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The p-type carrier scattering rate due to alloy disorder in Si1−xGex alloys is obtained from first principles.
The required alloy scattering matrix elements are calculated from the energy splitting of the valence bands,
which arise when one average host atom is replaced by a Ge or Si atom in supercells containing up to 128
atoms. Alloy scattering within the valence bands is found to be characterized by a single scattering parameter.
The hole mobility is calculated from the scattering rate using the Boltzmann transport equation in the relax-
ation time approximation. The results are in good agreement with experiments on bulk, unstrained alloys.
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The emergence of SiGe alloys as an important material in
the development of strained heterostructure devices has led
to an increased interest in understanding and exploiting its
physical properties.1 One of the key properties of concern is
the carrier mobility. In particular, increasing the hole mobil-
ity through strain engineering has become a significant factor
in device design.2–4

Calculations relating the band structure and the transport
properties of SiGe alloys have so far been performed using
empirical methods,5–8 where the effects of inelastic phonon
and elastic alloy scattering have been considered. These cal-
culations have often been frustrated by the lack of good qual-
ity experimental data, particularly in the case of the holes.
This provides strong motivation for an examination of these
properties from first principles.

In this paper, we calculate the scattering matrix elements
for p-type carriers due to alloy disorder from first principles
using a supercell approach. This work is based on our re-
cently developed technique, which was applied to n-type
carrier9 scattering in Si1−xGex and can be extended to a wide
range of semiconductor alloys. We apply the method to ex-
tract the individual matrix elements that characterize the
light-hole and heavy-hole scattering within the valence bands
from the single-particle wave functions and energies which
are obtained from first-principles calculations of random
SiGe alloys. The scattering matrix elements are found to be
given by a single scattering parameter which depends weakly
on the alloy composition and can be approximated by
0.81 eV. We calculate the p-type carrier scattering rate,
which is then used in the Boltzmann transport equation, in
the relaxation time approximation, to give the carrier mobil-
ity. We find good agreement with the available mobility mea-
surements in bulk, unstrained alloys.

The scattering rate for carriers in band � due to alloy
disorder in the random binary substitutional alloy is given by

RA�k,�� =
2�

�
x�1 − x�

a0
3

8 �
�
� dk�

�2��3 ��V���k,k����2

���E�k,�� − E�k�,��	 , �1�

where x is the Ge content, a0 is the cubic lattice constant, �
labels the bands into which scattering occurs, � is the Dirac

delta function, E are the energy eigenvalues, and the scatter-
ing matrix is

�V���k,k��� = �V��
Ge�k,k��� − �V��

Si �k,k���

= N��k��	VGe�
k��� − N��k��	VSi�
k��� .

�2�

In Eq. �2�, 	VA is the perturbing potential caused by the
substitution of one atom in the periodic host by a type-A
atom, � is the Bloch state of the periodic host lattice, and 

is the exact eigenstate in the presence of the perturbing po-
tential, with the boundary condition 
k��r��=�k��r�� when r� is
far from the type-A atom. The wave functions � and 
 are
normalized in a large region containing N host atoms. We
assume that each atom scatters independently of others and
that the alloy is a truly random substitutional alloy. The pe-
riodic host is represented in the virtual crystal approximation
�VCA� in which the ionic potential at each atomic site is
taken to be Vx

VCA= �1−x�VSi+xVGe. The potential 	VA �with
A=Si or Ge� is found by placing one A-type atom as a sub-
stitutional defect in a supercell of N−1 VCA host atoms.
Structural relaxation around the defect atom and the super-
cell single-particle electronic states, �
�, are calculated in
density-functional theory �DFT�.

To calculate the p-type scattering rate, we consider carri-
ers in the light-hole and heavy-hole bands only. The split-off
band is neglected as the majority of the carrier population is
contained within the upper two valence bands at room tem-
perature. The total scattering rate of band � is therefore ob-
tained by varying � over the four light-hole and heavy-hole
states.

Spin-orbit coupling introduces an angular dependence in
the scattering matrix between the initial Bloch state wave
vector k in band � and the final state wave vector k� in band
�. Near the valence-band maximum the periodic part of the
Bloch functions, uk��r�=e−ik·r�k��r�, can be approximated
by j= 3

2 angular momentum eigenstates with quantization of
the angular momentum component along k. For the light
holes, k ·J / ��k�= ± 1

2 , and for the heavy holes, k ·J / ��k�
= ± 3

2 . Using band indices, � and �=k ·J / ��k�, the scattering
matrix for an A-type defect can now be written as
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�V��
A �k,k��� = dVA�k,k��D�,�

3/2 ��,0� , �3�

where D�,�
3/2 �� ,0� is the Wigner rotation matrix for angular

momentum j= 3
2 and � is the angle between k and k�. Since

the defect potential is short ranged compared with 2� /k,
dVA�k ,k�� is approximately independent of k and k�,10 and

dVA 
 NdEA��0��
0�� , �4�

where dEA is the shift of the valence-band maximum energy
caused by the introduction of an A-type substitutional defect
in a host supercell of N atoms. ��0� is the �-point Bloch state
and �
0� is the �-point defect state. For a sufficiently large
supercell, far from the defect,10 ��0� �
0��
1.

We account for the warping of the valence bands in Si and
Ge by using the approach of Baldereschi and Lipari,11,12 in
which the light-hole and heavy-hole dispersion relations, in-
dexed by “” and “�,” respectively, are given by

E± =
�2�1

2m0
�k2 ± �� −

6

5
��2

k4

+
12

5
��5� − ���kx

2ky
2 + kz

2ky
2 + kx

2kz
2��1/2� . �5�

The constants �1 and � preserve the spherical symmetry, and
� governs the strength of the cubic terms. To obtain the scat-
tering rate, we combine Eqs. �1�, �3�, and �5�, and expand the
scattering rate in terms of �. The expansion results in an
analytic form, which includes the effect of the nonparabolic-
ity of the valence bands on the scattering rate. This deriva-
tion is detailed in the Appendix. The total scattering rate
from a lighthole or a heavyhole as a function of the nonpa-
rabolicity � is

RA�E±� =
�

�
x�1 − x�

a0
3

8
�dV�2��+�E,�� + �−�E,��	 , �6�

where dV=dVGe−dVSi. �±�E ,�� is the density of states of the
lightholes or heavyholes per unit volume per spin expanded
to third order in �,

�±�E,�� =
m0

3/2�Ev − E
�2�2�3��1 ± �1��3/2�1 �

18�2

35��� ± 1�2

�
36�3��11�2 + 9� � 2�

3575�2�� ± 1�3 + O��4	� . �7�

Ev is the valence-band maximum. In the parabolic approxi-
mation, �=0 and Eq. �7� reduces to the familiar expression.
From Eq. �6� it is clear that the scattering rate is dominated
by scattering into the heavy-hole states due to their large
density of states.

The scattering parameter dV was obtained from total en-
ergy calculations using ABINIT,13 a plane-wave electronic
structure code. The exchange and correlation was treated
within the local-density approximation and the
pseudopotentials14 of Hartwigsen et al. were used for all cal-
culations. Spin-orbit coupling effects were included in the
ABINIT computations through the code’s existing fully rela-
tivistic implementation. Large supercells of up to 128 atoms
were used to accurately represent the full structural relax-

ation of the host alloy in the presence of the Si or Ge sub-
stitutional atom. The single-particle wave functions and en-
ergy eigenvalues required to evaluate dV were calculated in
supercells of sizes N=16, 64, and 128. A Monkhorst-Pack15

grid of 4�4�4 k points was used for the 16-atom cell. This
was reduced to 2�2�2 for the larger supercells. All results
were converged at a plane-wave cutoff of 25 hartree. The
difference between the values of dV obtained from the 16-
atom and 64-atom calculations was small. Increasing the cell
size to 128 atoms produced a negligible effect.

The evaluation of ����	V�
�� from finite supercell calcu-
lations poses a difficulty as the zero of potential is arbitrary
in the supercell. To compare the potentials arising from the N
host atom calculations with the N−1 host atom calculations,
the average of the local DFT potential over points in the
supercell far from the defect, Vloc

A �r�, is compared with the
same average from the periodic host, Vloc

VCA�r�. This provides
a reference shift in the potentials, given by 	Vloc�r�
=Vloc

A �r�−Vloc
VCA�r�, which fixes the comparison of the poten-

tials and energy eigenvalues obtained from the two supercell
calculations. At large r, 	Vloc�r� tends to a constant value
which is subtracted from the valence-band eigenvalue shift
dE.

We have calculated the scattering parameters from first
principles with the method described above at Ge composi-
tions of x=0, 0.25, 0.5, 0.75, and 1. We find that the scatter-
ing matrix element, including the effects of spin-obit cou-
pling and interpolated in x, is dV=0.1662x2−0.1061x
+0.8049 eV �neglecting spin-orbit effects yields dV
=0.1250x2−0.0787x+0.6992 eV�. We note that the scatter-
ing parameter has only a weak x dependence and, to a first
approximation, could be considered as independent of the
host lattice. The best constant fit yields a value of 0.8141 eV
for dV. Atomic relaxation near the Si or Ge atom in the
supercell is found to have an important effect on the scatter-
ing; the scattering intensity is almost twice as large as that
calculated keeping all atoms in their ideal diamond lattice
positions. The effect of the spin-orbit coupling is small and,
to a good approximation, corresponds to a constant shift of
0.107 eV in the value of dV for all x calculated without
spin-orbit effects.

The effective masses were calculated from the DFT band
structure of the VCA crystal. A diamond primitive unit cell
was used with a 14�14�14 k-point grid and a plane-wave
energy cutoff of 25 hartree. Spin-orbit coupling was included
in these calculations, the results of which are presented in
Table I. The band parameters were obtained by fitting the
light-hole and heavy-hole bands with a second-order polyno-
mial around � along the �100	 and �111	 axes. The values
obtained for Si were remarkably well reproduced given the
well-known failure of DFT to predict accurately the direct
band gap. However, the germanium light-hole masses were
underestimated by 50%.

Figure 1 shows the scattering rate from a heavy hole or a
light hole into either of the valence bands. This was obtained
by evaluating Eq. �6� at the thermal energy, E= 3

2kBT, using
three different effective mass schemes. The scattering rate
into the heavy holes is approximately ten times greater than
that into the light holes.
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The mobility due to alloy disorder, �A, was calculated
using the Boltzmann transport equation in the relaxation time
approximation. The derivation for the mobility as a function
of the non parabolicity is detailed in the Appendix. Within
the isotropic, parabolic band approximation, the mobility is
given by

�A =
32e�4�2��m+

*1/2 + m−
*1/2�

3x�1 − x��kBTa0
3�dV�2�m+

*3/2 + m−
*3/2�2

, �8�

where m±
* are the spherical effective masses. This expression

suggests that the overall trend in the mobility is largely gov-

erned by the heavy-hole effective masses. We have calcu-
lated the mobility numerically and verified that an expansion
up to third order in � is sufficient to accurately describe the
effects of nonparabolicity on the valence band.

In order to compare the calculated mobility with experi-
ment, we must account for the phonon-limited mobility, �P.
We obtained a reasonable approximation of this from a linear
interpolation in x between the experimental values for ger-
manium and silicon.18 This approach yields values which do
not differ significantly from the values calculated using the
empirical method of Fischetti and Laux.5 The final mobility
is then approximated by Matthiessen’s rule, 1

� = 1
�A

+ 1
�P

, and
the results are shown in Fig. 2 in comparison with
experiment.18

The experimental values were obtained from polycrystal-
line samples, and the variation in the data is quite large.
However, the overall agreement between the calculated val-
ues and experiment is good. We note that the difference be-
tween the results calculated with the DFT effective masses
and the experimental masses is small, which reflects the
dominance of the heavy-hole contribution to the alloy scat-
tering. The effect of valence-band warping on the alloy-
limited mobility is larger in the silicon-rich alloy. Comparing
�A calculated with both the nonparabolic and parabolic ef-
fective masses at x=0.05 shows a reduction of 13% in the
alloy-limited mobility due to the nonparabolicity, while a
reduction of 8% is found at x=0.95.

In summary, we have calculated p-type alloy scattering
for SiGe alloys as a function of alloy composition, using ab
initio supercell methods to numerically represent the alloy
scattering problem. We have shown that the scattering can be
characterized by a single scattering parameter which is asso-
ciated with the shift of the valence-band maximum due to the
substitution of one Si or Ge atom in the host alloy. We have
used this to determine the p-type mobility at room tempera-
ture and to investigate the effect of band warping on the

TABLE I. Calculated and experimental properties of Si and Ge
used in this work. The experimental values were taken from Ref.
16. m±

111=1/��1�1± ��+ 4
5��	�, m±

100=1/��1�1± ��− 6
5��	�, and the

spherical mass is m±
* =1/ ��1�1±��	 �Ref. 17�.

Quantity Units

Silicon Germanium

Expt. Calc. Expt. Calc.

Edirect eV 3.34 2.53 0.90 0.22

	SO eV 0.04 0.05 0.30 0.31

a0 a.u. 10.26 10.17 10.69 10.55

�1 4.27 4.44 13.30 26.71

� 0.47 0.46 0.77 0.88

� 0.27 0.26 0.10 0.03

m+
100 0.20 0.19 0.05 0.02

m−
100 0.28 0.26 0.21 0.20

m+
111 0.14 0.14 0.04 0.02

m−
111 0.75 0.67 0.50 0.54

m+
* 0.16 0.15 0.04 0.02

m−
* 0.44 0.42 0.33 0.31

FIG. 1. �Color online� Scattering rate obtained by evaluating Eq.
�6� at thermal energy, E= 3

2kBT. The top graph illustrates the scat-
tering rate from a light hole or a heavy hole into a heavy-hole state
for experimentally determined masses �circles�, calculated masses
�squares�, and experimental masses in the spherical approximation
�triangles�. The bottom graph shows the scattering rate into light-
hole states.

FIG. 2. �Color online� Calculated p-type carrier mobility in
Si1−xGex at 300 K with experimental effective masses �dashed line�
and calculated effective masses �solid line�. The linearly interpo-
lated phonon-limited mobility is shown �dotted line�, as is the mo-
bility due to alloy disorder alone �diamond�. Experimental data are
from Ref. 18 �circles�. The mobility in the spherical approximation
is also shown �dash-dotted line�.
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mobility. The resulting mobilities are in good agreement with
experiment.
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APPENDIX

1. Scattering rate

The scattering rate of a carrier with an initial Bloch state
wave vector of k�E� ,� ,
� into a final state of k��E� ,�� ,
��
is obtained by combining Eqs. �1�, �3�, and �5� to give

RA�E�,�,
� =
2�

�
x�1 − x�

a0
3

16�2��3 �dV�2

��Ev − E�
�
�

0

2� �
0

�

M�
3/2���,
��

��D��
3/2��,
,��,
���2 sin 
� d
� d��,

�A1�

where � sums over the four light-hole and heavy-hole states.
D��

3/2�� ,
 ,�� ,
�� is the Wigner rotation matrix for angular
momentum j= 3

2 in terms of the angular coordinates of k and
k�. Ev is the valence-band maximum and M�

3/2��� ,
�� is an
angle-dependent mass term, obtained by rewriting Eq. �5� for
the light-hole and heavy-hole states in spherical coordinates.
If we replace the index � with “” for the two light holes
and “�” two for the heavy holes, where each band is spin
degenerate, we obtain the following expression:

M±
−1���,
��

=
��1

2m0
�1 ±�� −

6

5
��2

+
12

5
��5� − ��F���,
��� ,

�A2�

with F��� ,
��=sin2 
��sin2 �� cos2 �� sin2 
�+cos2 
��. In-
stead of integrating Eq. �A1� numerically, expanding the in-
tegrand in powers of � yields a compact analytic form where

RA�E�,�,
� =
�

2�
x�1 − x�

a0
3

8
�dV�2

m0
3/2�Ev − E

�2�2�3��1 ± �1��3/2
	±���

�A3�

is the scattering rate into a light-hole �� or a heavy-hole
��� state, with

	± = 1 �
18�2

35��� ± 1�2 �
36�3��11�2 + 9� � 2�

3575�2�� ± 1�3 + O��4	 .

�A4�

The total scattering rate from a light-hole or heavy-hole state
is given by

RA�E±,�,
� =
�

�
x�1 − x�

a0
3

8
�dVA�2��+�E,�� + �−�E,��	 .

�A5�

Here �±�E ,�� is the density of final states in terms of � such
that

�±�E,�� =
m0

3/2�Ev − E
�2�2�3��1 ± �1��3/2

	±��� . �A6�

2. Current density

The current density of carriers in band � of charge e is
given by the Boltzmann transport equation, formulated
within the relaxation time approximation, as

j� = −
e

�2��3�2 � v�F · �kf0�k�
R�k�

dk . �A7�

Here v�k� is the group velocity, f0 is the distribution function
at equilibrium, 1/R�k� is the relaxation time, and F is the
applied force. In the case of an applied electric field, F=eE
for a carrier of charge e. In an isotropic material, an electric
field in the � direction will induce a current in the same
direction, giving

j�
� = −

e2E�

�2��3�2 � �v�
��2

R�k�
�f0

�E
dk . �A8�

For simplicity, choosing �=x and rewriting Eqs. �5� and �A8�
in spherical coordinates give

jx
± = −

e2Ex

2�2��3�2�
−�

Ev �Ev − E�3/2

R�E±�
�f0

�E
dE�

0

2� �
0

�

��vx
±��,
��2M±

5/2��,
�sin 
 d� d
 , �A9�

where � indicates a light-hole or heavy-hole state,
M±

5/2�� ,
� is defined in Eq. �A2�, and

vx
±��,
� = 2

�2�1

2m0 �1 ±
� −

6

5
��2

+
6

5
��5� − ��G��,
�

�� −
6

5
��2

+
12

5
��5� − ��F��,
��

�A10�

is the angle-dependent group velocity, where G�� ,
�
=sin2 � sin2 
+cos2 
. Expanding Eq. �A8� to third order in
� and accounting for spin degeneracy give

jx
± = −

4e2Exm0
1/2

3�2�2�3
�±����

−�

Ev �Ev − E�3/2

R�E±�
�f0

�E
dE �A11�

for the light-hole or heavy-hole current density. The expan-
sion is given by
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�±��� = 1 ±
6�2�±5 + 23� � 99�2 + 109�3 ± 38�4�

175��� ± 1�5

+
12�3�±2 − 53��30�2 + 208�3 ± 304�4 + 117�5�

3575�2�� ± 1�6

+ O��4	 . �A12�

3. Mobility

The mobility in a light-hole or a heavy-hole band is

�± =
j±

n±eE
, �A13�

where n± is the number of carriers in either band and is given
by

n± = 2
	±

��1 ± �1��3/2m0kBT

2��2 �3/2

e�Ev−EF�/kBT. �A14�

	± is defined in Eq. �A4�, kB is the Boltzmann constant, T is
the temperature, EF is the Fermi energy, and the factor of 2
accounts for spin degeneracy. By combining Eqs. �A11�,
�A13�, and �A14�, and integrating over the energy, we obtain
the mobility in a light-hole or heavy-hole band as a function
of �, giving

�± =
32e�2��4

3m0
5/2�kBT�1/2x�1 − x�a0

3�dV�2

�
�±��1 ± �1��

	± 	+

��1 + �1��3/2 +
	−

��1 − �1��3/2� . �A15�

The total mobility, limited by alloy scattering, is calculated
by summing over the per band contributions with �A=

n+

n �+

+
n−

n �−. The total carrier density is n=n++n−. Applying this
to Eq. �A15� yields the expression

�A =
32e�2��4

3m0
5/2�kBT�1/2x�1 − x�a0

3�dV�2

�� �+

��1 + �1��1/2 +
�−

��1 − �1��1/2�
�

1

 	+

��1 + �1��3/2 +
	m

−

��1 − �1��3/2�2 �A16�

for the total mobility.
In the parabolic effective mass approximation, with �=0,

Eq. �A16� takes a simple form,

�AS =
32e�2��4�m+

*1/2 + m−
*1/2�

�kBT�1/2x�1 − x�a0
3�dV�2�m+

*3/2 + m−
*3/2�2 , �A17�

where m* are the parabolic effective masses.
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