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We suggest that if a localized phase at nonzero temperature T�0 exists for strongly disordered and weakly
interacting electrons, as recently argued, it will also occur when both disorder and interactions are strong and
T is very high. We show that in this high-T regime, the localization transition may be studied numerically
through exact diagonalization of small systems. We obtain spectra for one-dimensional lattice models of
interacting spinless fermions in a random potential. As expected, the spectral statistics of finite-size samples
cross over from those of orthogonal random matrices in the diffusive regime at weak random potential to
Poisson statistics in the localized regime at strong randomness. However, these data show deviations from
simple one-parameter finite-size scaling: the apparent mobility edge “drifts” as the system’s size is increased.
Based on spectral statistics alone, we have thus been unable to make a strong numerical case for the presence
of a many-body localized phase at nonzero T.
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I. INTRODUCTION

Although Anderson’s original paper on localization1 is
mostly remembered for its ground-breaking results about
single particles in random potentials, one goal of that paper
was to learn about transport properties of highly excited
many-body eigenstates, e.g., quantum diffusion of nuclear
moments. This latter goal was mostly neglected in subse-
quent research on localization and metal-insulator transi-
tions. However, these questions have been recently brought
to our attention by Basko, et al.2 who present detailed argu-
ments that interacting electrons in static random potentials
can have a true metal-insulator transition at a nonzero critical
temperature. Thus, these systems are argued to have an insu-
lating phase, with strictly zero Ohmic conductivity, even at a
nonzero temperature. For some work on these questions pub-
lished before Basko et al. see, for example, Refs. 3–9.

In practice, few transport measurements are possible with-
out first equilibrating the sample with its environment in or-
der to establish a steady state �by removing Joule heat�. In
metals, this coupling to the environment, provided it is not
too strong, does not affect the conductivity �nonlinear trans-
port is another story altogether, see, e.g., Ref. 10�. In Ander-
son insulators, however, the heat bath plays a far less subtle
role: it is what permits transport. Conduction occurs by
variable-range hopping, which is an inelastic process requir-
ing a heat bath that can locally supply or absorb the energy
needed to permit hopping of the charge carriers between lo-
calized states that are not precisely degenerate. At the heart
of this extreme sensitivity of the dynamics of a localized
insulator to the coupling with its environment is its inability
to self-equilibrate. It is therefore useful to turn the issue
around by distinguishing conductors from true T�0 insula-
tors by whether the many-particle system itself constitutes a
heat bath. For example, one might ask whether external local
probes can deposit limitless amounts of energy or if they
tend to saturate the spectrum. Similarly, whether or not at-
tached leads themselves can effectively remove heat from the

sample will generally depend on heat conductivity of the
sample itself. Thus, we see that whether or not a quantum
system of many interacting degrees of freedom constitutes a
heat bath is not only a very fundamental question, but also
one of some practical relevance.

To the extent that one of the most successful theories of
nature, namely, thermodynamics, is founded on the assump-
tion of ergodicity, we expect true insulators �where this as-
sumption is strongly violated� to be rare and require fine
tuning of some sort. The noninteracting Anderson insulator is
one example, where the unrealistic condition of no interpar-
ticle interactions is crucial. Remarkably, the authors of Ref. 2
argue that a nonzero temperature Anderson insulator can be
stable against the dephasing effects of interparticle interac-
tions, making this state a sufficiently realistic possibility to
be taken seriously and looked for in experiments �provided
decoherence from the rest of the universe can be ignored to a
good approximation�.

The calculations of Ref. 2 are based on a low-energy ef-
fective Hamiltonian whose connection with the parameters
of the original model of interacting electrons in a random
potential could not be established analytically. Thus, it is
interesting and likely worthwhile to test their results using
other methods and to try to learn more about the nature of
the proposed T�0 diffusive-to-insulating phase transition
and about the range of models that may exhibit it. We report
here on one such attempt. To start, we observe that applica-
tion of the quantitative estimates of the localization transition
in Ref. 2 to a lattice model with finite entropy and energy
densities �i.e., finite number of states at each site� implies
that the aforementioned localized phase and, therefore, the
phase transition to the diffusive state can persist all the way
to infinite temperature. This seemingly innocuous observa-
tion has at least two important practical implications. First,
by adapting familiar high-temperature expansion techniques,
we can more or less rigorously rule out the possibility that
such a transition is accompanied by a thermodynamic signa-
ture both at infinite temperature and by continuity at any
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finite temperature.11 Perhaps more interestingly, the very
large �exponential in volume� number of states available to
the system at high temperatures can sometimes create favor-
able conditions for quickly approaching the thermodynamic
limit in various thermodynamic and dynamic quantities,
which raises the possibility of looking for the signs of this
physics numerically, e.g., in exact spectra of finite samples.
Our choice of the model and method of analysis are summa-
rized below, followed by results and some preliminary con-
clusions.

II. ENSEMBLE OF HAMILTONIANS

To reach as large as possible a distance with a given size
many-body Hilbert space, we study spinless fermions hop-
ping and interacting on a one-dimensional lattice of L sites
with a random potential and periodic boundary conditions.
This model has only two states �empty and occupied� per
lattice site. The Hamiltonian is

H = �
i
�wini + V�ni −

1

2
��ni+1 −

1

2
�

+ ci
†ci+1 + ci+1

† ci + ci
†ci+2 + ci+2

† ci� . �1�

The nearest-neighbor interaction is chosen to be V=2, al-
though we have explored other values. The hopping matrix
elements to both nearest- and second-neighbor sites are cho-
sen to be t= t�=1, although again we have explored other
values. The second-neighbor hopping is included so that the
model remains nonintegrable �quantum chaotic� and thus dif-
fusive at zero randomness.12 The on-site potentials wi are
independent Gaussian random numbers with mean zero and
variance W2. Each realization of the disorder potential will
generally have mean-square random potential �i=1

L wi
2 /L that

is not precisely W2. We have found that restricting our en-
semble of samples to those with mean-square random poten-
tial precisely W2 reduces our statistical uncertainties by about
a factor of 2 in the largest samples. This change of statistical
ensembles does produce quantitative changes in the spectral
properties �mostly noticeable for intermediate values of dis-
order, 4�W�9�, but it does not appear to produce any
qualitative changes in the finite-size scaling behavior that
would affect our conclusions and it cannot affect the sys-
tem’s intensive properties in the thermodynamic limit.

We study all many-body eigenenergies of this Hamil-
tonian, weighting them equally; the data shown here are for
half-filling L /2 particles. Thus, we are studying high tem-
peratures compared to the energy scales of this Hamiltonian.
If a localized phase does indeed exist in this model, it should
be present even at high T for strong enough disorder. An
important motivation for this choice of a model was our
recent work12 on the same model in the absence of random-
ness, where the approach to thermodynamic limit was rapid
enough to observe the onset of hydrodynamic behavior with
�9 particles. Here, we are limited to somewhat smaller
sizes, since the random potential violates momentum conser-
vation; we focus on sizes up to L=16. The number of real-
izations needed to achieve adequate statistical certainty de-

pends strongly on W and even more so on L. At L=8, we
average over 10 000 realizations, whereas at L=14, and 16
only about 50–100 suffice except in the putative critical re-
gion, where we average over 1000 realizations for each W.

III. METHOD OF ANALYSIS

To look for the diffusive-to-insulating phase transition in
this model, we have chosen to use what appears to be nu-
merically the most accessible quantity that shows a clear,
well-understood difference between the two phases, namely,
the spectral statistics of adjacent energy levels of the many-
body Hamiltonian. In the localized, insulating phase �assum-
ing it exists in our many-body system�, in the thermody-
namic limit of a large sample, the eigenstates are localized in
the many-body Fock basis of localized single-particle orbit-
als, so states that are nearby in energy are far apart in this
Fock space and do not interact or show level repulsion. As a
result, nearby energy levels are simply Poisson distributed.13

In the diffusive phase, on the other hand, the level statistics
of a large sample are those of random matrix theory, the
Gaussian orthogonal ensemble �GOE� in particular. For the
finite-length samples that we can diagonalize, the level sta-
tistics cross over smoothly between these two limiting be-
haviors as the strength of the random potential is varied. This
crossover becomes sharper as the length L is increased, and
we can look for a phase transition using standard finite-size
scaling techniques; this approach works well for the single-
particle localization transition in three dimensions �see, e.g.,
Ref. 14�.

The choice of a quantity to compute and use for the finite-
size scaling analysis is to some degree arbitrary: the hypoth-
esis of universality implies that many features of the distri-
bution of eigenvalues of the Hamiltonian are universal in the
thermodynamic limit.13 By analogy to the Binder ratio for
phase transitions with a local order parameter,15 we seek a
dimensionless measure of spectral statistical properties, say,
r�W ,L�, that is expected to take different finite values in the
thermodynamic limit, L→�, in the two phases and at the
critical point �W�Wc, W�Wc, and W=Wc�. Since the zero
of energy is arbitrary, it is natural to work with gaps between
many-body levels. Here, in particular, we consider gaps be-
tween adjacent many-body levels,

�n = En+1 − En � 0,

where the eigenvalues of a given realization of the Hamil-
tonian for a given total number of particles �En	 are listed in
ascending order.

The dimensionless quantity we16 have chosen to charac-
terize the correlations between adjacent gaps in the spectrum
is the ratio of two consecutive gaps,

0 � rn = min��n,�n−1	/max��n,�n−1	 � 1.

For uncorrelated Poisson spectrum, the probability distribu-
tion of this ratio r is PP�r�=2/ �1+r�2, and its mean value is

r�P=2 ln 2−1�0.386. The numerically determined prob-
ability distribution17 for large GOE random matrices is
shown in Fig. 1; its mean value is 
r�GOE=0.5295±0.0006.
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As expected, level repulsion and/or spectral rigidity in the
GOE spectra manifests itself in the vanishing of the probabil-
ity distribution PGOE�r�r as r→0.

IV. RESULTS

With interaction and hopping terms fixed as above �t= t�
=V /2=1�, we vary the strength of disorder from W=1 to
W=10 or more and for each �L ,W� we diagonalize a large
number realizations R �see above�. For each sample, we
compute the spectral average of r 
r� over all states. We then
disorder average this quantity �
r�� to arrive at r�W ,L� ex-
hibited in Fig. 2. The statistical uncertainties in �
r�� are
estimated as usual as ±���
r�2�− �
r��2� / �R−1��1/2.

As expected, larger samples have more Poisson-like sta-
tistics than smaller ones for strong disorder, W�8, in an
apparently localized regime; while for weak disorder, W
�4, the level statistics converge toward GOE with increas-
ing L, since this is the diffusive phase. We have checked that
the entire probability distributions P�r� in these regimes ap-
proach those of Poisson and GOE spectra �see Fig. 1�. In
fact, well away from the intermediate range of disorder
strength, these universal limiting distributions are reproduced
to a high precision by our admittedly limited in size samples.
There is an additional crossover at very weak disorder: as
crystal momentum conservation is recovered, there appears a
turnaround in the statistics as the decoupling of different mo-
mentum sectors suppresses the average of r below its GOE
value. This latter crossover at weak randomness is a nuisance
for us and we steer clear of it the best we can by working
away from the clean limit and also not considering very short
chains �with less than eight sites� where this momentum
pseudoconservation persists to larger values of disorder:
r�W ,8� shows a remnant of this crossover at W=1, while
larger values of L do not show it at all over the range of W
considered.

The simplest one-parameter finite-size scaling scenario
for the proposed diffusive-to-insulating phase transition
would have these traces of r�W ,L� vs W at fixed L in Fig. 2
all cross at Wc as L→�, with a slope that increases with
increasing L �e.g., see Ref. 14�. However, we find that the
crossings of the r�W� curves for adjacent L’s take place at
points that, as L is increased, “drift” progressively toward
larger W and smaller �more insulating� r �see Fig. 2�. The
bottom portion of Fig. 2 displays an enlagement of the inter-
mediate disorder regime, where this drift takes place. Here,
we observe that in going from four to five particles, the lo-
cation of the crossing point shifts by two units of W �hori-
zontal axis�, whereas in going from seven to eight particles it
is about �0.5, thus suggesting a trend whereby deceleration
of this motion of crossing points persists and results in finite
value of Wc as L→� �although further computations will be
necessary to support this scenario�. It is also interesting to
note that vertical displacements of crossing points appear
rather substantial, possibly suggesting a limiting value of Wc
that is not too different from Poisson �see below�.

As this drift precludes the straightforward quantitative
analysis of our data in terms of one-parameter scaling theory,
we have exerted considerable effort to attempt to eliminate
it,18 including looking at other temperatures, interactions and

FIG. 1. �Color online� Disorder averaged probability distribu-
tion P�r� for Poisson �solid line� and GOE distributed eigenvalues
�Ref. 17� �dots� and for our interacting fermion model at random-
ness W=3 in diffusive regime �data in green, mostly overlapping
with black �GOE� dots�, W=11 in localized regime �data in red,
mostly overlapping with black �Poisson� line�, and W=7 in inter-
mediate regime �data in blue� for length L=16.

FIG. 2. �Color online� Size L and disorder W dependences of
r�W ,L�. The curves correspond to L=8 �diamonds�, 10 �stars�, 12
�squares�, 14 �triangles�, 16 �unadorned� from top to bottom for
large W. Bottom: an enlargement of the crossing region to make the
drift of the crossings more visible. Where not visible, the error bars
are smaller than the points.
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fillings, candidate scaling variables other than r, and selec-
tive spectral averaging �e.g., excluding states in the high- and
low-energy tails of the spectrum�. While this drift of the
crossings can be reduced �particularly by trimming tails or
reducing the temperature�, it appears that it is intrinsic to this
model’s spectral statistics and none of the many things we
have tried eliminated or reversed it. Accepting this, there are
two very distinct possible implications: either the drift con-
verges to a finite Wc �and likely to rc= 
r�P, see below� in the
large L limit, or it continues indefinitely to Wc=� which
would imply that the insulating phase does not exist at these
high temperatures. In fact, this latter possibility has already
been advocated in previous work, see, e.g., Ref. 5 where it
was argued that Wc�L�L �i.e., Wc�L� is a length dependent
scale at which spectral statistics changes from Poisson-like
to GOE�.

Although at this point we cannot choose between these
two possibilities based on these data for the spectral statis-
tics, it is worth making some more comments about the
former possibility:18 The apparent drift of the crossing points
�Wc�L� ,rc�L�	 is indeed substantial along the vertical axis, as
would be expected if rc is converging to the Poisson-limit
value 
r�P. Thus, these data seem consistent with a large L
limiting behavior Wc�L�→Wc��, rc�L�→ 
r�P, whereby the
critical point is insulating as far as level statistics are con-
cerned. There are independent reasons, based on analogy to
Anderson localization on high dimensional and Cayley
graphs,19 to expect such a behavior. The proposed many-
body localization transition is a localization transition in an
infinite-dimensional Fock space.2 Given that there may be
plenty of room in that space for the states at a diffusive-to-
localized transition �i.e., at the mobility edge� to have an
infinite localization length but still have a negligible overlap
between states and thus, no level repulsion and Poisson level
statistics. This would imply that the spectral statistics should
converge to Poisson as L increases both within the localized
phase and at the transition, and thus, the “crossings” in our
Fig. 2 must move down to r= 
r�P in the large L limit. This
scenario, with a localized phase for W�Wc, seems qualita-

tively consistent with the data we have presented above. Un-
fortunately, if this is indeed the case then spectral statistics
are not a good tool for simple finite-size scaling analysis. We
shall explore other approaches to this problem in the near
future.

V. SUMMARY AND OUTLOOK

We have looked for signatures of the proposed many-
body localization transition in the statistics of exact spectra
of a one-dimensional tight-binding model of strongly inter-
acting spinless fermions in a random potential. Although
some indications of this phase transition are clearly seen,
there are rather strong deviations from and/or corrections to
finite-size scaling present. The latter might be interpreted as
calling in to question the existence of the proposed many-
body localized phase at the high temperatures we study. Al-
ternatively, this failure of simple one-parameter finite-size
scaling might be because the critical point has insulator-like
spectral statistics.

In closing, it may be worth noting that thus far we have
focused on the most elementary aspects of many-body local-
ization. These may not be necessarily the easiest to study
experimentally. Finite-size effects in dynamical response
functions, i.e., conductivity, appear more delicate but they
are certainly worthwhile understanding, as data may already
exist in regimes of interest, in materials as diverse as mag-
netic salts and disordered conductors.
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