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A modified Hubbard model with linear coupling to both lattice phonons and molecular vibrations is applied
to the structural and electronic instabilities of organic charge-transfer �CT� salts such as tetrathiafulvalene-
chloranil �TTF-CA�. The potential energy surface �PES� of the correlated model is found exactly in finite
one-dimensional �1D� systems with a mean-field approximation for 3D Coulomb interactions and parameters
close to first or second-order phase transitions. The PES near a first-order transition has multiple minima with
different values of �, the degree of CT in the ground state. The energy of metastable domains is related to their
length L, to the discontinuity �� at the transition, and to the energy 2Ew of two domain walls. Sharp and
relaxed domain walls are modeled by free spinless fermions coupled to both phonons and molecular vibrations
whose ground-state PES is obtained in chains of up to 1000 sites. When �� is sufficiently small, metastable
domains become thermally accessible at low temperature where the Boltzmann population of electronic exci-
tations is negligible. The pressure-induced transition of TTF-CA is discussed in terms of an equilibrium
between stable and metastable domains with different �, using previous parameters for the temperature-induced
transition, where metastable domains are not accessible thermally. In either correlated or uncorrelated models,
linear coupling of electrons to slow, harmonic coordinates for lattice and molecular vibrations leads to strongly
anharmonic PES near an electronic or structural instability. CT salts with neutral-ionic transitions illustrate
competition between a lattice phonon that drives a second-order Peierls transition and molecular vibrations that
favor a first-order ��.
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I. INTRODUCTION

The rich phase diagram of models for correlated electrons
in reduced dimensions is due to competition between the
kinetic energy that favors electronic delocalization and elec-
trostatic interactions or disorder that favor localization. The
one-dimensional �1D� Hubbard model is a familiar case. The
relative strength of on-site and intersite electron-electron
�e-e� interactions leads to different phases at T=0 K and
governs the nature of the boundary between the phases.1–3

Even more complex 0-K phase diagrams occur in 1D models
with nonequivalent sites or in 2D models with stripe forma-
tion. Indeed, 2D models for cuprates, manganites, or organic
superconductors are extremely complex and point to multiple
electronic structures that are almost degenerate.4 Interesting
physics emerges in these materials as a result of competing
interactions and phases: phase coexistence and quantum
phase transitions are some of the most striking manifesta-
tions of soft behavior, defined in terms of the possibility to
alter the state of the material by the application of minor
external stimuli.4

The modified Hubbard model has alternating site energies
in 1D and several competing phases and interactions. The
continuous crossover from a band to a Mott insulator shows
an unusual interplay between spin and charge degrees of
freedom5–8 with important consequences on the polarization
and polarizability.8–10 Intersite e-e interactions affect the na-
ture of optical excitations,11–13 as well as the nature of the
interface, driving a discontinuous phase crossover.5,7,14,15 The
modified Hubbard model represents the standard micro-
scopic model for organic charge-transfer �CT� salts with a
mixed stack motif of �-electron donors �D� and acceptors

�A�, some of which exhibit a neutral-ionic phase transition
�NIT�.16–18 The complex phenomenology of NIT offers
unique opportunities for validating theoretical models. CT
salts with either continuous or discontinuous NIT have in-
deed been observed.17 There are large dielectric anomalies,19

the limit of a quantum phase transition has been attained,20

and photoinduced phase transitions support a picture of mul-
tielectron transfer for optical excitations.12,13

To capture NIT physics fully, however, models of elec-
tronic structure must be extended to include electron-phonon
�e-ph� coupling. Lattice dimerization always accompanies
NIT,17 and Peierls coupling to a lattice phonon was recog-
nized from the beginning.7,21,22 In addition, there is ample
experimental evidence in CT salts for strong coupling of
electrons to molecular vibrations.7,22,23 Such e-mv or Hol-
stein coupling has a role similar to e-e interactions in favor-
ing a discontinuous NIT.7,10,22,23 We will consider both e-ph
and e-mv coupling in correlated models close to the NIT.

Both theoretical24,25 and experimental evidence26 suggest
that electron correlation amplifies e-ph coupling or, more
generally, that the effects of coupling to vibrations are am-
plified near phase transitions.9 For example, Peierls coupling
near the NIT leads to the appearance of a soft mode with a
huge intensity in far-infrared spectra9 that is responsible for
the dielectric anomaly at the NIT.10,27 The soft mode has
been clearly recognized in combination bands with molecu-
lar vibrations that appear in midinfrared spectra.28 On the
other hand, e-mv coupling is responsible for an anomalous
softening of vibrational frequencies of totally symmetric mo-
lecular vibrations, observed in Raman spectra and, in dimer-
ized stacks, for the appearance of so-called vibronic bands in
midinfrared spectra.29,30 In fact, e-mv coupling has primarily
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been studied to extract structural information from vibra-
tional spectra.17,30,31

In this paper, we model phase coexistence near the NIT
by exploiting the fundamental role of vibrations. Either lat-
tice or molecular vibrations are slow degrees of freedom that
adiabatically follow electronic motions. The calculation of
the ground-state �g.s.� energy of the coupled system as a
function of the vibrational coordinates leads to the definition
of the g.s. potential energy surface �PES� whose minima un-
ambiguously define stable states. A g.s. PES with multiple
minima is then a clear signature of multistability and is a
prerequisite for the coexistence of several phases. Coexist-
ence at the NIT has been proposed previously21,31,32 and has
recently been invoked to explain a variety of experimental
results.33–36 We discuss here the theoretical requirements for
coexistence in terms of g.s. potentials.

TTF-CA �tetrathiafulvalene-chloranil� is the prototypical
CT salt with a mixed stack, and its NIT has been studied
under different conditions. It is a rare crystal with a
temperature-induced NIT16,17,31 at 81 K as well as a photo-
induced NITs.37,38 These transitions demonstrate a delicate
balance between a neutral regular and an ionic dimerized g.s.
TTF-CA also has a pressure-induced NIT at ambient T with
a prominent coexistence region from 0.87 to 1.22 GPa, as
inferred from vibrational spectra.35,39 Accordingly, we illus-
trate e-ph and e-mv coupling near the NIT with parameters
based on TTF-CA.

The paper is organized as follows. Section II presents a
modified Hubbard model with strong e-e correlation and
both e-ph and e-mv coupling. A mean-field �MF� approxima-
tion is introduced for 3D e-e interactions, and PES are com-
puted in finite systems of 14 and 16 sites in the vicinity of
either a first-order �discontinuous� or a second-order �con-
tinuous� transition. In Sec. III, we analyze a related model of
free spinless fermions to study metastable domains and do-
main walls in extended systems of 1000 sites. Relaxation of
walls along the molecular coordinate is contrasted with re-
laxation along the lattice coordinate, as done in the Su-
Schrieffer-Heeger �SSH� model40 of polyacetylene. The
pressure-induced NIT of TTF-CA is modeled in Sec. IV in
terms of metastable domains that are thermally accessible at
low T where the equilibrium population of excited states is
negligible. The concluding Discussion makes contact with
Nagaosa and Takimoto’s influential papers of neutral-ionic
domain walls �NIDWs� in TTF-CA.6,14,21,32 The present work
focuses on metastable domains whose excitation is governed
by length rather than by walls. We emphasize the role of
slow nuclear degrees of freedom that make it possible to
compute the entire PES instead of just its minima.

II. MULTISTABILITY IN CORRELATED MODELS FOR
THE NIT

The electronic properties of CT salts are described by
modified Hubbard models for mixed 1D stacks and electro-
static interaction within stacks or between stacks.5–7,14,21,22,41

The neutral phase has N spin-paired electrons on N /2 donor
sites. Following SSH,40 the coupling between electrons and
lattice phonons describes a harmonic lattice with a linear

dependence of the hopping integral on the intersite
distances7,9,21 Similarly, linear coupling to molecular vibra-
tions �e-mv� has been described in terms of a Holstein model
with dispersionless harmonic molecular vibrations that
modulate the site energies.10,22,23 Coulomb interactions
within chains are sometimes treated exactly,11,15,22,23 but are
more often included in a MF approximation for the 3D
crystal.5,10

We take a modified Hubbard model with alternating on-
site energies �, nearest-neighbor electron hopping t, and in-
tersite electrostatic interactions Vij. Since we are interested in
structural instabilities, we just introduce coupling to zone-
center phonons. The phonon � drives the dimerization of the
lattice, while the molecular vibration q describes the relax-
ation of the molecules as the on-site charge or ionicity � is
varied. By setting the hopping integral of the regular chain as
the energy unit, t=1, the general adiabatic Hamiltonian for a
single chain with dimerization amplitude � is

HCT = �� + q��
i

�− 1�in̂i − �
i

�1 + �− 1�i���ci,�
† ci+1,� + H.c.�

+ �
i,j

�3D�

Vij�̂i�̂ j + N
q2

2�sp
+ N

�2

2�d
, �1�

where the �̂i operator is �̂i= n̂i at even �A� sites and
�̂i=2− n̂i at odd �D� sites. Its expectation value � is indepen-
dent of i and measures the degree of CT in the g.s.—i.e., the
average on-site ionicity. Linear coupling to the adiabatic
phonons � and q is introduced, with the coupling strength
measured by the relaxation energies �d and �sp, respectively.
Both coordinates are harmonic, and the last two terms of HCT
describe the relevant potential energies. 2�= I−A measures
the energy to transfer an electron from D to A, with I being
the ionization potential of D and A the electron affinity of A.
� implicitly includes U, the repulsion for setting two elec-
trons on the same site.5,41 In particular, the above Hamil-
tonian represents the U→	 limit of the modified Hubbard
model, where doubly ionized D++ or A−− sites are excluded
on physical grounds.5

HCT has been extensively investigated for Vij =0: for small
or vanishing �sp it has a continuous �second-order� dimeriza-
tion instability that occurs far on the neutral side for large �d
and moves towards intermediate ionicity for smaller �d.9,22

The ionic lattice with �
−0.666 ���0.686� is uncondition-
ally unstable toward dimerization.9,22,42 Coupling to molecu-
lar vibrations qualitatively changes the picture: for large �sp a
discontinuous �first-order� charge instability �NIT� sets in,
with an abrupt increase of � as the system is driven from the
neutral �N� to the ionic �I� state by tuning �.7,22,43

Three-dimensional electrostatic interactions are impor-
tant, however, since the Madelung energy drives the NIT.44

Electrons are delocalized along the stack, and i runs just on
sites within one stack, but the sum over j in the third term of
HCT is actually over the crystal. As discussed elsewhere, the
MF approximation for V-like interactions leads to reliable
results when compared with exact diagonalization of stacks
with Vij restricted to 1D.10–12 In the following we use the MF
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for intersite interactions, thereby factoring the problem into
single stacks that can be attacked exactly.

V-like interactions are conveniently split into two parts.5

The first term �i,oddV�̂i�̂i+1, where V is the intrachain nearest-
neighbor interaction, is efficiently dealt with by a renormal-
ization of �→�−V /2: the energy required to ionize a DA
pair �2�� is decreased by V due to nearest-neighbor interac-
tions. A MF treatment of the remaining intersite interactions
leads to

HMF = �� −
V

2
+ q − �c���

i

�− 1�in̂i

− �
i

�1 + �− 1�i���ci,�
† ci+1,� + H.c.�

+
N

2
�c�

2 − N�c� + N
q2

2�sp
+ N

�2

2�d
, �2�

where �c=V��−1� and V�=� jVij measures the Madelung
constant. The first two lines of HMF reduce to the standard
modified Hubbard Hamiltonian with infinite U. It is defined
in terms of just two parameters: �ef f =�− V

2 +q−�c� and �.
This Hamiltonian can be readily diagonalized on the reduced
valence bond �VB� basis for finite N to find the lowest eigen-
state as a function of �ef f and �. The resulting expectation
value of � then allows for a self-consistent MF solution and
gives, for fixed model parameters ��, �, �c, �sp, and �d�, the
total energy �per site� as a function of the vibrational coor-
dinates, E�q ,��. This function represents the adiabatic PES
whose minima locate the equilibrium geometry for the given
model.

Although simple, the model supports a fairly complex
physics and catches the main features of the phase diagram
of mixed-stack CT salts. Reliable estimates are available of
some parameters of HMF.23 Taking the hopping integral
t�0.21 eV as the energy unit, current estimates for the
strength of e-mv and e-ph coupling are �sp�1.8 and
�d=0.2−0.3.22,23 The Madelung constant is in the range
��1–1.5.45 More delicate are estimates of V, the nearest-
neighbor electrostatic interaction or, in the MF view, the fac-
tor that measures the global strength of the Madelung energy
��c
V�. Quantum chemical results set V�10t,45 but they
completely neglect dielectric screening. Direct estimates of �
also seem to be too large.45 Here we discuss systems with
fixed �sp, �d, and �. The neutral-ionic transition will be in-
duced by increasing V, which mimics the reduction of the
crystal’s volume with decreasing temperature or increasing
pressure. V is taken as adjustable, fixed at the value that best
reproduces experiment.

Figure 1 shows results obtained for a system with a dis-
continuous NIT similar to that observed for TTF-CA. For
each V, we search for the equilibrium states �minima in the
PES� and plot their dimerization amplitude and ionicity. The
discontinuity appears clearly, with � that smoothly increases
from �0.2–0.3 up to �0.4 and then abruptly jumps towards
the ionic limit ��0.6–0.7. The stack stays regular ��=0� on
the N side and shows a finite dimerization ���0.12� in the I
regime. The dotted vertical lines mark the region of
multistability—i.e., the region where different nonequivalent

minima are found in the g.s. PES. Bistability is a typical
feature of discontinuous phase transitions; the NIT shows
tristability, however, since there are two equivalent ionic
dimerized phases with equal and opposite �.

Figure 2 shows the g.s. energy per site, E�q ,��, as a func-
tion of the two vibrational coordinates q and � calculated for
the system described in Fig. 1 at three different V values
�marked by arrows in the top panel of Fig. 1�. The PES in the
top panel of Fig. 2 �V=2.26� is representative of a stable
neutral �N� system with a single minimum. The PES in the
bottom panel �V=2.42� is instead characteristic of an ionic
�I� stack, which, unconditionally unstable to dimerization,
develops two equivalent minima at ±�. The central panel of
Fig. 2 �V=2.34� shows multistability: three minima appear in
the PES, one of them at �=0 relevant to the regular N phase
and two at ±� relevant to the dimerized I phase.

We can modify the nature of the phase transition by
slightly changing the parameters of the electronic Hamil-
tonian while keeping the phonon model fixed. Just as an
example, Fig. 3 shows the equilibrium ionicity and dimeriza-
tion amplitude for a system with exactly the same parameters
as in Fig. 1, but a smaller �=1.1. The transition is now
continuous and amounts to a Peierls dimerization accompa-
nied by a smooth increase of � from �0.3 to �0.75. There
is, of course, no multistability for a continuous �second-
order� transition. The PES evolves smoothly from a single
minimum in the N phase to double minima in the I phase.
The PES in Fig. 4 is drawn for V=2.94, just at the border.

The systems in Figs. 2 and 4 are close to a charge and
lattice instability—i.e., are located in a region of strong ef-
fective electron-vibration coupling, as shown by the soften-
ing of relevant frequencies and by the largely anharmonic
PES. Both of these effects are driven by the electronic sys-
tem, since the � and q potentials in HMF are manifestly har-
monic. Softening and anharmonicity are obvious signatures
of second-order transitions, but are usually not observed in
discontinuous transitions. The NIT, however, is governed by
a competition between a discontinuous crossover coupled to

FIG. 1. The case of a discontinuous dimerization transition, with
�d=0.28, �sp=1.8, �=1.4, and �=0.5 in HMF, Eq. �2�. Results
shown for N=16 sites are similar to N=14, not shown. The upper
panel shows the dimerization amplitude �; the lower panel is the
ionicity �; dotted vertical lines mark the range of multistability; for
clarity, the two phases are shown with different symbols. Arrows in
the top panel mark the V values for which PES are drawn in Fig. 2
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on-site vibrations and a continuous dimerization transition
driven by lattice phonons. When moving from the N to the I
phase, a soft mode develops in any case, but in systems with
large enough �c and/or �sp a discontinuous NIT with a con-
densation of q phonons takes place before the complete soft-
ening of the Peierls mode.

The q and � coordinates entering the Hamiltonian in Eq.
�1� are harmonic and mutually decoupled. Their interaction
with the highly polarizable electrons delocalized along the
stack makes the vibrations largely anharmonic and is also
responsible for a mixing between the two coordinates,27 as
best recognized in the banana-shaped minima in the PES in

Fig. 4. Experimental evidence of soft lattice modes and of
anharmonic coupling between lattice and molecular vibra-
tions has been recently recognized by a detailed analysis of
combination bands in TTF-CA and other salts.28,46

For the parameters in Fig. 1, the energy difference be-
tween the two stable phases is �15 cm−1 �on a per-site basis�
at the edges of the multistable region. Such small energy
suggests that finite domains of the metastable phase can co-
exist at high temperature with the stable phase in systems
with a discontinuous transition. The pressure-induced NIT of
TTF-CA at ambient temperature is an example.35,47,48 How-
ever, the energy to create a metastable domain has two con-
tributions: in addition to the energy difference between stable
and metastable phases, one has to consider the energy of the
two boundaries. Whereas the first contribution is easily
evaluated within models with correlation, much longer
chains are needed to estimate boundary energies. In Sec. III
we discuss a spinless fermion model for the NIT in order to
find the energy and relaxation of domain walls.

III. METASTABLE DOMAINS OF SPINLESS FERMIONS

One-dimensional models of CT salts refer to the highest
occupied molecular orbital �HOMO� of D and lowest unoc-

FIG. 2. �Color online� The PESs relevant to the system in Fig. 1.
From top to bottom, V=2.26, 2.34, and 2.42.

FIG. 3. The case of a continuous �Peierls� dimerization transi-
tion, with the same parameters as in Fig. 1 except for �=1.1 instead
of 1.4. Results shown for N=16 sites are similar to N=14, not
shown. The arrow in the upper panel marks the V value for the PES
in Fig. 4.

FIG. 4. �Color online� The PES relevant to the system in Fig. 3
with V=2.94.
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cupied molecular orbital �LUMO� of A, while 1D models of
conjugated polymers deal with carbon 2pz atomic orbitals
that yield wider bands by an order of magnitude. The SSH
model40 for polyacetylene illustrates topological solitons, or
domain walls, between regions of opposite dimerization. The
general Hamiltonian HCT �Eq. �1�� reduces to the SSH model
on setting �=�sp=V=q=0. Coupling to the lattice phonon �
drives a Peierls instability and leads to the topological soli-
tons shown in the middle line of Fig. 5 between regions with
identical � and opposite dimerization, either �DA�n or
�AD�n.49 Such domains are bond-order waves �BOWs�. Cou-
pling to the molecular vibration q leads instead to CDWs and
domains with different � as shown schematically in the bot-
tom line of Fig. 5. CDW domain walls are discussed below.
They are similar to SSH solitons in some ways and quite
different in other ways.

Domain walls can be treated quantitatively in a model
with linear coupling of electrons to both � and q, but without
e-e correlation. We omit the spin degrees of freedom and all
Vij interactions in HCT. With these approximations, the
Hamiltonian is

H0��,�sp,�d� = �� + q��
p

�− 1�pn̂p − �
p

�1 + �− 1�p���ap
†ap+1

+ H.c.� +
Nq2

2�sp
+

N�2

2�d
. �3�

H0 describes a band of N /2 spinless fermions on N molecu-
lar sites with alternating site energy ±�. The fermions oc-
cupy D sites �odd p� for ��0 in the N stack and A sites for
��0 in the I stack. The parameter � governs the NIT, and
although V does not appear explicitly, it contributes to �ef f in
Eq. �2� in the MF approximation.

The above Hamiltonian can be readily diagonalized for
fixed q and � �adiabatic approximation�. The single-particle
energies are

�k = ± 	�� + q�2 + 4 cos2 k + 4�2 sin2 k , �4�

with −� /2
k
� /2 in the first Brillouin zone; the intermo-
lecular spacing a, half the unit cell, is taken as 1. The valence
band �negative �k� is filled in the g.s., while the conduction
band �positive �k� is empty. The band gap is

Eg = 2	�� + q�2 + 4�2. �5�

The g.s. energy depends on three model parameters �, �d,
and �sp as follows:

E0��,�d,�sp� = −
1

N
�

k=−�/2

�/2

�k +
�2

2�d
+

q2

2�sp
. �6�

For large N the sum becomes a complete elliptic integral of
the second kind.50 When drawn against q and �, E0�� ,�d ,�sp�
gives the PES for spinless fermions: the minima of E0 in the
q-� plane for fixed model parameters locate the equilibrium
geometry of the lattice.

The equilibrium positions for the two vibrational coordi-
nates are related to the CDW and BOW amplitudes � and �
as follows:

qeq = �sp�1

2
− �� , �7�

�eq = �d� , �8�

where �, the BOW amplitude, measures the bond-order al-
ternation and � is the g.s. expectation value of the ionicity
operator, �̂=1/2+�p�−1�pnp /N, related to the site-CDW am-
plitude. It ranges from 0 to 1 much as in the correlated model
in Sec. II. The general expressions for � and � are

� =
1

2
−

1

N
�

k

� + q
	�� + q�2 + 4 cos2 k + 4�2 sin2 k

, �9�

� =
4

N
�

k

�sin2 k
	�� + q�2 + 4 cos2 k + 4�2sin2 k

, �10�

and can be evaluated for large N in terms of complete elliptic
integrals.50

Aside from a spin factor, the SSH model corresponds to
H0 with �=�sp=0. The degenerate g.s. is a BOW with dimer-
ization ±� for �d�0, and the band gap is 4�. Solitons mark
dimerization reversals as shown in the middle line of Fig. 5.
Rice and Mele51 found solitons for ��0 and �sp=0 in H0;
dimerization is now conditional and restricted to � smaller
than a critical value that depends on �d. BOW ground states
with ±� are always degenerate. Kivelson extended the SSH
model to coupling to a molecular vibration, or �sp�0 in our
notation, while retaining equal site energies ��=0�.52 He dis-
cussed the competition between a BOW favored by e-ph
coupling and a CDW favored by e-mv coupling. The result-
ing phase diagram is the same for spinless fermions at
�=0: aside from a very narrow region with strong e-ph and
e-mv coupling where both instabilities are supported, the g.s.
is either a BOW or a CDW.

Figure 6 shows ���� calculated for spinless fermions with
�=�d=0 and �sp=0,1.0,1.5. The S-shaped ���� curves ob-

FIG. 5. �Color online� Schematic representation of a 1D mixed
stack with D represented as squares and A as circles. The q=�=0
array has regular spacing and inversion centers at D and A. The
dimerized array with ��0 and q=0 has degenerate gs with solito-
nic domain walls at m1 and m2. Coupling to molecular vibrations
gives the q�0 array with �=0, a charge-density-wave �CDW� g.s.
and CDW domain walls at m1−1, m1, and m2−1, m2. The shaded
areas correspond to different domains.
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tained for finite �sp signal CDW formation and multistable
behavior: for a specific � in the multistable region, two
stable states correspond to the two points on the ���� curve
with negative slope and an unstable state corresponds to the
point with positive slope. The charge instability of H0 is
unconditional at �=0, since Eq. �7� has solution with finite
qeq for any �sp�0. In other terms, the g.s. PES has three
extrema for �sp�0 at �=0. The state with �=0.5 is a maxi-
mum; the other two are equivalent minima at ±qeq �cf. Eq.
�8��, with � symmetrically located about 0.5. Since the de-
generate CDWs at �=0 are interchanged on changing the
sign of qeq, sharp domain walls correspond to successive site
energies −qeq, −qeq or qeq, qeq along the stack.

The band gap Eg in Eq. �5� sets the energy scale in units
of t, which is 2–3 eV in conjugated polymers40 and
0.1–0.3 eV in CT salts.53 The SSH gap of 4� is due to
dimerization, while the CDW gap of 2qeq at �=0 is due to
molecular relaxation along q. Each SSH soliton generates a
localized state in the gap. The energy of two sharp or relaxed
solitons is Eg or �2Eg /�, respectively. Sharp CDW rever-
sals at �=0 involve four sites and generate four localized
states, two at each wall, which can be found analytically by
constructing a bonding and antibonding linear combination
of two Wannier functions at each wall. When the walls are
far apart, the localized MOs derived from the valence band
are centered at the −qeq, −qeq wall and have energy

�loc = − 	1 + qeq
2 ± 1. �11�

The lower �loc is below the band edge at �0=−	qeq
2 +4. The

HOMO is the higher �loc and is a gap state, above the band
edge at �±�/2=−qeq. Localized states derived from the con-
duction band are centered at the qeq, qeq wall and have en-
ergy −�loc. The LUMO is a localized gap state. For small
qeq
1, the energy of two domain walls at �=0 can be esti-
mated by transferring two spinless fermions at band edges to
�loc,

2Ew�0� = − 2	1 + qeq
2 + qeq + 	4 + qeq

2 � qeq −
3

4
qeq

2 .

�12�

We note that 2Ew�0�
Eg /2 is less than half the energy of
two SSH solitons. This difference makes domain walls ther-

mally accessible even at kBT
Eg, where thermal excitation
across the gap is negligible.

At finite but not too large �, bistable solutions are found
�cf. Fig. 6�, but the two stable states are no longer degenerate
and their � are no longer symmetrically located around 0.5.
The stable phase �lower-energy minimum� and the meta-
stable phase �higher-energy minimum� then correspond to
two different equilibrium q values, which, for the sake of
clarity, will be referred to as c and c�, respectively. Again the
two phases may be interchanged by a mismatch in the on-site
distortion. At variance with the �=0 case, the energy re-
quired to create a metastable domain in the stable lattice
linearly increases with the length of long enough domains.
This resembles the coexistence of N domains in an I lattice
�or vice versa� that was suggested in Sec. II for the correlated
model in the multistable regime.

To discuss relaxed boundaries, we have to describe local
vibrational modes, which are taken as dispersionless for mo-
lecular vibrations. The site energy entering Eq. �3� is then
locally modulated as ��+qp�, and the potential energy be-
comes �pqp

2 /2�sp, where qp is the coordinate that describes
the local vibration on site p; notice that q=�p�−1�pqp /	N is
the zone-center coordinate of the diatomic lattice �finite �
and/or finite �, unit cell 2a�. The electronic problem at fixed
geometry can be solved numerically on finite-size systems
with large N by imposing cyclic boundary conditions and
either sharp or relaxed domain walls. We consider a meta-
stable CDW domain that starts at sites p=m1 and ends at
p=m2−1, with m1 and m2 even by definition. Again follow-
ing SSH ideas,40 we study relaxation in terms of variable half
widths �1 and �2, so that qp is defined as follows:

qp = c +
c� − c

2
tanh

p − m1 + 0.5

�2

−
c� − c

2
tanh

p − m2 + 0.5

�2
, p 
 m1, p � m2,

qp = c +
c� − c

2
tanh

p − m1 + 0.5

�1

−
c� − c

2
tanh

p − m2 + 0.5

�1
, m1 � p � m2 − 1.

�13�

We have �1=�2 in the degenerate case when �=0 and equal
relaxation on either side of domain walls with width 2�.
Relaxation is governed by �2 in the stable phase and by �1 in
the metastable phase for ��0. Sharp domain walls have
�1��2
1. The envelope functions in Eqs. �13� come from
continuum models and reduce the relaxation problem to find-
ing �1 and �2, which minimize the total energy.

For �=0 and finite �sp, the qp in Eqs. �13� describe a
domain of length L=m2−m1 of one of the two degenerate
phases embedded into a chain of the other phase �cf. Fig. 5�.
The relevant energy is shown in Fig. 7 as a function of L for
a chain with �=0, �sp=1.5, and different �=�1=�2 values.
Since the two stable phases are degenerate, the energy is just
that of two domain walls. The energy of sharp domain

FIG. 6. �Color online� The ionicity � vs � calculated for three
values of �sp. The spinodals ±�sn mark the bistable region for
�sp=1.5.
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walls with �=0.001 saturate for L�50. Direct solution at
�sp=1.5 agrees with 2Ew�0� in Eq. �12� to three digits. A
width of ��20 lattice constants is optimal and lowers
2Ew�0� by �30%, an amount that is quite similar to the SSH
relaxation. The energy of the domains becomes independent
of their separation for L�100. Direct solution at �=0 also
confirms quantitatively the presence of localized states and
their energies discussed above.

Any �sp�0 breaks the symmetry of the chain at �=0,
leading to two degenerate phases ±qeq. The �� discontinuity
becomes, however, exponentially small for small �sp
1. At
finite � the symmetry breaking becomes conditional, and for
any �sp spinodals mark the boundary of multistability
regions. Figure 6 explicitly shows the spinodals at �sp
=0.01065 as obtained for �sp=1.5. The g.s. and metastable
phase for ��0 have �
1/2 and �1/2, respectively. Small
��
0.2 gives a narrow range of metastability, a conclusion
that also follows for correlated systems described by HCT.

The choice of �=0.005 is within the metastable regime
for �sp=1.5. A large metastable domain of length L has en-
ergy

E�L,�� = 2Ew��� + L�E0��� . �14�

The first term accounts for the energy of the two domains
walls of the kind shown in Fig. 5 whose relaxation we con-
sider below. The L-dependent second term goes as the energy
difference per site, �E0���, between the metastable and
stable phases. This contribution is independent of the domain
relaxation and dominates at large L. Figure 8 shows
E�L� /Eg vs L for �=0.005, �sp=1.5, and �d=0. The g.s. has
c=0.140, which leads to Eg=0.280 and �=0.41. In accor-
dance with Eq. �14�, all the curves in Fig. 8 have equal
slopes for L�100. The lowest E�L� for well-separated do-
main walls occurs around �1�50 and �2�10 in Eq. �13�.
The dashed straight line is L�E0��� and shows that 2Ew is
half as large at �=0.005 as at �=0. Results at �=0.01 yield
even smaller 2Ew.

We conclude that the energy of metastable domains of
L�100 is mainly due to the second term of E�L ,��. More-
over, Taylor expansion of �E0��� about �=�c, where the
energies are equal, gives

�E0��� = �� − �c�����c� + o�� − �c�2. �15�

This relation follows from the Hellmann-Feymann theorem
and holds for correlated models such as HCT with a first-
order transition at �c, which may also involve dimerization.
The slope of E�L� in Fig. 8 is accurately given by �� at
�c=0, and this result has been explicitly confirmed for other
� values in the bistability region. Solution of H0 is straight-
forward up to N�1000 sites and yields quantitative informa-
tion about metastable domains of spinless fermions.

Soliton relaxation in the SSH model modulates the trans-
fer integrals near dimerization reversals. Such modulation
does not alter the charge distribution of the half-filled band,
however, which is fixed at precisely one electron per site by
electron-hole �e-h� symmetry. H0 has e-h symmetry in the
special case of �=�sp=q=0 in Eq. �3�, but site energies
and/or e-mv coupling break e-h symmetry. Figure 9 shows
the ionicity at CDW crossovers of H0 with �sp=1.5 in do-
mains of L=300 sites. The top panel has �=0 and degenerate
phases with �=0.419 and 0.581. Sharp domain walls gener-
ate rapid oscillations of � around sites m1=100 and
m2=400. The oscillations are strongly damped in the relaxed
walls with �=20, which minimizes 2Ew�0� in Fig. 7 and
broadens the crossover region. The lower panel of Fig. 9
shows a relaxed metastable domain of L=300 with the same
parameters except for �=0.005. The stable and metastable
phases now have �=0.410 and 0.570, respectively. Oscilla-
tions in � persist in relaxed walls whose widths minimize the
energy in Fig. 8 and extend well into the metastable
domain. As expected on general grounds, domains of
L��1+�2�60 are needed to have independent walls and
constant � within domains. But constant � is unnecessarily
stringent at the present resolution of ionicity; a domain of
L�100 in the lower panel of Fig. 9 would still have
��0.5, which can be distinguished from the �=0.4 of the
stable phase.

IV. PRESSURE-INDUCED TRANSITION OF TTF-CA

In this section we model TTF-CA. The parameters in
Figs. 1 and 2 were previously used for the 81-K transition on
cooling.10,23 There is a �� jump of �0.2–0.3,31 evidence for
coexisting phases over �2–3 K,54 and a well-characterized

FIG. 7. �Color online� The energy �in units of the gap� of an
N=600 site chain with �=0 and �sp=1.5: the two degenerate phases
are exchanged at m1 and m2 so that a domain of length
L=m2−m1 is created.

FIG. 8. �Color online� The energy �in units of the gap� of an
N=600 site chain with �=0.005 and �sp=1.5 when a metastable
domain of length L=m2−m1 is created.
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3D structural change.55 There is no structural data for the
pressure-induced transition at 300 K whose vibrational
analysis in single crystals has recently been presented.35,56

The frequency of the bu�10 mode of CA in the midinfrared
decreases by 160 cm−1 between �=0 and 1 in reference
compounds.35,56 Under properly defined conditions, the ion-
icity of CT salts is based on the measured frequency of �10
assuming a linear dependence on �.30 The left panel of Fig. 2
in Ref. 35 shows � as a function of pressure at 300 K, as
estimated from vibrational data. Two IR peaks are resolved
between 0.86 and 1.22 GPa in the frequency region of �10.
The relative intensity of the two peaks reaches 50% between
1.0 and 1.1 GPa.35,56 We then locate the critical pressure
Pc�1.04 GPa and interpret the two-peak region in terms of
metastable domains set by spinodals at 0.86 and 1.22 GPa.

Compared with the 81-K transition, the pressure-induced
transition has smaller ���0.07 and higher �N�0.5 at the
onset. Smaller �� suggests smaller �sp while higher �N indi-
cates smaller �d. The electronic system is less strongly
coupled to either molecular vibrations or lattice phonons. A
qualitative explanation is that t, the unit of energy, depends
on the intermolecular overlap and is consequently more sen-
sitive to volume changes than are electrostatic interactions.
Increasing P clearly increases t, and increasing t is known to
suppress the �� discontinuity.5,7,11,22 Under cooling, by con-
trast, volume changes increase t while reduced thermal mo-
tions reduce t.

The 81-K transition in Figs. 1 and 2 is modeled with
�sp=1.8 leading to ���0.3 and with �d=0.28 leading to
maximum dimerization �=0.12. The pressure-induced tran-
sition can be modeled in terms of a larger t and hence of
smaller �, �, �sp, and �d, as shown in Fig. 10, for parameters
chosen to have ��0.5 at the transition and an ionicity jump
consistent with the experimental data. Although the Coulomb
interaction V is expected to increase with pressure, the func-
tion P�V� is neither known nor linear. Nevertheless, there
must be a linear regime around Vc or Pc. Therefore in Fig. 10
we superimpose experimental ��P� data from Ref. 35 �stars,
P on the top x axis� and calculated ��V� results �open circles,

V on the bottom x axis�. The vertical lines mark the observed
range of bistability. This preliminary modeling is qualitative.
In fact, not only a nonlinear V�P� dependence is expected,
but finite-size effects become important near the metallic
point that the system approaches when �sp and �d are small.
Comparison of N=16 and 14 results indicates good conver-
gence except in the immediate vicinity of Vc where � varies
the most rapidly. Larger N and extrapolations are needed at
weakly first-order transitions even at the MF level. More-
over, the PES at such transitions has shallow minima whose
analysis poses separate numerical challenges.

The next question is the thermal population of metastable
domains. On general grounds, small �� implies a narrow
range of multistability. Thermal excitation requires kBT
�E�L ,��, where E�L ,�� in Eq. �14� is the excitation energy
of a domain of length L. Vibrational data �cf. Fig. 1 of Ref.
35� suggest that the fraction of I domains increases smoothly
from �5% �e−2 at the onset of bistability to �95% at the
end of bistability. The intensity of the two infrared bands
assigned to the �10 mode of CA molecules with different �’s
varies smoothly, strongly suggesting a simple equilibrium
between two phases that are degenerate at Pc=1.04 GPa. The
relative intensities indicate that E�L ,�� is about 2kBT for
metastable I domains at P=0.86 GPa or for metastable N
domains at P=1.22 GPa. It follows that 4kBT sets a limit on
the formation of thermally accessible metastable domains at
the pressure-induced NIT. For correlated systems, we use Eq.
�15� and the observed ����c� for the excitation energy per
site, ��0���. Neglecting temporarily the domain wall energy
2Ew���, we find the minimum L,

Lmin����ms����c� = 4kBT/t . �16�

We have t�0.21 eV �2300 K�, which increases under pres-
sure, so that the right-hand side of the above equation is
�1/2 at 300 K. The observed ���0.07 and estimated
����ms�0.07 for either spinless fermions or correlated sys-
tems leads to Lmin�100 at the pressure-induced transition.

FIG. 9. �Color online� The on-site charge of an N=600 site
chain with domain walls located at m1=100 and m2=400. Top
panel: �=0 and �sp=1.5, the two curve show results for �=0.001
and 20. Bottom panel: �=0.00 and �sp=1.5, �1=50 and �2=10.

FIG. 10. The pressure-induced NIT of TTF-CA at ambient tem-
perature. Stars report experimental ��P� data �from Ref. 35�; verti-
cal lines mark the corresponding bistability range. Circles show
calculated ��V� for a 16-site chain with �d=0.2, �sp=1.6, �=1.3,
and �=0.4 in HMF, Eq. �2�. A linear relation between the P and V
scales �top and bottom x axes� is assumed in the proximity of
Vc= Pc.
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The same estimate at the 81-K transition returns Lmin
10
when larger �� and ����ms are taken into account. These
Lmin are upper bounds because 2Ew��� has been neglected.

Neutral-ionic domain walls �NIDWs� are the elementary
excitations at the transition.21,32 2Ew�0� in Eq. �12� is the
quantitative result for spinless fermions and small ±qeq.
Since we have �qeq=�sp����c� at the transition for either
spinless fermions or correlated systems, we estimate that
2Ew�0�� t�sp�� /2. Then �sp�1.6 at the pressure-induced
transition leads to 2Ew�0��130 K. Our estimate is more
quantitative and completely independent of Nagaosa’s
conclusion21 that NIDWs were thermally accessible in
TTF-CA at 300 K. Larger �sp�1.8 and ���0.2–0.3 at the
81-K transition lead to 2Ew�0��500 K. The concentration of
domains walls in TTF-CA is small even at Tc=81 K, and the
domain walls detected by spin resonance57 at T
Tc are as-
sociated with adventitious solitons.49,57 Although the esti-
mates of 2Ew�0� and Lmin are approximate, the trends are
clear: Metastable domains are thermally accessible at the
pressure-induced transition but not at the 81-K transition.
More generally, small ��, as well as high T favors the for-
mation of metastable domains.

V. DISCUSSION

Microscopic models such as the Peierls-Hubbard model
HCT in Eq. �1� have been widely applied to CT salts. Exact
solutions are limited to finite N, and the PESs in Figs. 2 and
4 are based on N=16 sites. The comparison with N=14 re-
sults indicates minor finite-size effects, as also confirmed by
exact results for the electronic model �HCT with �d=�sp=0�
up to N=22 sites, which indicate satisfactory convergence
for the g.s energy per site for the ionicity and for excitation
thresholds.42 The PESs show the dependence of the g.s. en-
ergy on the two zone-center coordinates � and q coupled to
the electrons via the modulation of the BOW and CDW,
respectively. In the N regime a single minimum PES at �
=0 is found, whereas a symmetry-broken PES with two
equivalent minima ±� is found in the I regime. The transition
region is particularly interesting: the competition between
the two phases, driven by the balance between �, the on-site
energy alternation, and the Madelung energy, is delicate and
is profoundly affected by e-ph coupling. Continuous
�second-order� phase transitions can be observed where the
smooth evolution of the g.s. PES from a single- to a double-
minimum structure goes through a very interesting banana-
shaped surface �Fig. 4�. For different model parameters the
transition becomes discontinuous: the crossover between the
two phases goes through a region where three-minimum
PESs are observed. One of the minima describes an N regu-
lar ��=0� phase that coexists with an ionic dimerized phase,
described by the two equivalent minima at ±�.

To relate the recent observation of coexisting phases in
the pressure-induces NIT of TTF-CA35,56 with the calculated
multistability, estimates are needed of the energy of domain
boundaries. Reliable modeling of boundary energies and re-
laxation requires calculations on much longer chains than
affordable for correlated models. To such an aim we intro-
duced a noninteracting spinless-fermion model for the NIT:

In conjugated polymers, many aspects of uncorrelated SSH
solitons carry over to correlated �-electron systems or to
all-electron quantum chemical calculations.40,58 There are
also clear failures related to neglecting electron correlation,
notably the energy of even-parity states. We are assuming
that the exact results on metastable phases of the uncorre-
lated spinless fermion model give insight into correlated
metastable domains of HCT.

The critical behavior of ���� in Fig. 6 is typical for any
first-order phase transition.59 The phases are degenerate at �c
for HCT, but in general the spinodals are not symmetric about
�c. The PESs in Fig. 2 illustrate tristable behavior with finite
����c�. The phase with smaller � is the g.s. of HCT for V

Vc, while the dimerized ionic phase is metastable up to the
spinodal. For V�Vc, the dimerized ionic phase is the g.s.
and the regular neutral phase is metastable down to the spin-
odal. As in the case of spinless fermions, small ����c� im-
plies a narrow bistable region about �c and governs the
E�L ,�� of metastable domains in Eqs. �14� and �15�.

Coexistence at the NIT was first discussed by
Nagaosa21,32 in terms of a model closely related to HCT in
Eq. �1�. Specifically, Nagoasa took �=�, large but finite U,
which largely excludes D2+ and A2− sites, and nearest-
neighbor V along the stack, which we also adopt in Eq. �2�.
He also introduced S=4�d for coupling to lattice phonons,
but disregarded coupling to molecular vibrations. Nagaosa’s
results were based on Monte Carlo simulations for stacks
with N=40 at finite T. Our exact results at zero temperature
are obtained for smaller N in correlated systems and much
larger N for spinless fermions, and are relevant to a quantum
or g.s. transition driven by volume changes.20 Modeling elec-
tronic spectra, Nagaosa discussed coexistence in the proxim-
ity of a discontinuous NIT in terms of lattice-relaxed NIDWs
LR-NIDWs.21,32 He estimated their properties for the degen-
erate case in a phenomenological continuum model and
found a small creation energy, of the order of 300 K for
TTF-CA parameters.

We have discussed instead vibrational spectra that provide
more detailed information about �. Spinless fermions in Sec.
III yield detailed information about metastable domains and
relaxed domain walls. Since the length dependence is related
to the discontinuity of � in either uncorrelated or correlated
models, we can set more stringent minimum requirements
for the formation of metastable domains than obtained from
the continuum model. As noted in Sec. III, CDW domain
walls connect nondegenerate regions except at �=0 for spin-
less fermions or at �=�c in the correlated model. The width
of CDW domains walls, �1+�2 in Eq. �13�, is asymmetric in
general and wider on the metastable side. The widths re-
ported in Fig. 9 offer a strong evidence that the length of
metastable domains must exceed N��1+�2�30 lattice con-
stants in order to resolve �1 and �2. Hence the present model
does not support short domains.

LR-NIDW concepts have been widely applied to CT salts
with mixed stacks. NIDWs have been invoked for nondegen-
erate phases33,60–62 without, however, including the length-
dependent energy of metastable domains. Short NIDWs of a
few lattice constants are also problematic within the con-
tinuum model,32 but have been suggested for TTF-CA.33,60–62

The interpretation of such results is beyond the scope of the
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present work. The main points here are �a� that metastable
domains must be close to a first-order transition, �b� that
E�L ,�� in Eq. �14� for the formation of a metastable domain
depends mainly on its length, and �c� that a minimum length
of L�30 lattice constants is required for the definition of a
domain.

The appearance of multistability near a discontinuous
phase transition is expected, and a PES with three minima
for such NIT systems has long been foreseen.22,32 Of special
interest is the E��� curve in Fig. 1 of Ref. 32, which has
since been used to interpret a variety of data33,34,60,63 and has
also been related to the classical Blume-Emery-Griffiths
model of an array of S=1 spins.64 In another case, a three-
minimum potential curve has been imposed by introducing
largely anharmonic phonons.65 A E��� curve with three
minima can be viewed as the projection of E�q ,�� in the
middle panel of Fig. 2 onto the E-� plane. In contrast to
previous discussions, however, our PESs result from the
adiabatic diagonalization of a microscopic model without
any ad hoc assumption about intrinsically anharmonic
phonons. Bare phonons entering our Hamiltonians are rigor-
ously harmonic. Large anharmonicity emerges naturally from
coupling harmonic phonons to delocalized electrons: the
multistability of the PESs simply reflects the intrinsic insta-
bilities of the electronic system.

The highly anharmonic PESs in Figs. 2 and 4 offer the
clearest evidence for the amplification of e-ph coupling near
an electronic instability. Moreover, the banana-shaped PES
in Fig. 4 demonstrates strong q-� coupling arising from lin-
ear coupling of both modes to the same, highly polarizable
electronic system at the Peierls transition. Explicit consider-
ation of slow nuclear degrees of freedom makes it possible to
construct PESs for microscopic models of NIT systems that,
although idealized in several respect, are realistic enough for
comparison with diverse experiments. Organic CT salts with
NITs are interesting examples of soft electronic behavior,4

arising from the competition between ground states with
site-or bond-density waves. Competing interactions lead to
the rich physics of NIT systems which, nevertheless, are de-
scribed approximately by a 1D modified Hubbard model
with coupling to both lattice phonons and molecular vibra-
tions. Such a microscopic model provides a good starting
point for systems with coupled electronic and structural in-
stabilities.
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