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We study the gate-voltage induced gap that occurs in graphene bilayers using ab initio density functional
theory. Our calculations confirm the qualitative picture suggested by phenomenological tight-binding and
continuum models. We discuss enhanced screening of the external interlayer potential at small gate voltages,
which is more pronounced in the ab initio calculations, and quantify the role of crystalline inhomogeneity
using a tight-binding model self-consistent Hartree calculation.
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I. INTRODUCTION

Recently, ultrathin graphite films including monolayers1–3

and bilayers4,5 have attracted considerable attention because
of their novel properties. In single-layer graphene, the A sub-
lattice to B sublattice hopping amplitude vanishes at two
inequivalent points K and K� on the edge of the honeycomb
lattice Brillouin zone �BZ�; away from these points, the hop-
ping amplitude grows linearly with the wave vector and has
a phase which winds along with the orientation of the wave
vector measured from the high-symmetry points. The band
structure of an isolated graphene layer is therefore described
at low energies by a two-dimensional massless Dirac equa-
tion with linear dispersion; this property gives rise to a half
integer quantum Hall effect6,7 and to a quantized spin Hall
effect8,9 and dominates the low-energy physics.

In bilayer graphene, the Bernal �Ã-B� stacking illustrated
in Fig. 1 modifies this electronic structure in an interesting

way.4,10 At K and K�, the states localized at the Ã and B sites,
are repelled from zero energy by interlayer tunneling; only

states localized at A and B̃ are present at zero energy. When

tunneling is included, the A to B̃ hopping is a second-order

process via a virtual bonding or antibonding state at Ã and B.
The chirality of the low-energy bands is therefore doubled.
Most intriguingly, an external potential which induces a dif-

ference between the A and B̃ site energies will open up a
gap11,12 in the spectrum. Band gaps controlled by applying a
gate bias have been studied experimentally using angle-
resolved photoemission spectroscopy5 and Shubnikov–de
Haas analysis13 of magnetotransport. This unique property of
bilayer graphene has created considerable interest in part be-
cause it suggests the possibility of switching the conductance
of a graphene bilayer channel over a wide range at a speed
which is limited by gate-voltage switching, as illustrated
schematically in Fig. 2.

In this paper, we report on an ab initio density functional
theory �DFT� study of the influence of an external potential
difference between the layers on the electronic structure of a
graphene bilayer. We compare our results with the phenom-
enological tight-binding and continuum model Schrödinger-
Poisson calculations used in previous theoretical analyses.12

DFT predicts, in agreement with these works, that the exter-
nal potential difference is strongly screened with a maximum

energy gap value of �0.3 eV. There are, however, quantita-
tive differences. In particular, the enhanced screening which
occurs for weak external potentials is stronger in the DFT
calculations. In an effort to improve the quantitative agree-
ment, we have estimated the influence of crystalline inhomo-
geneity in a tight-binding model self-consistent Hartree cal-
culation. This effect strengthens intralayer Coulomb
interactions because the charge is spatially bunched, and
therefore increases screening in a Hartree calculation, but
does not fully account for differences between the two cal-
culations.

II. AB INITIO DENSITY FUNCTIONAL THEORY
CALCULATIONS

We have performed ab initio DFT calculations14 for an
isolated graphene bilayer under a perpendicular external
electric field using an all-electron linearized augmented
plane wave plus local-orbital method incorporated in
WIEN2K.15 We used the generalized-gradient approximation16

for the exchange and correlation potential.

A. External electric fields

To investigate the influence of an external electric field on
a graphene bilayer, a periodic zigzag potential was applied
along the z direction, perpendicular to the graphene planes,
in a supercell.17 The bilayer was placed at the center of the
constant external electric field region and the size of the su-
percell was set to a large value ��16 Å� to minimize the
interaction between bilayers in neighboring supercells. In or-

FIG. 1. �Color online� Structure of a graphene bilayer with hon-
eycomb lattice constant a=2.46 Å and interlayer separation d
=3.35 Å.
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der to resolve the small gaps produced by small external
fields, we performed BZ sums using a relatively large num-
ber of k points ��800� per irreducible wedge �5000 k points
in the whole BZ�. Total energies were convergent to within
0.0001 Ry.

Figure 3 shows the Coulomb potential relative to the
Fermi energy, laterally averaged along a line in the x-y plane
that includes an equal number of atoms in each layer, as a
function of the z coordinate. The potential includes the Har-
tree electron-electron potential and the electron-ion interac-
tion but not the external electric field potential or the
exchange-correlation potential. The bilayer is centered
around z /z0=0.25, where z0 is the superlattice period. �In the
discussion below, we define the external potential energy
Uext as Uext=eEz,extd, where Ez,ext is an external electric field
along the z direction and d is the interlayer separation of
bilayer graphene which we take to be 3.35 Å.� In the absence
of an electric field �dashed line�, the Coulomb potential is flat

in the vacuum region and the energy difference between the
vacuum and the Fermi energy gives estimates of the work
function of bilayer graphene to be �4.3 eV. In the presence
of an electric field �solid line�, charge transfer between the
layers induces a potential which cancels the external poten-
tial in the vacuum region. The difference between the Cou-
lomb energies of the two layers in the presence of an external
electric field is closely related to the gate-voltage induced
energy gap.

B. Energy bands

Figure 4�a� shows the DFT energy band structure of bi-
layer graphene in the absence of an applied external electric
field. When Uext=0 eV, the low-energy band dispersion is
nearly parabolic at two inequivalent corners, K and K�, of the
hexagonal BZ, as predicted by the �-orbital tight-binding
and continuum model phenomenologies.11,12 The valence
and conduction bands meet at the Fermi level.

In the absence of an external electric field, bilayer
graphene, like single-layer graphene, is a zero-gap semicon-
ductor. At finite Uext, however, the low-energy bands near the
K or K� point split, as explained in the Introduction. There-
fore, gated graphene bilayer systems are gate-voltage tunable
narrow gap semiconductors �Fig. 4�b��. This property is
unique, to our knowledge. It is worth noting that in the pres-
ence of an external electric field, the true energy gap does not
occur at the K or K� point but slightly away from it. The
low-energy spectrum develops a Mexican hat structure as the
strength of the external electric field increases. This property
is also captured by phenomenological models of graphene
bilayers.12

C. Evolution of tight-binding model parameters with Uext

Figure 5 illustrates DFT predictions for the evolution of
tight-binding parameters with the applied external potential.
The tight-binding model expression for the four low-energy
band eigenvalues at the K and K� points is EK/K�= ±U /2,
±��1

2+U2 /4,11 where U is the interlayer energy difference
and �1 is the interlayer tunneling amplitude. �As we discuss

FIG. 2. �Color online� Schematic illustration of a circuit with a bilayer graphene channel sensitive to an external gate voltage. The
graphene channel is separated from the front and back gates by a SiO2 layer. The channel resistance change will be rapid and large when the
graphene channel is undoped and isolated from the gate electrodes, as illustrated here. In this case, the total charge density in the bilayer
system is fixed and the chemical potential lies in the gap opened by the gate voltage. This geometry could also be used to capacitively probe
the correlation physics of the isolated bilayer system, as discussed in the text.

FIG. 3. �Color online� An averaged Coulomb potential of a cross
section vs z for total external potential Uext=0 eV and Uext=1 eV.
Here, z0 is the superlattice period and the cross section was chosen
to include equal number of atoms in each layer.
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below, this expression should, strictly speaking, be slightly
modified in the presence of an external potential, but it still
provides a convenient way of characterizing DFT predictions
for the low-energy bands.� The values of U and �1 plotted in
Fig. 5 represent this interpretation of the four lowest-energy
DFT eigenvalues and clearly reflect substantial screening of
the external interlayer potential by the Hartree potential plot-
ted in Fig. 3. The interlayer coupling �1 increases monotoni-
cally as the external potential increases. The rate of increase
is, however, ten times smaller than estimated in a recent
experimental study5 of a doped bilayer systems, possibly
suggesting significant differences between doped and un-
doped systems. The intralayer nearest-neighbor �-electron

hopping amplitude �0 and the interlayer A-B̃ coupling �3
were fitted to reproduce the band dispersion around the K /K�
points at low energies. We find �0�2.6 eV and �3�0.3 eV,
nearly independent of the external electric field. This value
for �0 corresponds to an in-plane velocity v=

�3
2

a�0

� �8.4
�105 m/s, where the lattice constant a=2.46 Å.

Figure 5�c� compares the relationship between the on-site
energy difference U extracted from the DFT calculations and

the energy gap with the corresponding relationship in the
tight-binding model. Note that the gap does not increase in-
definitely with U but saturates at �0.3 eV due to the Mexi-
can hat structure shown in the bands illustrated in Fig. 4. For
�3=0, we can estimate the approximate energy gap from the
low-energy approximation of the tight-binding model given
by Egap��U��1 /��1

2+U2, where Egap approaches �1
�0.34 eV as U increases.12 For �3�0.3 eV, however, Egap
is reduced from that of �3=0 and matches well with the DFT
results. A nonzero value for �3 has a noticeable quantitative
influence on the bands. This agreement confirms �unsurpris-
ingly� that the tight-binding model captures the character of
the low-energy bands in bilayer graphene. The most interest-
ing physics is in the relationship between U and Uext, which
we now examine more closely.

FIG. 4. �Color online� �a� Bilayer graphene band structure in the
absence of an external electric field. �b� Bilayer graphene band
structure near the K point for Uext=0, 0.5, and 1 eV.

FIG. 5. �Color online� �a� Evolution of the graphene bilayer
screened on-site energy difference U, extracted from the ab initio
DFT bands as explained in the text, with the external potential Uext.
The external potential is strongly screened. �b� Evolution of the
interlayer tunneling amplitude �1 with Uext. �c� Comparison of band
gap as a function of the on-site energy difference U obtained from
the ab initio DFT calculations �open circles� with the tight-binding
result for �3=0 �dashed line� and �3=0.3 eV �solid line�.
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III. SCREENING THEORIES

A. Continuum Hartree potential models

The screening of the external potential has been examined
previously for both doped and undoped bilayers using phe-
nomenological approaches combined with the Poisson
equation.12 This type of analysis provides a good reference
point for interpreting the DFT results so we start with a dis-
cussion of this picture. Consider a graphene bilayer with an
interlayer separation d under an external electric field Ez,ext
along the z direction. Neglecting the finite thickness and
crystalline inhomogeneity of the graphene layers, and
screening external to the bilayer, the Poisson equation is

� · E = 4��− e��n1��z� + n2��z − d�� , �1�

where n1 and n2 are the net charge densities on the bottom
and top layers, respectively. If the bilayer is placed on a gate
dielectric such as silicon dioxide �SiO2� and a voltage is
applied between a gate and the bilayer, an excess charge
carrier density n=n1+n2 is supplied to the bilayer graphene
and redistributed between the top and bottom layers due to
an external electric field.

In order to compare with our DFT calculations, we focus
here on the isolated bilayer case illustrated in Fig. 2, in
which the total excess density n=n1+n2=0. Let us define
�n=n2=−n1. From Eq. �1�, we obtain the screened electric
field Ez between the graphene sheets of the bilayer to be

Ez − Ez,ext = 4�e�n . �2�

Adding the corresponding Hartree potential to the external
potential, we obtain the screened interlayer potential differ-
ence as

U = Uext + 4�e2d�n , �3�

where U=eEzd and Uext=eEz,extd.
To estimate the relationship between U and Uext, we need

only a theory for the dependence of �n on U. In the �-orbital
tight-binding model, �n is given by the following integral
over the BZ:

�n = 	
i�occ

2

BZ

d2k

�2��2��i�k���z

2
��i�k�
 , �4�

where ��i�k�� is a band eigenstate in the presence of U, �z

=diag�1,1 ,−1 ,−1� in the �top,bottom�� �A ,B� basis, and
the index i runs over all occupied states. The factor of 2 was
included to account for spin degeneracy.

Figure 6 compares the screening ratio Uext /U obtained
from the ab initio DFT calculations with the screening ratio
from �-orbital tight-binding model self-consistent Hartree
calculations with and without corrections that account for the
crystalline inhomogeneity within each layer as explained
later. The agreement between the three different approaches
is generally good especially at large potentials.

Note that as U approaches zero, Uext /U increases in all
approximations. This property reflects increased screening as
the gap decreases and is explained most succinctly using the
two-band continuum model11 for the lowest-energy bands:

Hef f �
U

2
�1 0

0 − 1
� −

1

2m
� 0 ��†�2

�2 0
� = a · � , �5�

where �= px+ ipy, m=
�1

2v2 , a= �− px
2−py

2

2m ,−
pxpy

m , U
2

�, and � are 2
�2 Pauli matrices describing the top and bottom layer low-
energy sites. This Hamiltonian has simple spectra 	±= ± �a�
with eigenfunctions given by

� + � =�cos



2
e−i�/2

sin



2
ei�/2 �, �− � =�− sin




2
e−i�/2

cos



2
ei�/2 � , �6�

where tan 
=
�a1

2+a2
2

a3
and tan �=

a2

a1
. It follows that

�n = 4

�p��pc

d2p

�2���2�− ,p��z

2
� − ,p


= −
1

��2

0

pc

pdp cos 
�p�

= −
mU

2��2 ln�xc + �xc
2 + 1� , �7�

where xc=
pc

2

mU . We have inserted a factor of 4 in this con-
tinuum model calculation to account for both spin �↑ and ↓�
and valley �K and K�� degeneracies. The integral over wave
vector was cut off at the radius pc��2m�1 beyond which the
continuum model fails.

Inserting Eq. �7� in Eq. �3�, we obtain

FIG. 6. �Color online� The ratio of the external electric potential
Uext to the interlayer energy difference inferred from the ab initio
DFT calculation compared with the value of the same ratio in tight-
binding model self-consistent Hartree calculations, both with and
without crystalline inhomogeneity corrections. The tight-binding
model calculations used �0=2.6 eV for the intralayer tunneling am-
plitude, �1=0.34 eV for the interlayer tunneling amplitude, and

�3=0.3 eV for the interlayer A-B̃ coupling.

MIN et al. PHYSICAL REVIEW B 75, 155115 �2007�

155115-4



Uext

U
= 1 − 4�e2d

�n

U
= 1 + 2� d

aB
�� m

me
�ln�xc + �xc

2 + 1� ,

�8�

where aB=�2 /mee
2 is the Bohr radius and me is the bare

electron mass. For small U, xc is large and this simplifies to

Uext

U
� 2� d

aB
�� m

me
�ln� 2pc

2

mU
� . �9�

A related observation concerning the logarithmic divergence
of the screening ratio at small gate voltages was made pre-
viously by McCann.12 All three of our calculations exhibit
this increased screening at weak external potentials, with the
largest upturn in the ab initio calculations.

B. Lattice Hartree potential models

We now turn our attention to one important contribution
to discrepancies between the ab initio DFT results and the
predictions of self-consistent Hartree models similar to those
described above, the role of crystalline inhomogeneity in bi-
layer and single-layer graphene electrostatics. We consider a

general two-body interaction term V̂,

V̂ =
1

2 	

1�,
2�,
1,
2

�
1�
2��V�
1
2�c

1�
† c


2�
† c
2

c
1
, �10�

where c

† and c
 are creation and annihilation operators for a

state 
. To capture the main consequences of crystalline in-
homogeneity, we assume that the �-orbital Bloch states with
crystal momentum k can be written as a linear combination
of atomic orbitals,

�k,
�x� =
1

�N
	
R

eik·R�
�x − R − �
� , �11�

where �
 is an atomiclike � orbital, R is a lattice vector, �


is the displacement of the sites in a unit cell with respect to
the lattice vector, and N is the number of lattice sites. If we
assume that the overlap of �
 orbitals centered on different
sites can be neglected and ignore the ẑ direction spread of the
graphene sheets, the interaction Hamiltonian simplifies to

V̂ =
1

2�
	

k1,k2,q
	


1,
2

Ṽ
1,
2
�q�ck1+q,
1

† ck2−q,
2

† ck2,
2
ck1,
1

,

�12�

where � is the area of the two-dimensional plane,

Ṽ
1,
2
�q� = V
1,
2

�q�w
1
�− q�w
2

�q�eiq·��
1
−�
2

�, �13�

V
1,
2
�q� =
 dxe−iq·xV
1,
2

�x� , �14�

and

w
�q� =
 dxe−iq·x��
�x��2. �15�

Note that the labels k1 and k2 are restricted to the BZ, while
q runs over the two-dimensional plane. In Eq. �14�,

V
1,
2
�x�=e2 / �x� when 
1 and 
2 refer to sites in the same

layer and V
1,
2
�x�=e2 /��x�2+d2 when 
1 and 
2 refer to

layers separated by d. It follows that V
1,
2
�q�=2�e2 / �q� for

labels in the same layer and V
1,
2
�q�=2�e2 exp�−�q�d� / �q�

for labels in different layers. Since the total charge of the
bilayer is fixed in our calculations, only the differences be-

tween the various Ṽ
1,
2
�q� values are relevant. For explicit

calculations, we have used a Gaussian form factor w
�q�
=e−�q�2r0

2/2 corresponding to ��
�x��2�e−�x�2/2r0
2
, where r0

�0.48 Å was obtained by fitting to the DFT valence orbitals.
This two-body Hamiltonian can be used to account for

crystalline inhomogeneity in a graphene bilayer system with
arbitrary electronic correlations. To compare with the ab ini-
tio DFT calculations, we consider interactions in a mean-
field Hartree approximation in which the interaction contri-
bution to the single-particle Hamiltonian is

V̂�H� = 	
k,a,�

	a�
�H�ck,a�

† ck,a�, �16�

where a and � denote layer and sublattice degrees of free-
dom. Here,

	a�
�H� = 	

a�,��

Ṽa�,a���na���, �17�

where na�= 2
�	k�ck,a�

† ck,a�� including spin degeneracy and

Ṽa�,a��� = 	
G

Ṽa�,a����G� , �18�

with G a triangular lattice reciprocal-lattice vector.
As explained in the Introduction, interlayer tunneling in

graphene leads to high-energy bands which favor the Ã-B

sites and low-energy bands that favor the A-B̃ sites. Since the
low-energy bands respond most strongly to the external po-
tential, we can expect that the charge transfer occurs more

strongly on the A-B̃ sites, and that the screening potential
should be larger on these sites. Instead of a single-interlayer
Hartree screening potential, two Hartree potentials for low
and high bands must be calculated separately:

	l
�H� = 	

B̃

�H�
− 	A

�H�,

	h
�H� = 	

Ã

�H�
− 	B

�H�. �19�

When only the G=0 term is retained in the reciprocal-lattice
vector sum,

	l
�H0� = 	h

�H0� = 2�e2d�nÃ + nB̃ − nA − nB� , �20�

and Eq. �3� is recovered.
It turns out that the sum over reciprocal-lattice vectors can

be truncated with good accuracy at the first shell. Noting that
e−�G�d�1, we find for the crystalline inhomogeneity correc-
tions

	l
�H1� � 2�e2d��G��6�nl − 3�nh� ,
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	h
�H1� � 2�e2d��G��6�nh − 3�nl� , �21�

where �nl=nB̃−nA, �nh=nÃ−nB, and ��G�=e−�G�2r0
2
/ �G�d

�0.0136. Thus, the inhomogeneity effect results in more
screening as expected, but as indicated by the black dashed
line in Fig. 6, it is not able to account for the largest part of
the discrepancy between DFT and model results.

As the external electric potential is decreased, the differ-
ence between low-energy and high-energy site occupancies
is increased. The difference in Hartree potentials rises corre-
spondingly, as illustrated in Fig. 7�a�. From Eq. �21�, we can
estimate the relation between the splitting of the Hartree po-
tentials and the density inhomogeneity:

	l
�H� − 	h

�H�

	l
�H� + 	h

�H� �
9

2
��G�

�nl − �nh

�nl + �nh
, �22�

where the coefficient 9
2��G� is given by �0.0612 �Fig. 7�b��.

IV. DISCUSSION

Our DFT calculations of external potential induced gaps
in the electronic structure of graphene bilayers confirm the
simple picture provided by phenomenological tight-binding
models. The ab initio calculations include a number of ef-
fects not contained in the model calculations. For example,

the occupied � orbitals within each graphene plane, which
are neglected in the �-orbital tight-binding model, will be
slightly polarized by the external electric field and contribute
to screening. In the DFT calculations, not only Hartree po-
tentials but also exchange-correlation potentials will be al-
tered by an external electric field and influence the screening
process. Since the exchange potential is attractive, its contri-
bution to the total potential will lower energies in a layer
more as the density is increased. The exchange potential
therefore makes a negative contribution to the screening ra-
tio. The quantitative discrepancies between the DFT and phe-
nomenological model reflect the combination of these and
other additional effects contained in the DFT calculations,
and strong sensitivity to intralayer and interlayer tunneling
amplitudes which may not be evaluated with perfect accu-
racy by DFT. We also note that the low-energy eigenstates in
bilayer graphene are coherent combinations of amplitudes on
both layers, which implies that interlayer exchange interac-
tions will be substantial. This kind of effect is absent in the
exchange-correlation potentials commonly used in DFT. In-
deed, it is entirely possible that DFT calculations do not
predict accurate values for the screening ratio. We believe
that there is strong motivation for capacitive studies of the
interlayer screening properties of graphene bilayers using an
experimental arrangement similar to that in Fig. 2.

In summary, we have used ab initio density functional
theory calculations to study the gate-voltage tunable gap in
the electronic structure of bilayer graphene. The electric-field
dependence of the on-site energy difference and the inter-
layer tunneling amplitude were extracted from the DFT cal-
culation results by fitting to tight-binding model expressions
for high-symmetry point graphene bilayer band eigenvalues.
The screening effect seen in the DFT calculations can be
explained by a tight-binding model self-consistent Hartree
method including crystalline inhomogeneity corrections, al-
though the DFT screening is stronger especially for weak
external potentials.
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