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We generalized the recently introduced impurity solver �P. Werner et al., Phys. Rev. Lett. 97, 076405
�2006�� based on the diagrammatic expansion around the atomic limit and quantum Monte Carlo summation of
the diagrams. We present generalization to the cluster of impurities, which is at the heart of the cluster
dynamical mean-field methods, and to realistic multiplet structure of a correlated atom, which will allow a
high-precision study of actinide and lanthanide based compounds with the combination of the dynamical
mean-field theory and band-structure methods. The approach is applied to both the two-dimensional Hubbard
and t-J models within cellular dynamical mean-field method. The efficient implementation of the algorithm,
which we describe in detail, allows us to study coherence of the system at low temperature from the under-
doped to overdoped regime. We show that the point of maximal superconducting transition temperature coin-
cides with the point of maximum scattering rate, although this optimal doped point appears at different electron
densities in the two models. The power of the method is further demonstrated in the example of the Kondo
volume collapse transition in cerium. The valence histogram of the dynamical mean-field theory solution is
presented, showing the importance of the multiplet splitting of the atomic states.
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I. INTRODUCTION

One of the most active areas of condensed-matter theory
is the development of new algorithms to simulate and predict
the behavior of materials exhibiting strong correlations. Re-
cent developments of the powerful many-body approach, the
dynamical mean-field theory1–3 �DMFT� and its cluster
extensions,4,5 hold great promise in being able to accurately
predict physical properties of this challenging class of mate-
rials. In recent years, the DMFT method has substantially
advanced our understanding of the physics of the Mott tran-
sition and demonstrated its power to explain such problems
as the structural phase diagrams of actinides,6,7 phonon
response,8 optical conductivity,9 valence and x-ray
absorption,10 and transport11 of some of the archetype mate-
rials with strong correlations.

The success of the dynamical mean-field theory in the
context of the electronic structure revitalized the search for
fast and flexible impurity solvers which could treat Hund’s
coupling and spin-orbit coupling of the parent atomic con-
stituents in the crystal environment of the lattice. Further, the
newly developed cluster extensions of DMFT �Refs. 4 and 5�
require faster impurity solver which could access low-
temperature strong correlation limit.

Many impurity solvers were developed over the
last few decades, including Hirsch-Fye quantum Monte
Carlo method,12 exact diagonalization,13 noncrossing
approximation,14 and its extensions such as one-crossing
approximation3,15 or SUNCA,16 iterative perturbation
theory,17 Wilson’s numerical renormalization-group18 expan-
sion around the atomic limit,19 and many others.

Each method has some advantages and disadvantages, but
at the present time, there is no method that works efficiently
and produces accurate solutions for the Green’s function in
all regimes of parameters. Concentrating only on the most
often employed method, numerically exact Hirsch-Fye quan-

tum Monte Carlo, the following weaknesses limit its useful-
ness in many realistic materials and clusters of strongly cor-
related models: �i� It cannot treat realistic multiplet structure,
which is very important in strongly correlated f materials.
�ii� The discretization of the imaginary time leads to consid-
erable systematic error20 and requires extrapolation to infini-
tesimally small time slices. �iii� The low-temperature regime
in the strong correlation limit of large U is computationally
very expensive, since it requires many time slices and infi-
nite U models like t-J model are inaccessible.

All of the above-mentioned shortcomings of the conven-
tional quantum Monte Carlo algorithm are eliminated by the
continuous time quantum Monte Carlo method.20–23 In addi-
tion, this method is even much faster for most of the appli-
cations we tested �see, for example, Ref. 20�, including clus-
ter DMFT for the Hubbard model and application of local-
density approximation �LDA�+DMFT to the actinides.

The basic idea and its implementation for the Hubbard
model were recently published in Ref. 21. Further extensions
to a more general impurity model was implemented in Ref.
22. The first demonstration of the power of our implementa-
tion was presented in Ref. 24 by a detailed low-temperature
study of sodium-doped cobaltates and in Ref. 10 by a study
of plutonium valence.

Here, we want to describe the powerful implementation of
the method for applications to realistic materials with com-
plicated multiplet structure, including all interaction terms:
Hubbard U, Hund’s coupling, and spin-orbit coupling. The
extension to clusters of few sites and superconducting state
within cluster DMFT will be addressed, and its power will be
demonstrated by studying the low-temperature coherence of
both the Hubbard and the t-J model. The Kondo volume
collapse transition in elemental cerium will be re-examined,
showing the valence histogram of the alpha and gamma
phases of the material. More technical details of the imple-
mentation are given in the Appendix.
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II. FORMALISM

In this section, we will explain the main steps of the re-
cently developed quantum Monte Carlo method with empha-
sis on the generalization to clusters and multiplets of real
materials.

The cluster dynamical mean-field approach can be conve-
niently expressed by the functional of the local Green’s
function3

��Gloc� = Tr log�G0
−1 − �� − Tr��G� + ��Gloc� . �1�

Here, Gloc stands for the Green’s function of the cluster or
single site under consideration and is, in general, a matrix of
the size equal to the number of sites times the number of
correlated orbitals per site. Further, G0 is the noninteracting
Green’s function G0

−1=�+�+�2+Vext and contains all qua-
dratic terms of the Hamiltonian including periodic ionic po-
tential of the crystal �Vext�. The interacting part of the func-
tional ��Gloc� contains all two-particle irreducible skeleton
diagrams inside the chosen cluster, i.e., �=���Gloc� /�G.

Within the DMFT method, the summation of all the dia-
grams is achieved by solving the corresponding quantum im-
purity problem

Z =� D��†��exp�− Sc
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where the Anderson impurity model hybridization � term
plays the role of the generalized Weiss field that needs to be
added to the cluster effective action Sc to obtain the local
Green’s function. The self-consistency condition which de-
termines this Weiss field �hybridization �� is

Gimp =
1

� − Eimp − � − �
= Gloc = �

k

1

G0
−1�k� − �

. �3�

In the general impurity problem defined in Eq. �2�, the
electrons in the cluster Sc hybridize with a matrix of Weiss
fields ��	. In the case of single-site DMFT for an f material,
this hybridization is a 14
14 matrix, while in cluster DMFT
for plaquette, it is an 8
8 matrix. In some cases, hybridiza-
tion can be block diagonalized, as we will show in the Ap-
pendix below on the example of cellular DMFT for the nor-
mal state of the Hubbard model. However, in the
superconducting state of the same model, the hybridization
acquires off-diagonal components due to anomalous compo-
nents of self-energy.

The cluster part of the action Sc can be very complicated,
and the power of this method is that it can treat arbitrary
interaction within the cluster. For real material study, the
most important on-site terms are the Hund’s couplings,
which are usually expressed by the Slater integrals25 �F2, F4,
and F6 in case of f electrons�. In addition, there is spin-orbit
coupling HSO=� l ·s and crystal-field splittings as well as
various hoppings and nonlocal interactions within the cluster.

The continuous time impurity solvers are based on the
diagrammatic expansion of the partition function and sto-

chastic sampling of the diagrams. Two expansions were re-
cently implemented: the expansion around the band limit26

and the expansion in the hybridization strength.21 The latter
seems to be superior in the strongly correlated regime due to
a substantial reduction of the size of matrices that need to be
manipulated,20 and, most importantly, the empirical finding
is that the minus sign problem in this approach is severely
reduced or maybe even eliminated.20,22

The expansion in hybridization strength has a long history
starting with the famous noncrossing approximation14 and
various extensions of it such as one crossing approximation
�OCA�,3,15 CTMA,27 SUNCA.16 All these approximations
can be viewed as partial summation of the same type of
diagrams. With stochastic sampling, the summation of essen-
tially all the diagrams is now possible. The only weakness of
the approach is that it works exclusively with the imaginary
time Green’s functions and analytic continuation to real axis,
and access to real axis self-energy, for example, is still hard
to achieve. However, we believe that the substantially en-
hanced precision of the method, as compared to Hirsch-Fye
quantum Monte Carlo �QMC�, will make this step easier.

The idea of expanding partition function in terms of the
hybridization with the conduction band dates back to the
work of Yuval and Anderson.28 In this work, mapping the
hybridization expansion to Coulomb gas model leads to one
of the first breakthroughs in the area of the Kondo problem.
Generalization to asymmetric Anderson model was pub-
lished by Haldane in Ref. 29. A similar approach was later
used in exploring the physics of the generalized Hubbard
model in the context of DMFT.30 In this work, the hybridiza-
tion expansion of the partition function was analyzed by
renormalization-group analysis technique. An early imple-
mentation of the related idea to sum up the terms of the
partition function by Monte Carlo sampling was imple-
mented in Ref. 31 to solve the two two-channel Anderson
impurity model.

A. Sampled partition function

In the continuous time quantum Monte Carlo method, the
partition function is expanded in terms of hybridization
strength �, and the resulting diagrams are summed up by
stochastic Metropolis sampling. Taylor expansion of the im-
purity partition function �Eq. �2�� gives

Z =� D��†��e−Sc�
k
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and by separating the cluster contribution from the bath con-
tribution, the partition function can be cast into the form

Z =� D��†��e−Sc�
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It becomes clear that the partition function is a product of
two terms: the average over the cluster states � and the av-
erage over the bath degrees of freedom �. It was pointed out
in Ref. 21 that naive sampling of the above diagrams would
run into a very bad minus sign problem. The reason is that
crossing diagrams �vertex corrections to famous noncrossing

approximation to the Anderson impurity model� can have
either sign, and thus weights that correspond to crossing dia-
grams could be negative. The ingenious idea proposed in
Ref. 21 is to combine all the diagrams of the same order,
crossing and noncrossing, into a determinant. Mathemati-
cally, this can be expressed by

Z = Zc�
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 , �6�

where Zc=�D��†��e−Sc and the average of the operator is

O�cluster= 1

Zc
�D��†��e−ScO. This is the central equation of

the continuous time Monte Carlo sampling around the
atomic limit. To derive Eq. �6� from Eq. �5�, one needs to
permute time integration variables 
 in all possible ways.
Permutation of fermions gives minus sign in an odd permu-
tation. This minus sign can be absorbed in the minus sign of
the product of hybridizations, resulting in the determinant of
hybridizations.

B. Simulation

The set of diagrams, which are associated with the set of
imaginary times �
1 ,
1� ,
2 ,
2� , . . . ,
k ,
k�� and corresponding
band indices ��1 ,�1� ,�2 ,�2� , . . . ,�k ,�k��, are visited by the
Monte Carlo �Metropolis� algorithm with the weights given
by Eq. �6�. The effect of the hybridization ��
���†�
���

−
�� is to create a kink in the time evolution of the cluster,
i.e., to destroy one electron at time 
� on the cluster and
create another electron at some other time 
 on the cluster.
The number of kinks is always even due to particle number
conservation.

Two Monte Carlo steps which need to be implemented are
�i� insertion of two kinks at random times 
new and 
new� �cho-
sen uniformly �0,	��, corresponding to random baths � and
��, and �ii� removal of two kinks by removing one creation
operator and one annihilation operator. Many other steps can
greatly reduce the sampling time, for example, displacing a
randomly chosen operator �either � or �†� to a new location
chosen uniformly �0,	�. The double step of inserting or re-
moving two kinks is also possible and is relevant when off-
diagonal components of � are dominant.

The detailed balance condition requires that the probabil-
ity to insert two kinks at random times 
 and 
�, being cho-
sen uniformly in the interval �0,	�, is

Padd = min�� 	Nb

k + 1
�2Znew

Zold

Dnew

Dold
,1� , �7�

where Nb is the number of baths, k is the current perturbation
order �number of kinks/2�, Znew is the cluster matrix element,

Znew = 
T
��new� �
new� ���new

† �
new���1�
�
1��


��1

† �
1� ¯ ��k�
�
k����k

† �
k��cluster, �8�

and Dnew /Dold is the ratio between the new and the old de-
terminant of baths � and can be evaluated using usual
Shermann-Morrison formulas. The factors �	Nb� enter be-
cause of the increase of the phase space when adding kinks
�increase of entropy�, while the factor 1 / �k+1� comes from
factorials in Eq. �6�. Similarly, the probability to remove two
kinks, chosen randomly between �1¯k�, is

Premove = min�� k

	Nb
�2Znew

Zold

Dnew

Dold
,1� . �9�

An important simplification occurs if the hybridization is
block diagonal. Since ���� vanishes for some combination of
���, the determinant in Eq. �6� can be written as a product of
smaller determinants, one for each block of hybridization. A
specially simple case occurs when all the blocks are of size
1, and the partition function becomes a product of Nb terms,
where Nb is the number of all baths,
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This simplified form of Eq. �6� was first derived in Ref. 22.
In this case, the probability to add two new kinks �Eq. �7��
depends on the number of kinks of this particular type k�

�rather than the total perturbation order k�, and the dimension
of the bath subspace Nb becomes unity. In general, the prob-

ability to add two kinks is Padd= � 	Nb
�

k�+1
�2 Znew

Zold

D�
new

D�
old

, where Nb
� is

the number of bands which form an off-diagonal subblock in
hybridization � and need to be treated simultaneously in one
determinant D� in Eq. �6�.

The size of hybridization determinants can thus be greatly
reduced if hybridization � is block diagonal. The cluster
term Z, however, cannot be broken into separate contribu-
tions for each bath; rather, the full trace needs to be com-
puted numerically. It is therefore essential to find a fast way
to compute the cluster average 
¯�cluster in Eq. �6�.

C. Exact diagonalization of the cluster

As noted in Refs. 3 and 22, the perturbation theory in
hybridization strength requires the cluster Hamiltonian to be
converted to a quadratic form, which can be achieved with
the introduction of the cluster eigenstates and projectors to
the eigenstates. In terms of Hubbard operators Xmm� �or
equivalently pseudoparticles am

† am��, the cluster Hamiltonian
simplifies to Hcluster=XmmEm and the cluster traces can be
efficiently computed. It is also crucial to take into account
the conservation of various quantum numbers, such as the
particle number, the total spin, and the total momentum of
the cluster states, when evaluating the cluster traces.

Typical contribution to the cluster part of the trace that
needs to be evaluated at each Monte Carlo step takes the
form

ZD = Tr�T
exp�− �
0

	

d
Hc�
����1
�
1��


��2

† �
2� ¯ ��n−1
�
n−1� ���n

† �
n��
= �

�m�
e−Em1


1��F�1�m1m2
e−Em2

�
2−
1��


�F†�2�m2m3
¯ �F�n−1�mn−1mn

e−Emn
�
n−1� −
n�


�F†�n�mnm1
e−Em1

�	−
n�, �11�

where the matrix elements are �F†�i�nm= 
n���i

† �m� and Em are

eigenvalues of the cluster. The actual order of operators in
Eq. �11� depends on their time arguments, and creation op-
erator is not necessary followed by annihilation operator.

The bottleneck of the approach is that the number of clus-
ter states �m� is very large �for example, single-site DMFT
for the f shell requires 214 states�. Consequently, the matrix
elements F are, in general, very large matrices and the typi-
cal diagram order is inversely proportional to temperature
�see Fig. 1�; therefore, one typically needs to multiply a few
hundred large matrices at each Monte Carlo step. It is clear
that this is very impractical, and the progress can be achieved
only by the following various tricks which we have imple-
mented:

�1� Most of the matrix elements vanish. A fast algorithm
is needed to determine which matrix elements are nonzero.

�2� Symmetries of the problem can be taken into account
to reduce the size of the F matrix.

�3� The number of trial steps is usually much bigger �100
times� than the number of accepted steps, and the insertion or
removal of a kink is very local in time operation. It is con-
venient to store the product �Eq. �11�� �from both sides, left
and right�, and when trying to insert a new kink, recompute
the trace only between the inserted times 
new and 
new� .

�4� During simulation, the probability for visiting any
cluster state can be recorded and can be used in the next step

FIG. 1. �Color online� The perturbation order histogram shows
the distribution of the typical perturbation order of the diagrams in
the simulation. The histogram is peaked around the typical order,
which is related to temperature and kinetic energy by 
k�= �Ekin� /T.
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to eliminate the irrelevant atomic states from the trace in Eq.
�11�. The cluster base can hence be adjusted dynamically to
describe the particular regime studied by the minimum num-
ber of relevant cluster states.

To illustrate the method, let us consider a concrete ex-
ample of the cluster of one-band model �Hubbard or t-J� in
the normal state. The bath index � runs over cluster mo-
menta q and spin orientation �. The eigenstates of the cluster
can be written in a form �N ,Sz ,K ;S��, where N is the total
number of electrons in the state, S and Sz are the total spin
and its z components, K is the total momentum of the cluster
state, and � stands for the rest of the quantum numbers.

D. Concept of superstates

In this base, the matrix elements of the creation operator
are greatly simplified, �q,�

† �N ,Sz ,K ;S��= �N+1,Sz+� ,K
+q ;S±1/2 ,��, because the creation operator is nonzero only
between Hilbert subspace of �N ,Sz ,K� and �N+1,Sz+� ,K
+q�. It is therefore convenient to group together states with
the same �N ,Sz ,K� and treat the rest of the quantum numbers
as internal degrees of freedom of a cluster superstate �i�
���N ,Sz ,K��. The superstate �i� is a multidimensional state
with internal quantum numbers �m�i�����S ,���. It is then
clear that creation operator acting on a state �i� gives a
unique state �j�=�q�

† �i�, and it is enough to store a single
index array F�†�i�= j to figure out how the Hilbert subspaces
are visited under application of a sequence of creation and
annihilation operators such as in Eq. �11�: i0→F�1�i0�
→¯ ik=F†�k�ik−1�. This sequence is very often truncated in
few steps only because most of the sequences contain either
multiple application of the same creation or annihilation op-
erator �Pauli principle� or because they lead to a state outside
the base �for example, ��N=0¯ �=0 or �†�N=max¯ �=0�.

Once the nonzero matrix elements are found by this
simple index lookup, the value of the matrix element needs
to be computed by matrix multiplication. By this breakup of
the Hilbert space and introducing superstates �i�, the largest
matrix which needs to be treated for the t-J model on a
plaquette is 3
3 and for the Hubbard model it is 6
12,
thus substantially smaller than the original 81- and 265-
dimensional Hilbert spaces. To compute the trace in Eq. �11�,
we start with unity matrix in each subspace of a superstate �i�
and apply both the time evolution operator e−Em�
l−
l�� �by
multiplying each row of a matrix with its time evolution� and
the kink �by multiplication with the matrix �F��mn or
�F�†�mn�. The operation of F brings us to the next superstate
F��i� where we repeat both the time evolution and the kink
application. After k steps, the trace of a matrix gives the
desired matrix element.

E. Storing the time evolution

The number of kinks is proportional to inverse tempera-
ture 	 and kinetic energy of the system 
k�=	�Ekin� �see Eq.
�47��. It thus becomes large at low temperatures. However,
an insertion of a kink with large time difference ��†�
���
��
with large 
−
�� has a very low probability. The reason is

that Pauli principle forbids insertion of the pair ��
†�
����
��

if another kink of the same species � is between the two
times �
 ,
��. At the same time, ��
� is like G�
� peaked at
small times 
−
� and falls off at large times, making the long
time intervals rare.

The insertion of a kink is thus fairly local in time opera-
tion; therefore, it is convenient to store a whole chain of
products that appear in Eq. �11� from both sides, left and
right, to make trial step very cheap. It takes only few matrix
multiplications �almost independent of temperature� to com-
pute the trace in Eq. �11�. When the move is accepted, the
trace needs to be updated, which takes somewhat more time.
However, the acceptance rate is typically small and, on av-
erage, does not require much computational time.

F. Adjusting the cluster base

Finally, the ultimate speedup can be achieved by dynami-
cally adjusting “the best” cluster base. The probability for a
cluster state �m� can be computed during simulation. For a
given diagram with particular configuration of kinks, the
probability for a cluster state �m� is proportional to its matrix
element defined in Eq. �11�, i.e.,

Pm =

m�e−H
1��e−H�
2−
1�

¯ �m�

�
�n�


n�e−H
1��e−H�
2−
1�
¯ �n�

. �12�

The sampled average of this quantity gives the probability
for cluster eigenstate �m�. A large number of cluster states
have very small probability and can be eliminated in simu-
lation to ultimately speed up the simulation. It is important
that the probability for any cluster state depend on the par-
ticular problem at hand and the program adjust the base dy-
namically after a few million Monte Carlo steps.

G. Green’s function evaluation

Like in other impurity solvers which are based on the
expansion of the hybridization �noncrossing approximation
�NCA�, OCA, and SUNCA�, the Green’s function is com-
puted from the bath electron T matrix. Using the equation of
motion, it is easy to see that the bath Green’s function Gkk� is
connected to the local Green’s function Gloc through the fol-
lowing identity:

Gkk��
 − 
�� = �kk�gkk�
 − 
�� + �
0

	 �
0

	

d
sd
egk�
 − 
e�


VkGloc�
e − 
s�Vk�gk��
s − 
�� , �13�

or summing over momenta

G�
 − 
�� � �
kk�

VkGkk��
 − 
��Vk�

= ��
 − 
�� + �
0

	 �
0

	

d
sd
e��
 − 
e�


Gloc�
e − 
s���
s − 
�� . �14�

This Green’s function G is equal to the ratio between the
determinant of �� ’s,

QUANTUM MONTE CARLO IMPURITY SOLVER FOR… PHYSICAL REVIEW B 75, 155113 �2007�

155113-5



G�
 − 
�� =

det�
��
,
�� ��
,
�1� ¯

��
1,
��
] ��

��
k,
��



det��� �
,

where one row and one column is added to the bath electron
determinant. The reason for this simple form is that the con-
duction band is noninteracting and thus obeys Wicks theo-
rem. Here, we used the definition

�� � M−1 = ����
1
�,
�1

�� ¯

¯ ¯

¯ ���
k�

� ,
�k�

� � 
 , �15�

Using the Shermann-Morrison formulas to express enlarged
determinant by the original determinant of �� , G becomes

G�
 − 
�� = ��
 − 
�� − �
ie,is

��
 − 
ie
�Mie,is

��
is
− 
�� .

�16�

Finally, comparing Eqs. �14� and �16�, we see that Gloc�
e

−
s�=−Mie,is
, and in imaginary frequency,

Gloc�i�� = −
1

	
�
ie,is

ei�
ieMie,is
e−i�
is. �17�

This equation is the central equation of the approach, since it
relates the local Green’s function with the quantities com-
puted in QMC importance sampling. This equation is equiva-
lent to the well-known formulas used in the perturbation
theory in hybridization strength, namely, that the local
Green’s function is proportional to the conduction-electron
self-energy. Equation �17� shows that only matrix M
���� �−1 needs to be stored21 and manipulated in simulation.

From the above consideration, it is clear that one could
also add two rows and two columns to matrix �� and compute
the two-particle vertex function in a similar way without
much overhead.

H. Fast updates

The Green’s function can be updated in linear time �rather
than quadratic�. When adding a construction and annihilation
operator at 
 and 
�, adding a column at is and row at ie to
matrix M−1 leads to the following relation between the ma-
trix Mnew and Mold:

Mji
new = Mji

old + pLjRi. �18�

Here, one row and one column of zeros is added to Mold to
match the size of Mnew. The arrays L and R are given by

L = �L̃1, . . . ,L̃ie−1,− 1, . . . ,L̃k� , �19�

R = �R̃1, . . . ,R̃is−1,− 1, . . . ,R̃k� , �20�

where

L̃j = �
i

Mji
old��
i − 
�� , �21�

R̃i = �
j

��
 − 
 j�Mji
old, �22�

and p is

1

p
= ��
 − 
�� − �

ij

��
 − 
 j�Mji
old��
i − 
�� . �23�

Finally, the local Green’s function becomes

Gnew = Gold −
p

	��
je

ei�
jeLje���
js

Rjs
e−i�
js� . �24�

It is clear from Eq. �24� that only linear amount of time is
needed to update the local Green’s function.

When removing two kinks of construction and annihila-
tion operators at is and ie, old and new matrices M are related
by

Mij
new = Mij

old −
Miis

oldMiej
old

Mie,is
old . �25�

Green’s function therefore becomes

Gnew = Gold +
1

	Mieis
��

je

ei�
jeMjeis���
js

Miejs
e−i�
js� .

�26�

Finally, the exponential factors ei�
i do not need to be
recomputed at each Monte Carlo step since all “old” times
can be stored and the exponents need to be computed only
for the new pair of times and only at each accepted move. In
the present implementation, the algorithm to sample directly
G�i�� is sufficiently fast that it does not introduce any per-
formance costs. Since it does not introduce systematic error
in binning G�
� we believe that it is more superior than the
alternative implementations which sample G�
�.

I. Large frequencies and moments

Similar to the Hirsch-Fye QMC, the low-frequency points
of Green’s function converge very fast to the exact value
while the high-frequency points, when sampled directly, con-
tain a lot of noise. It is therefore not very useful to sample
large frequencies in the above described way. Usually, we
sample 200–300 Matsubara points while the rest are replaced
by the high-frequency moments of the self-energy computed
analytically.

The high-frequency moments of the self-energy are com-
puted from the Green’s function moments, which, in general,
take the following form:

mn
�	 = �− 1�n
��H,�H, ¯ �H,��� ¯ ��,�	

†�� . �27�

To compute the moments within the present approach, few
operators need to be sampled in simulation. In the one-band
model, only density is required, but in more complicated
situation, higher-order density-density and exchange terms
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enter. In general, Green’s function moments can be ex-
pressed by the average of a few equal-time operators Omm�,
which take particular simple form in the local eigenbase,

m1,mm�
G,�	 = �

n

�F��mn�F	†�nm��En − Em�

− �F	†�mn�F��nm��En − Em�� , �28�

m2,mm�
G,�	 = �

n

�F��mn�F	†�nm��Em − En�2

+ �F	†�mn�F��nm��En − Em��
2. �29�

The lowest-order self-energy moments can then be computed
in the following way:

��	��� = 
m1
G,�	� − Eimp, �30�

��	
�1� = 
m2

G,�	� − 
m1
G,�	�2. �31�

J. Sampling of other quantities

Equal-time operators such as those in Eqs. �28� and �29�
can be straightforwardly computed in simulation. Any cluster
operator can be expressed in terms of Hubbard operators
Xmm�, which project to the cluster eigenbase, and matrix el-
ements of the operator in the cluster eigenbase as follows:

O = 
m�O�m��Xmm�. �32�

To compute the expectation value of the operator, the follow-
ing probabilities are needed:

Pmm� � 
Xmm�� . �33�

Diagonal components are just cluster probabilities �Eq. �12��,
while the off-diagonal components are transition probabili-
ties from cluster eigenstate �m� to �m��. The expectation
value of any cluster operator is then given by


O� = �
mm�


m�O�m��Pmm�. �34�

To improve the sampling precision, operators are averaged
over all times, i.e.,

Pmm� =
1

	
�

0

	


Xmm��
0��d
0

=
1

Z

1

	
�

0

	

d
0 Tr�T
exp�− �
0


0

Hd
�

Xmm��
0�exp�− �


0

	

Hd
�� . �35�

The contribution to Pmm� of each particular diagram is

1

ZD
�

n,l=1

l=k

�Tl
left�nmwmm��
l+1,
l��Tk−l

right�m�n, �36�

where

wmm��
l+1,
l� = �

l


l+1 d


	
e−Em�
−
l�−Em��
l+1−
�, �37�

ZD is the cluster part of the trace �Eq. �11��, Tl
left are the

operators in Eq. �11� which appear before 
, and Tk−l
right con-

tains operator with time arguments greater than 
. k is the
number of kinks in the diagram D. As we mentioned before,
these time evolution operators �Tl

left ,Tl
right� are stored and

regularly updated during simulation.
The weights �Eq. �37�� evaluate to

wmm���
� =
e−Em�
 − e−Em��


	�Em� − Em�
. �38�

For the diagonal probabilities Pmm and for degenerate cluster
states �Em=Em��, the weights are simplified to

wmm���
� = e−Em�
�


	
. �39�

Further simplification is possible if operator 
O� com-
mutes with Hcluster because only the diagonal probabilities
Pmm are needed in this case. For example, the electron den-
sity nf and average magnetization 
Sz� are two important
quantities which can be computed to very high precision in
this way.

Similar simplification is possible in the case of the total
spin susceptibility, defined by

��i�� =
1

	
�

0

	

d
�
0

	

d
�
Sz�
�Sz�
���ei��
−
��, �40�

where Sz is the total spin of the cluster �or atom�. The result
is

��i�� = �
i�superstates

Pi��
l=1

k

�Sz� jl

ei�
l+1 − ei�
l

i�
�2

, �41�

where �Sz� j is the total spin of the cluster in cluster eigenstate
j and Pi is a probability for a superstate �i�, introduced above.

If one of the bands in the multiorbital band model is fully
filled or completely empty, the Anderson impurity bath is
very weakly coupled to the impurity. To compute the local
Green’s function from the conduction bath self-energy �see
Eq. �13�� becomes a numerically very challenging task. In
this situation, it is numerically more stable to compute the
local Green’s function directly from the cluster trace. Ex-
pressing electron operators in terms of the Hubbard opera-
tors, the local Green’s function becomes

G�	�i�� = �
mnn�m�

�F��mn�F	†�n�m�
1

	
�

0

	

d
�
0

	

d
�ei��
−
��



T
Xmn�
�Xn�m��
��� . �42�

For each diagram D visited in Monte Carlo sampling, the
following quantity can be sampled for the Green’s function:
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G�	
D = T �

mnn�m�pl1l2

�F��mn�F	†�n�m��T0,l1
�pmei�
l1wmn�i�,�
l1

�


�Tl1,l2
�nn�wm�n��i�,�
l2

�e−i�
l2+1�Tl2,k�m�p, �43�

where

wmn�i�,�
� =
e−En�
 − e�i�−Em��


i� − Em + En

and �
l=
l+1−
l. This expression is most valuable in the
limit of a small number of kinks in an orbital, which results
in a numerically unstable computation of Green’s function
when using Eq. �17�.

K. Sampling the total energy

The average of the potential energy 
V� can be computed
from the average of the local energy since


Hloc� = �
�	��

U�	��
��
†�	

†����� + �
�	

Eimp�	
��
†�	�

= 
V� + Tr�Eimpn� . �44�

Here, we concentrate on the case of general single-site
DMFT rather than the cluster extensions. The reason is that
kinetic energy in cluster extensions depends on the peri-
odization scheme and we will not go into detail here. The
kinetic energy of the general single-site DMFT Ekin
=Tr�Hk

0Gk� can be computed by

Ekin = Tr��G� + Tr��� + Eimp�n� . �45�

The total energy is therefore given by


H� = 
Hloc� + Tr��G� + �n . �46�

The first term Hloc can be computed very precisely in simu-
lation. The sampled quantity 
O� is just the energy of an
atomic state and can be simply obtained from the probabili-
ties for atomic states 
Hloc�=�m�all statesPmEm. Computing
kinetic energy from the Green’s function gives, in general,
worse accuracy because the high-frequency behavior of the
Green’s function cannot be directly sampled and augmenta-
tion with analytically computed tails is necessary. However,
it is simple to show that the average value of the perturbation
order is related to the average of the kinetic energy as fol-
lows:


k� = −
1

T
Tr��G� , �47�

where 
k� is the average perturbation order and T is tempera-
ture. The latter quantity is directly sampled in the present
algorithm and it is just the center of gravity of the histogram
�presented in Fig. 1�. Finally, the total energy E is given by

Etot = 
Hlocal� − T
k� + �n . �48�

All quantities in this equation can be computed to very high
accuracy, and since low temperatures can be reached in this
method, the entropy can be obtained by integrating the spe-
cific heat as shown in Ref. 23.

L. Superconductivity

The power of the method can be further demonstrated by
studying the superconducting state of the strongly correlated
systems at low temperature with essentially no performance
cost. By employing the Nambu formalism, the translationally
invariant cluster methods �for details on cellular DMFT on a
plaquette, see the Appendix� result in Nc two-dimensional
baths, where Nc is the number of cluster momenta. Namely,
the baths �K , ↑ � and �−K , ↓ � are coupled through the
anomalous component of hybridization and require simulta-
neous treatment in det��� � in Eq. �10�. The determinants are,
on average, twice as large as in normal state; however, the
cluster part of the trace in Eq. �10� remains unchanged. Since
most of the time is usually spent in evaluating the local part
of Z, the performance is not noticeably degraded in super-
conducting state. In a typical run presented below, the histo-
gram is peaked around k=250–500, which is equal to the
order of a typical diagram. In the translationally invariant
representation employed here, the size of a typical determi-
nant in Eq. �10� is only k /Nc�60–120, and using the fast-
update scheme presented above, the trace over the bath states
is not the expensive part of the algorithm.

M. Hund’s coupling and spin-orbit coupling

In materials with open f orbitals, the multiplet effects are
very strong and SU �N� approximation is not adequate. Si-
multaneous inclusion of Hund’s coupling and spin-orbit cou-
pling in DMFT method is crucial for a quantitative descrip-
tion of actinides.10 The minimal local Hamiltonian for
lanthanide and actinide materials is

Hatom = HHubbard+Hunds + HSO + Ẽimpn̂ . �49�

Here, Ẽimp is the impurity level without the spin-orbit cou-
pling since the latter is included explicitly. The Hund’s cou-
pling and spin-orbit coupling take the following forms:

HHubbard+Hunds = �
Li,m,���

�
k=0

2l 4�F�l�
k

2k + 1

YLa

�Ykm�YLc
�



YLd
�Ykm�YLb

�fLa�
† fLb��

† fLd��fLc�, �50�

HSO = �
jmj,lmm�,���

�
1

2
� j�j + 1� − l�l + 1� −

3

4
�


Clm,�
jmj Clm�,��

jmj f lm�
† f lm���. �51�

Here, YL are spherical harmonics, Clm,�
jmj are Clebsch-Gordan

coefficients, and Fk are Slater integrals. The F0, the usual
Hubbard U, is commonly computed by constrained LDA,
while the rest of the Slater integrals �F2, F4, and F6� are
computed using atomic physics program.32 Finally, the spin-
orbit strength � is computed within LDA program and needs
to be updated during self-consistent LDA+DMFT calcula-
tion.

Exact diagonalization of the atomic Hamiltonian leads to
eigenstates with conserved number of particles N, total an-
gular momentum J, and its z component �NJz ;J��.
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For the one-electron base, it is more convenient to choose
the electron total angular momentum �j , jz� rather than
�lz ,��, since the construction and annihilation operators con-
serve the z component of total spin,

� j jz
† �NJz;J�� = �N + 1,Jz + jz;J���� . �52�

Superstates �i� are chosen in a way to simplify the matrix
elements of the creation operator �†. In this case, a conve-
nient choice is

�i� � ��NJz�� . �53�

In the absence of crystal-field splitting, the hybridization � is
a band diagonal matrix. However, strong crystal-field split-
ting generates off-diagonal components of ��j jz��j�jz�� and, in
general, the determinant det��� � in Eq. �6� cannot be broken
into small determinants as in Eq. �10�.

The self-energy at high frequency needs to be computed
with special care in the LDA+DMFT method, since the total
electronic charge in the self-consistent calculation of the
electron density sensitively depends on the number of elec-
trons in the correlated bands. It is crucial that the Green’s
function is compatible with the electron density computed
from the local trace, namely, nf =T�i�Gf�i��. Although some
high-energy atomic states can be omitted in the Monte Carlo
simulation if their probability vanishes, they cannot be ne-
glected in computing high-frequency expansion. For practi-
cal purposes, we found it useful to compute the self-energy
at high frequency from the atomiclike Green’s function,
namely, ���→��= i�−Eimp−Gat−1, where Gat is

G�	
at = �

�ni�

�F��n1n2
�F	†�n3n4

�Pn1n4
�n2n3

+ Pn2n3
�n1n4

�

i� − En2
+ En1

.

�54�

Here, the probabilities Pnm are computed using Eq. �33� and
the sum runs over all cluster states ni even if their probability
Pnini

vanishes. It is clear that as long as a particular cluster
state m can be reached from another state n by applying
creation or destruction operator and n has nonzero probabil-
ity, cluster state m needs to be kept in the sum. Finally, using
Eqs. �28� and �29�, one can readily check that this form of
self-energy gives exact first two high-frequency moments.

III. RESULTS

We implemented cellular DMFT for both the Hubbard and
the t-J model on a plaquette. The energy scales are given in
units of t, and Hubbard U is fixed at 12U while J of the t-J
model is set to J=0.3. We simulated 5 000 000 Monte Carlo
steps per processor, and results were averaged over 64 pro-
cessors. One DMFT step for the Hubbard model takes ap-
proximately 45 min on 1.7 GHz personal computer proces-
sor; therefore, each Monte Carlo step requires, on average,
1
106 clock ticks �0.9 Mflop�.

Figure 1 shows histograms �probability distribution for
the perturbation order k� for few dopings of the Hubbard
model �=1−n at T=1/200t. The average perturbation order
is increasing with doping, since the electrons are getting

more delocalized �absolute value of the kinetic energy is in-
creasing� and the creation of kinks becomes less expensive.
It is of the order of 450 in overdoped regime, but the typical
size of the determinant is only 112 in superconducting state
or 56 in normal state.

We recently addressed the problem of coherence scale in
the t-J model,33 and we found, using NCA as the impurity
solver, that the imaginary part of the cluster self-energy
���,0�, which plays the crucial role in the optical conductivity
and transport, becomes very large at optimal doping and con-
sequently the coherence scale vanishes around optimal dop-
ing. Here, we extend this study to the Hubbard model using
much lower temperature. We will show that the system be-
comes strongly incoherent at optimal doping and the maxi-
mum of Tc tracks the maximum scattering rate in both the
Hubbard and the t-J model.

Figure 2 shows the imaginary part of the self-energy
���,0��i�� at few different dopings and temperature T
=0.01t, which is around the superconducting critical tem-
perature of this approach. The system is still in normal state.
It is clear that the self-energy at large frequencies is a mono-
tonic function of doping and is largest at the Mott transition
�=0. However, the low-frequency region is distinctly differ-
ent and the crossing of self-energies is observed around �n
�0.1t. Low doping as well as large doping self-energies can
be extrapolated to zero, while at optimal doping, self-energy
remains on the order of unity even around the critical tem-
perature.

The upper panels of Fig. 3 show the same self-energy at
small frequency for both the t-J �left� and the Hubbard
�right� model. In this figure, temperature is T=0.005t and is
far below Tc; therefore, all curves extrapolate to zero and the
system becomes coherent in superconducting state. However,
what is reminiscent of the strong incoherence at optimal dop-
ing is the large slope of imaginary part of ��i��, which in-
duces very small quasiparticle residue in this regime.

The precise position of the optimal doping, characterized
by the largest low-frequency anomalous self-energy, is dif-

FIG. 2. �Color online� The imaginary part of the cluster self-
energy ���,0� on imaginary axis. Temperature T=0.01t is around the
critical temperature but still in normal state. At low frequency, the
most incoherent self-energy corresponds to optimally doped and not
to the underdoped system.
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ferent in the t-J and in the Hubbard model �see lower panel
of Fig. 3�. It is around �=0.16 in the former and around �
=0.1 in the latter. However, the large scattering rate is ulti-
mately connected with the largest anomalous self-energy and
hence largest critical temperature in both the t-J and the
Hubbard model.

In our view, the most important advantage of the new
quantum Monte Carlo method is that it can treat the realistic
multiplet structure of the atom. It was shown in Ref. 10 that
the Hubbard term only �F0� leads to severe underestimation

of the interaction strength in actinides, and for realistic val-
ues of F0, DMFT predicts heavy fermion state in curium
rather than magnetic state. Negligence of the multiplet struc-
ture of plutonium misses the fine structure of the quasiparti-
cles �two peaks around 0.5 and 0.85 eV� and, more impor-
tantly, predicts only weakly correlated metallic state in delta
phase of plutonium.

To demonstrate the advantage of the new method, we re-
computed the localization-delocalization transition in the ar-
chetype material exhibiting Kondo collapse, namely, the �
→� transition of elemental cerium. Since the number of
electrons in cerium fluctuates between states with zero, one,
and two electrons in the f shell, the number of atomic states
that needs to be kept is relatively small; hence, solving the
impurity problem requires very little computational power in
this case. In Fig. 4, we show the “valence histogram”10 of the
two phases of cerium, i.e., the projection of the density ma-
trix to the eigenstates of the atom. The plot shows the prob-
ability to find an f electron of cerium in any of the atomic
eigenstates and demonstrates how strongly the atom is fluc-
tuating between atomic states. The typical fluctuating time is
inversely proportional to the Kondo temperature of the
phase, being around 2000 K in the alpha phase and around
80 K in the gamma phase. The itinerant alpha-phase histo-
gram is peaked for many atomic states, including the spin-
orbit split 5 /2 and 7/2 singly occupied states as well as the
empty state. On the other hand, the local-moment gamma
phase is peaked only at the ground state of the singly occu-
pied sector with 5/2 spin, showing that the DMFT ground
state closely resembles the atomic N=1 ground state.

IV. CONCLUSION

We generalized the recently developed continuous time
quantum Monte Carlo expansion around the atomic limit21 to
clusters treated within cellular DMFT or dynamical cluster

FIG. 4. �Color online� Projection of the DMFT ground state of
alpha and gamma cerium to various atomic configurations of ce-
rium atom. The histograms describe the generalized concept of va-
lence, where the f electron in the solid spends appreciable time in a
few atomic configurations. The height of the peak corresponds to
the fraction of the time the f electron of the solid spends in one of
the eigenstates of the atom, denoted by the total spin J of the atom.
We summed up the probabilities for the atomic states, which differ
only in the z component of the total spin Jz. The x axis indicates the
energy of atomic eigenstates in the following way: energy�N
−1,J�=Eatom�N ,ground state�−Eatom�N−1,J� and energy�N+1,J�
=Eatom�N+1,J�−Eatom�N ,ground state�, where N is between 0
and 2.

FIG. 3. �Color online� The up-
per panel shows the cluster ���,0�
self-energy on the imaginary axis
for both the t-J �left� and Hubbard
�right� model, showing the large
scattering rate at optimal doping.
The lower panel shows the
anomalous self-energy for the
same models and doping levels
and can be used to locate the op-
timally doped regime.
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approximation as well as to materials that require realistic
Hund’s coupling and multiplet splitting of the atomic state.
We explained the steps necessary for the efficient implemen-
tation of the method. Our low-temperature data in the
strongly correlated regime of the Hubbard and t-J model
show the efficiency of the method and demonstrate its supe-
riority compared to the conventional Hirsch-Fye quantum
Monte Carlo method. The long-standing problem of adequate
treatment of the multiplet splitting within DMFT is resolved.
This splitting is crucial in actinides, and its omission can lead
to wrong prediction of the magnetic nature of the DMFT
ground-state solution.

We showed that the optimaliy doped regime in both the
t-J and the Hubbard model is characterized by the largest
scattering rate and the system becomes more coherent in the
underdoped and overdoped regimes. The precise position of
the optimal doping, as determined from the maximum in
anomalous self-energy, is different in the two models. How-
ever, the strong incoherence is always found at the doping
corresponding to maximum Tc.

We computed the valence histogram across the cerium
alpha to gamma transition with emphasis on the multiplet
splitting of the atomic states. We showed that the atom fluc-
tuates between many atomic states in itinerant alpha phase
and both the 5/2 and 7/2 spin-orbit split states have large
probability in the ground state of the system. The empty state
and the doubly occupied states, which are substantially split
by Hund’s coupling, acquire a finite probability. The gamma
phase, on the other hand, shows well defined valence nf �1,
and charge fluctuations become rare.
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APPENDIX: CELLULAR DMFT IN DIAGONAL
REPRESENTATION

For the present continuous time Monte Carlo method, it is
convenient to pick the base such that the local quantities are
diagonal. Cellular DMFT uses generalized open boundary
conditions, and therefore, in general, momentum is not a
good quantum number. However, for small clusters, such as
plaquette, all sites are equivalent and translational invariance
is still obeyed. The local Green’s function and hybridization
in momentum base take the diagonal form

Gcluster =�
G�0,0� 0 0 0

0 G��,0� 0 0

0 0 G�0,�� 0

0 0 0 G��,��


 . �A1�

In superconducting state, GK is a 2
2 matrix in Nambu
notation. Although the local quantities are diagonal, nonin-
teracting Hamiltonian at general k points is not. The self-
consistency condition in superconducting state takes the fol-
lowing form:

�i� − Eimp − � − ��−1

= �
k �

�0��� − �0�i�� − iv1 0 − iv2 0 − v0 0

− �0
†�i�� − �0�− i�� 0 − iv1 0 − iv2 0 v0

iv1 0 �1��� − �1�i�� v0 0 − iv4 0

0 iv1 − �1
†�i�� − �1�− i�� 0 − v0 0 − iv4

iv2 0 v0 0 �2�i�� − �2�i�� − iv3 0

0 iv2 0 − v0 − �2
†�i�� − �2�− i�� 0 − iv3

− v0 0 iv4 0 iv3 0 �3��� − �3�i��
0 v0 0 iv4 0 iv3 − �3

†�i�� − �3�− i��



−1

, �A2�

where we defined

v0 = t� sin kx sin ky ,

v1 = sin kx�t + t� cos ky� ,

v2 = sin ky�t + t� cos kx� ,

v3 = sin kx�t − t� cos ky� ,

v4 = sin ky�t − t� cos ky� ,

�0 = − t�2 + cos kx + cos ky� − t��1 + cos kx cos ky� ,

�1 = t�cos kx − cos ky� + t��1 + cos kx cos ky� ,

�2 = − t�cos kx − cos ky� + t��1 + cos kx cos ky� ,
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�3 = t�2 + cos kx + cos ky� − t��1 + cos kx cos ky� , �A3�

and assumed

�0 = i� + � − ��11 + 2�12 + �13� − �0,

�1 = i� + � − ��11 − �13� − �1,

�2 = i� + � − ��11 − �13� − �2,

�3 = i� + � − ��11 − 2�12 + �13� − �3. �A4�

Here, �11 is the normal on-site self-energy, �12 is the
nearest-neighbor and �13 is the next-nearest-neighbor self-
energy, and �i’s are the anomalous components of the self-
energy. For d-wave symmetry, �0 and �3 vanish and �1=
−�2.

The advantage of this formulation of the cellular DMFT is
that the hybridization becomes block diagonal and hence the
determinants �det �� which enter Eq. �6� can be broken up
into separate contribution for each momentum point like in
Eq. �10�.
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