1021 m−3. For the host-guest
systems considered in Fig. 6, the site density was kept fixed
at 7.2�1026 m−3.16 It is therefore estimated that the average
carrier concentration is �10−6. If the mobility and diffusion
constant are carrier concentration dependent, the broadening
is not symmetric. The development of a theory for that effect
is beyond the scope of this paper.

Figure 7 �full curves� shows that for all hosts, the guest
concentration dependence of the mobility can be well under-
stood from our mobility model, using c=10−6, as estimated
above, using values of � that are within the experimental
uncertainty equal to the experimental values �see the figure
caption�, and assuming that ŝh= ŝg=5. The Gaussian widths
assumed are quite realistic for the systems considered.25 We
have not made an attempt to refine the fits by considering the
possibility that the host and guest DOS have a different
width. The dashed curves give the result for the zero-
concentration limit. The carrier concentration dependence is
most important for the systems with a DPT host, for which
the effect shifts the effective value of x1/2 by two orders of
magnitude. The agreement between the model results and the
experimental results is excellent. Therefore, we regard this as
strong support for our point of view that taking the carrier
concentration dependence of the mobility into account can
be important when interpreting the observed TOF-mobilities
in host-guest systems.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have shown that the mobility of charge
carriers in disordered organic host-guest systems depends on
the carrier concentration. The effect has been studied on the
basis of two theoretical models. The relatively simple Mott-
type model developed by Martens et al. provides an excel-
lent description of the effect in the separate HH, HGH, and
GG hopping regimes. The much more sophisticated, but
computationally less efficient Movaghar-Shirmacher method

provides a better prediction for guest concentrations close to
the mobility minimum, around which the cross-over between
the HGH and GG hopping regimes takes place. Using the
Movaghar-Shirmacher method, it is also possible to model
cases in which the wave function extensions of the host and
guest molecules are different. By a detailed analysis of mea-
sured data for hole-transporting hole-guest systems, taken
from the literature, it has been made plausible that this effect
can have a large influence on the TOF-mobility, measured
under realistic experimental conditions. Host-guest systems
are employed intensively in OLEDs, where fluorescent or
phosphorescent dyes are embedded in an organic matrix ma-
terial with a larger HOMO-LUMO gap. Typical dye concen-
trations vary from less than 0.1% to approximately 10%. In
OLEDs that are based on a multilayer stack, containing
blocking layers that confine the emission zone to a thin cen-
tral layer, the carrier concentrations in that layer can be as
high as 10−3. This work suggests that only device models
that take the large carrier concentration dependence of the
mobility that can occur under such conditions into account,
could yield a realistic description of the device performance.
We remark that the theoretical framework developed in this
paper can be extended straightforwardly to more complex
host-guest systems, containing more than one dye. A first
limitation of the present study is that it is based on the as-
sumption that all carriers are in quasi-thermodynamic equi-
librium. For systems with very deep traps, leading to release
times that exceed typical experimental measurement times,
the models used are not adequate. A second limitation is that

FIG. 7. Comparison of calculated �Martens model� and mea-
sured �Ref. 16� hole mobilities for systems consisting of a polysty-
rene matrix, DAT, DTP, and DPT host molecules, and TAA guest
molecules. The chemical structures are as shown in the inset, with
R1=R2=R3=OCH3 for TAA, R1=CH3 and R2=R3=H3 for DAT,
R1=R2=CH3, and R3=H for DTP, and R1=CH3 and R2=R3=H for
DPT. Full lines: ŝh= ŝh=5, �h

−1=�g
−1=0.1a, �=0.10 eV �DAT�,

0.28 eV �DTP�, 0.36 eV �DPT�, T=300 K, for c=10−6. Dashed
lines: the same parameters, for c=0.
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only the mobility in the limit of zero applied field has been
considered. It will be of interest to study that effect using the
master equation method, applied successfully by Pasveer et
al. to the case of a unimodal Gaussian DOS.20
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