
Competition of Fermi surface symmetry breaking and superconductivity

Hiroyuki Yamase and Walter Metzner
Max-Planck-Institute for Solid State Research, D-70569 Stuttgart, Germany

�Received 26 January 2007; published 25 April 2007�

We analyze a mean-field model of electrons on a square lattice with two types of interaction: forward
scattering favoring a d-wave Pomeranchuk instability and a BCS pairing interaction driving d-wave supercon-
ductivity. By tuning the interaction parameters a rich variety of phase diagrams is obtained. If the BCS
interaction is not too strong, Fermi surface symmetry breaking is stabilized around van Hove filling, and
coexists with superconductivity at low temperatures. For pure forward scattering Fermi surface symmetry
breaking occurs typically via a first order transition at low temperatures. The presence of superconductivity
reduces the first order character of this transition and, if strong enough, can turn it into a continuous one. This
gives rise to a quantum critical point within the superconducting phase. The superconducting gap tends to
suppress Fermi surface symmetry breaking. For a relatively strong BCS interaction, Fermi surface symmetry
breaking can be limited to intermediate temperatures, or can be suppressed completely by pairing.
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I. INTRODUCTION

Usually the Fermi surface of an interacting electron sys-
tem respects the point-group symmetry of the underlying
crystal lattice. However, electron-electron interactions may
also lead to Fermi surface deformations which break the ori-
entational symmetry spontaneously. From a Fermi liquid
viewpoint this can happen via a “Pomeranchuk instability,”
that is, when Pomeranchuk’s stability condition1 for the for-
ward scattering interactions is violated.

Interactions favoring a symmetry-breaking Fermi surface
deformation with a d-wave order parameter, where the sur-
face expands along the kx axis and shrinks along the ky axis
�or vice versa�, are present in the t-J,2 Hubbard,3,4 and ex-
tended Hubbard5 model on a square lattice. These models
therefore exhibit enhanced “nematic” correlations, which
also appear in the context of fluctuating stripe order.6 Signa-
tures for such correlations have been observed in various
cuprate superconductors.7 In particular, they provide a natu-
ral explanation for the relatively strong in-plane anisotropy
observed in the magnetic excitation spectrum of
YBa2Cu3Oy.

8,9

Fermi surface symmetry breaking competes with super-
conductivity. In the t-J model the d-wave Fermi surface de-
formation instability is overwhelmed by d-wave pairing.
This is indicated by slave-boson mean-field theory2 and has
been confirmed recently by a variational Monte Carlo
calculation.10 However, enhanced nematic correlations
remain.11 The competition of superconductivity and Fermi
surface symmetry breaking is more delicate in the two-
dimensional Hubbard model. Renormalization group calcu-
lations in the symmetric phase suggest that the superconduct-
ing instability is always stronger than the Pomeranchuk
instability,12 but these calculations do not exclude the possi-
bility of coexistence of the two competing order parameters
in the symmetry-broken phase. Indeed, coexistence of
d-wave superconductivity and d-wave Fermi surface symme-
try breaking has been obtained near van Hove filling from a
weak coupling perturbation expansion for the symmetry-
broken ground state of the Hubbard model.13

To elucidate the interplay and competition of Fermi sur-
face symmetry breaking and superconductivity in a more
general setting, and to classify possible scenarios, we analyze
in the present work a mean-field model allowing for both
instabilities with a tunable strength for each. The model de-
scribes itinerant electrons on a square lattice with two types
of interaction: a reduced BCS interaction driving d-wave su-
perconductivity and a purely forward scattering interaction
driving d-wave Fermi surface symmetry breaking.

The properties of the mean-field model without BCS in-
teraction, where the electrons interact only via forward scat-
tering �“f-model”�, have been clarified already earlier.14–16

The main results can be summarized as follows. Fermi sur-
face symmetry breaking occurs below a transition tempera-
ture Tc which forms a dome-shaped line as a function of the
chemical potential �, with a maximal Tc near van Hove
filling.14,15 The phase transition is usually first order at the
edges of the transition line, and always second order around
its center.14–16 The d-wave compressibility of the Fermi sur-
face is however strongly enhanced even near the first order
transition down to zero temperature.16 Adding a uniform re-
pulsion to the forward scattering interaction, the two tricriti-
cal points at the ends of the second order transition line are
shifted to lower temperatures. For a favorable choice of hop-
ping and interaction parameters one of the first order edges
can be replaced completely by a second order transition line,
leading to a quantum critical point.16 Fluctuations at and near
the quantum critical point destroy fermionic quasiparticle ex-
citations, leading to non-Fermi liquid behavior.17,18

Adding an attractive d-wave BCS interaction to the
f-model leads to a variety of qualitatively distinct phase dia-
grams, depending on the interaction strength. If the BCS
interaction is not too strong, Fermi surface symmetry break-
ing is stabilized around van Hove filling, and coexists with
superconductivity at low temperatures. In the presence of a
pairing gap it is easier to realize Fermi surface symmetry
breaking via a continuous phase transition at low tempera-
tures than without. In particular, a quantum critical point
connecting superconducting phases with and without Fermi
surface symmetry breaking at zero temperature is obtained
for a suitable choice of interactions. For a relatively strong
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BCS interaction, Fermi surface symmetry breaking can be
limited to intermediate temperatures, or can be suppressed
completely by pairing.

The paper is structured as follows. In Sec. II we introduce
the mean-field model and describe the self-consistency equa-
tions for the order parameters. The phase diagrams and other
results are presented in Sec. III. A conclusion follows in
Sec. IV.

II. MEAN-FIELD MODEL

We analyze itinerant electrons on a square lattice interact-
ing via forward scattering and a reduced BCS interaction,
described by a Hamiltonian of the form

H = �
k

�k
0nk + HI

f + HI
c, �1�

where nk=��nk� counts the spin-summed number of elec-
trons with momentum k. The kinetic energy is due to hop-
ping between nearest and next-nearest neighbors on a square
lattice, leading to the bare dispersion relation

�k
0 = − 2t�cos kx + cos ky� − 4t� cos kx cos ky . �2�

The forward scattering interaction reads

HI
f =

1

2L
�
k,k�

fkk�nknk�, �3�

where L is the number of lattice sites, and the function fkk�
has the form

fkk� = u − gfdkdk�, �4�

with coupling constants u�0 and gf �0, and a function dk
with dx2−y2-wave symmetry such as dk=cos kx−cos ky. This
ansatz mimics the structure of the effective interaction in the
forward scattering channel as obtained for the t-J2 and
Hubbard3 model. The uniform term originates directly from
the repulsion between electrons and suppresses the �uniform�
electronic compressibility of the system. The d-wave term
enhances the d-wave compressibility and drives spontaneous
Fermi surface symmetry breaking. In the Hubbard model it is
generated by fluctuations, while in the t-J model the nearest
neighbor interaction contributes directly to a d-wave attrac-
tion in the forward scattering channel.

The BCS interaction has the form

HI
c =

1

L
�
k,k�

Vkk�ck↑
† c−k↓

† c−k�↓ck�↑. �5�

It is a reduced interaction in the sense that it contributes only
in the Cooper channel, that is, when the total momentum of
the interacting particles vanishes. For the matrix element
Vkk� we choose a separable d-wave attraction

Vkk� = − gcdkdk� �6�

with gc�0, which corresponds to the dominant term in the
Cooper channel for the two-dimensional Hubbard and t-J
model.

Inserting nk= �nk�+�nk into HI
f, and ck↑

† c−k↓
† = �ck↑

† c−k↓
† �

+��ck↑
† c−k↓

† � into HI
c, and neglecting terms quadratic in the

fluctuations, one obtains the mean-field Hamiltonian

HMF = �
k
��knk + ��kck↑

† c−k↓
† + H.c.�

−
��k

2
�nk� − �k�ck↑

† c−k↓
† �� . �7�

Here �k=�k
0 +��k is a renormalized dispersion relation, which

is shifted with respect to the bare dispersion by ��k
=L−1�k�fkk��nk��=un+�dk, where n=L−1�k�nk� is the aver-
age particle density, and

� = −
gf

L
�
k

dk�nk� �8�

is our order parameter for Fermi surface symmetry breaking.
It vanishes as long as the momentum distribution function
�nk� respects the symmetry of the square lattice. The
superconducting gap function is given by �k

= 1
L�k�Vkk��c−k�↓ck�↑�=�dk, where

� = −
gc

L
�
k

dk�c−k↓ck↑� . �9�

For the reduced interactions HI
f and HI

c the mean-field decou-
pling is exact in the thermodynamic limit. Feynman dia-
grams describing contributions beyond mean-field theory
have zero measure for L→�.

The mean-field Hamiltonian is quadratic in the Fermi op-
erators and can be diagonalized by a Bogoliubov transforma-
tion. For the grand canonical potential per lattice site,
	=L−1
, we obtain

	��,�� = −
2

�L
�
k

ln�2 cosh��Ek/2�	

+
�2

2gf
+


�
2

gc
+ un −

un2

2
− � , �10�

where � is the inverse temperature, Ek= ��k
2 + 
�k
2�1/2, and

�k=�k−�. The stationarity conditions �	 /��=0 and
�	 /��=0 yield the self-consistency equations for the order
parameters

� =
gf

L
�
k

dk
�k

Ek
tanh

�Ek

2
�11�

and

� =
gc

L
�
k

dk
�k

2Ek
tanh

�Ek

2
, �12�

respectively. The condition �	 /�n=0 �at fixed �� yields the
equation determining the density

n = 1 −
1

L
�
k

�k

Ek
tanh

�Ek

2
. �13�
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III. RESULTS

We now show results obtained from a numerical solution
of the mean-field equations. For the ratio of hopping amli-
tudes we choose t� / t=−1/6. The bare dispersion �k

0 has
saddle points at k= � ,0�, �0,�, leading to a logarithmic
van Hove singularity in the bare density of states at
�=4t�=−2t /3. All the results presented in the figures are for
u=0 �no uniform contribution to forward scattering�, but we
will discuss the effects of a finite u in the text. In the follow-
ing we set t=1, that is, all results with dimension of energy
are in units of t.

In Fig. 1 we show the transition temperature Tf��� for
Fermi surface symmetry breaking in the absence of pairing
��=0� for gf =1, and the critical temperature for supercon-
ductivity Tc��� in the absence of Fermi surface symmetry
breaking ��=0� for various choices of gc. As discussed in
detail in Refs. 15 and 16, a symmetry-broken Fermi surface
is stabilized below a dome-shaped transition line, with a
maximal transition temperature near van Hove filling. The
transition is first order at the edges of the transition line and
second order around its center. The critical temperature for
superconductivity is also maximal near van Hove filling, but
Tc��� remains finite for any � �as long as the band is par-
tially filled�, and the transition is always of second order.
Near van Hove filling the transition temperatures Tf and
Tc are of the same order of magnitude for gc slightly above
gf =1. Note that in the weak coupling limit one would obtain
Tf �Tc for comparable gf and gc, since log�1/Tf��gf

−1 for
gf →0,16 while log�1/Tc��gc

−1/2 for gc→0 at van Hove fill-
ing, due to the logarithmic divergence of the density of
states, and the additional logarithm in the Cooper channel, as
can be seen from the gap equation �12�.

We now discuss results for the full mean-field model, al-
lowing also for coexistence of the two order parameters. In
Fig. 2 we show the low temperature region of the phase
diagram in the �� ,T�-plane for gf =1 and a relatively weak
BCS coupling, gc=0.7. Fermi surface symmetry breaking

suppresses Tc and remains essentially unaffected by the �rela-
tiveley small� superconducting gap. The suppression of Tc
occurs since Fermi surface symmetry breaking splits the van
Hove singularity, reducing thus the density of states at the
Fermi level. However, superconductivity cannot be elimi-
nated completely, since a logarithmic Cooper singularity sur-
vives for any reflection invariant Fermi surface. The phase
diagram thus exhibits three types of first order transitions
between phases with a symmetric and a symmetry-broken
Fermi surface: between two normal states, between a super-
conductor and a normal state, and between two supercon-
ducting states. Continuing the �then metastable� phase with a
symmetric Fermi surface beyond the first order transition
line leads to a diverging d-wave compressibility at the ficti-
cious second order transition line “Tf

2nd” also shown in the
plot.

For larger gc the energy scale for superconductivity �gap
and Tc� increases, and effects of the superconducting gap on
Fermi surface symmetry breaking become more pronounced,
see Fig. 3 �here gc=0.9�. In particular the first order
transition line Tf��� is shifted toward the center of the
symmetry-broken region, and approaches the ficticious
second order line “Tf

2nd.” In Fig. 4 we show the �
dependence of the “reduced” Landau energy 	���
=	��min��� ,�	−	��min�0� ,0	 for two points in the phase
diagram which are close to each other, but on opposite sides
of the first order transition between a superconducting state
with a symmetric Fermi surface and a normal state with
Fermi surface symmetry breaking; �min��� minimizes
	�� ,�� for fixed �. Note that �min is zero for large �; the
kink in 	��� is due to the discontinuous onset of � for small
�. The � dependence of the order parameters � and � is
shown for various temperatures in Fig. 5. The jump of � at
the first order transition induces a counter jump of �. For
high T, superconductivity is suppressed completely by Fermi
surface symmetry breaking �Fig. 5�c�	, while for lower tem-

FIG. 1. Critical temperature Tf��� for Fermi surface symmetry
breaking in the absence of superconductivity ��=0� for gf =1 and
critical temperature for superconductivity Tc��� in the absence of
Fermi surface symmetry breaking ��=0� for various choices of gc.
The superconducting transition is always of second order. Fermi
surface symmetry breaking occurs via a first order transition at tem-
peratures below the tricritical points Tf

tri, and via a second order
transition above.

FIG. 2. Phase diagram in the �� ,T�-plane for gf =1 and gc

=0.7. The symbols � and � indicate which order parameters are
finite in the various regions confined by the transition temperatures.
Fermi surface symmetry breaking occurs via a first order transition
in the temperature range shown in the plot. Continuing the �then
metastable� phase with a symmetric Fermi surface beyond the first
order transition line leads to a diverging d-wave compressibility at
the ficticious second order transition line “Tf

2nd” also shown in the
plot.
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peratures coexistence of the order parameters � and � is
realized �Figs. 5�a� and 5�b�	. The temperature dependence
of the order parameters is shown for �=−0.7 �near van Hove
filling� in Fig. 6. The increasing superconducting gap � leads
to a decrease of � upon lowering the temperature below Tc.
Superconductivity smears the single particle states over an
energy range of order �, and thus suppresses the energy gain
from a Fermi surface deformation. Fermi surface symmetry
breaking is thus suppressed by the superconducting gap.

Although the system is not critical at the first order tran-
sition from a symmetric to a symmetry-broken Fermi sur-
face, it is close to criticality in the sense that the d-wave
compressibility �d is strongly enhanced by the forward scat-
tering interaction. For the case of pure forward scattering
�f-model� this was shown already in Ref. 16. In the presence
of superconductivity with a gap function �k, the d-wave
compressibility is given by

�d =
�d

0

1 − gf�d
0 , �14�

where

�d
0 =

1

L
�
k

dk
2���k

2

2Ek
2

1

�cosh
�Ek

2
2 +


�k
2

Ek
3 tanh

�Ek

2 �
�15�

is the d-wave compressibility in the superconducting state in
the absence of forward scattering �gf =0�. The enhancement
of �d due to gf is thus given by the “Stoner factor”
S= �1−gf�d

0�−1. In Fig. 7 we plot the inverse Stoner factor S−1

along the right first order transition line �approached from
the symmetric phase� up to the tricritical temperature Tf

tri for
various choices of gc. It becomes clear that S is enhanced

FIG. 3. Phase diagram in the �� ,T�-plane for gf =1 and
gc=0.9. The first order transition line for Fermi surface symmetry
breaking is very close to the ficticious second order line in this case.

FIG. 4. Reduced Landau energy 	���=	��min��� ,�	
−	��min�0� ,0	, minimized with respect to �, as a function of 
�
.
The interaction parameters are gf =1 and gc=0.9 as in Fig. 3, the
temperature is T=0.09. The two choices of � correspond to two
points close to but on opposite sides of the first order transition line
between a superconducting state with a symmetric Fermi surface
and a normal state with a d-wave deformed Fermi surface.

FIG. 5. Order parameters � and � as a function of � for various
temperatures, T=0.05,0.07,0.09. The interaction parameters are
gf =1 and gc=0.9 as in Fig. 3.
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significantly by superconductivity at low temperatures. In
particular, for gc=0.9 the system is very close to criticality.

Enhancing gc beyond gc=0.9, the first order transition
lines between the states with symmetric and symmetry-
broken Fermi surfaces are successively replaced by a con-
tinuous phase transition. In Fig. 8 we show the phase dia-
gram for gc=1. Here Fermi surface symmetry breaking
occurs via a continuous transition at the lowest temperatures,
well below Tc. In particular, there is a continuous quantum
phase transition at T=0. The first order lines are connected to
continuous transition lines both at the high and low tempera-
ture ends. The low temperature ends are tricritical points,
where the quadratic and the quartic coefficient of the reduced
Landau energy 	���=	�� ,�min���	 both vanish. By con-
trast, at the high temperature ends the quartic coefficient of
	��� jumps from a negative to a positive value. This discon-
tinuity is due to the onset of � below Tc. Note that the high
temperature ends are close to the tricritical points found for
smaller gc, such that a small jump of the quartic coefficient
can turn its sign. For gc=1.12 the first order transition has
disappeared completely from the phase diagram �see Fig. 9�,
and the transition between symmetric and symmetry-broken

Fermi surfaces is always continuous. The transition lines for
Fermi surface symmetry breaking and superconductivity in-
tersect in tetracritical points, where both quadratic coeffi-
cients of 	�� ,�� vanish. Enhancing gc further leads to a
progressive suppression of Fermi surface symmetry break-
ing, in particular at lower temperatures, where the supercon-
ducting gap is getting large. For gc=1.2, Fermi surface
symmetry breaking is eliminated completely by supercon-
ductivity at low T, while it still survives in a small region at
intermediate temperatures, see Fig. 10. For even larger gc the
region with a symmetry-broken Fermi surface shrinks further
until it disappears completely from the phase diagram.

Adding a uniform contribution u�0 to fkk�, Eq. �4�, leads
to a suppression of first order transitions into a phase with a
symmetry-broken Fermi surface, making thus continuous
transitions easier. This trend was already observed and ex-
plained in detail for the case of pure forward scattering.16 For
small gc, the tricritical points are shifted to lower tempera-
tures by a finite u, and the first order transition line moves
closer to the ficticious second order transition. The gradual
replacement of the first order line by a second order for in-
creasing gc is accelerated for u�0. For example, for gf =1,
u=10, and gc=0.9 the phase diagram looks qualitatively as
the one in Fig. 9, with Fermi surface symmetry breaking
always occuring via a continuous transition.

FIG. 6. Temperature dependence of the order parameters � and
� for �=−0.7 and interaction parameters as in Fig. 3.

FIG. 7. Temperature dependence of the inverse Stoner enhance-
ment of the d-wave compressibility along the right first order tran-
sition line between the phases with symmetric and symmetry-
broken Fermi surface. Interaction parameters are gf =1 and gc

=0,0.7,0.9. The tricritical point at the high temperature end of the
transition line �Tf

tri=0.130� is the same in all cases.

FIG. 8. Phase diagram in the �� ,T�-plane for gf =1 and gc=1.
The ficticious second order transition line “Tf

2nd” is so close to the
first order line Tf

1st that it is hidden by the latter.

FIG. 9. Phase diagram in the �� ,T�-plane for gf =1 and
gc=1.12. All transitions are of second order.
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The �effective� interaction resulting from the Hubbard or
t-J model contains also an s-wave component in the Cooper
channel. In case of coexistence of superconductivity with a
d-wave Fermi surface deformation, this leads to a small
s-wave contribution to the gap function �k, in addition to the
dominant d-wave term.2,13

IV. CONCLUSIONS

We have solved a mean-field model for itinerant electrons
moving on a square lattice with two types of interactions: an
interaction in the forward scattering channel favoring a
d-wave shaped symmetry-breaking Fermi surface deforma-
tion and a reduced BCS interaction with d-wave symmetry.
Making different choices for the interaction parameters, a
rich variety of possible phase diagrams has been found.

For pure forward scattering Fermi surface symmetry
breaking occurs typically via a first order transition at low
temperatures.15,16 The presence of superconductivity reduces

the first order character of this transition and, if strong
enough, can turn it into a continuous one. This gives rise to a
quantum critical point within the superconducting phase. The
superconducting gap tends to suppress Fermi surface sym-
metry breaking. For a certain choice of parameters one finds
reentrant behavior, where Fermi surface symmetry breaking
is stabilized at intermediate temperatures, while it is sup-
pressed by the pairing gap at low temperatures. If supercon-
ductivity is too strong, Fermi surface symmetry breaking dis-
appears completely from the phase diagram.

In microscopic models the relative strength of forward
scattering and pairing interactions is determined by the mi-
croscopic interactions. In the t-J model slave-boson
mean-field2 and variational Monte Carlo10 calculations show
that pairing prevents Fermi surface symmetry breaking, but
there are strongly enhanced correlations indicating that the
model is close to a d-wave Pomeranchuk instability.11 This
corresponds to the case of a relatively large gc in our phe-
nomenological mean-field model. In the weakly interacting
Hubbard model coexistence of superconductivity and Fermi
surface symmetry breaking has been found around van Hove
filling at T=0 within second order perturbation theory.13 The
available numerical results indicate that Fermi surface sym-
metry breaking occurs via a continuous transition in this
case, as in the phase diagrams in Figs. 8 or 9.

It would clearly be interesting to analyze how order pa-
rameter fluctuations modify the mean-field results. A renor-
malization group calculation by Vojta et al.19 suggests that a
quantum critical point for orientational symmetry breaking in
a d-wave superconductor is destabilized by fluctuations,
leading possibly to a first order transition.
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