
Laplacian-level density functionals for the kinetic energy density
and exchange-correlation energy

John P. Perdew and Lucian A. Constantin*
Quantum Theory Group, Department of Physics, Tulane University, New Orleans, Louisiana 70118, USA
�Received 16 December 2006; revised manuscript received 14 February 2007; published 19 April 2007�

We construct a Laplacian-level meta-generalized-gradient-approximation �meta-GGA� for the noninteracting
�Kohn-Sham orbital� positive kinetic energy density � of an electronic ground state of density n. This meta-
GGA is designed to recover the fourth-order gradient expansion �GE4 in the appropriate slowly varying limit
and the von Weizsäcker expression �W= ��n�2 / �8n� in the rapidly varying limit. It is constrained to satisfy the
rigorous lower bound �W�r����r�. Our meta-GGA is typically a strong improvement over the gradient expan-
sion of � for atoms, spherical jellium clusters, jellium surfaces, the Airy gas, Hooke’s atom, one-electron
Gaussian density, quasi-two-dimensional electron gas, and nonuniformly scaled hydrogen atom. We also con-
struct a Laplacian-level meta-GGA for exchange and correlation by employing our approximate � in the
Tao-Perdew-Staroverov-Scuseria �TPSS� meta-GGA density functional. The Laplacian-level TPSS gives al-
most the same exchange-correlation enhancement factors and energies as the full TPSS, suggesting that � and
�2n carry about the same information beyond that carried by n and �n. Our kinetic energy density integrates
to an orbital-free kinetic energy functional that is about as accurate as the fourth-order gradient expansion for
many real densities �with noticeable improvement in molecular atomization energies�, but considerably more
accurate for rapidly varying ones.
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I. INTRODUCTION

In ground-state density-functional theory, the noninteract-
ing kinetic energy �KE� Ts of a system of N electrons may be
treated as an exact functional of the occupied Kohn-Sham1

�KS� orbitals ��i�, and only the exchange-correlation energy
has to be approximated. However, finding an accurate
orbital-free KE functional2 will simplify and speed up by
orders of magnitude any KS self-consistent calculation. In
general, a kinetic energy density �KED� is any function
which integrates to the noninteracting kinetic energy Ts:

Ts�n↑,n↓� =� dr� , �1�

where n↑�r� and n↓�r� are the electron-spin densities and
��r�=�↑��n↑� ,r�+�↓��n↓� ,r�. Because of the local version of
the spin-scaling relation3

����n��,r� = �1/2����n = 2n��,r� , �2�

we will only need to show our expressions for spin-
unpolarized systems with n↑=n↓=n /2. Like other energy
densities, the KED is not unique. There are two important
forms of the KED: one which depends on the Laplacian of
the Kohn-Sham orbitals and follows directly from the Kohn-
Sham self-consistent equations:

�L�r� = − 	1

2

�

i=1

N

�i
*�r��2�i�r� , �3�

and another which is positive definite:

��r� = 	1

2

�

i=1

N

���i�r��2 = �L�r� +
1

4
�2n�r� , �4�

where n�r�=�i=1
N ��i�r��2 is the electronic density. �We use

atomic units, with �=m=e2=1, throughout this paper.�
��L+�� /2 has been proposed4 as the closest analog of a clas-
sical KED. The positivity of � of Eq. �4� is an extra con-
straint that makes it easier to model directly than are other
choices for the KED; see also Eqs. �9� and �10� below.

While a generalized gradient approximation �GGA� uses
only n and �n, a meta-GGA �MGGA�, such as the accurate
nonempirical Tao-Perdew-Staroverov-Scuseria5 �TPSS� den-
sity functional for the exchange-correlation energy, is con-
structed from local ingredients n�r�, �n�r�, and ��r�. In this
work, we will present evidence that ��r� and �2n�r� can
carry essentially the same information beyond that carried by
n�r� and �n�r�. To do so, and to make an improved semilo-
cal density functional for Ts, we shall construct a Laplacian-
level meta-GGA for ��r�. Our semilocal functional recovers
the fourth-order gradient expansion �GE4� KED for a slowly
varying density and the von Weizsäcker KED for a rapidly
varying density.

The gradient expansion, which becomes exact for densi-
ties that vary slowly over space,6 is7

� = ��0�Fs�p,q, . . . � , �5�

with

Fs = �
n=0

�

Fs
�2n�, �6�

where p= ��n�2 / �4�3�2�2/3n8/3� and q=�2n / �4�3�2�2/3n5/3�
are dimensionless derivatives of the density,
��0�= 3

10�3�2�2/3n5/3 is the Thomas-Fermi KED,8 and
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Fs
�2n��p ,q , . . . � is the enhancement factor of the 2nth term of

the gradient expansion. The zeroth-order enhancement factor
is8 Fs

�0�=1, and the second-order one is9,10 Fs
�2�= �5/27�p

+ �20/9�q. The term linear in q is a key ingredient in our
MGGA. Although this term integrates to zero in Eq. �1�, it
is11 important for the KED. This term also indicates rapidly
varying density regimes �e.g., near a nucleus where q→−�
and in the tail of the density where q→��. The fourth-order
enhancement factor is12

Fs
�4� = � = �8/81�q2 − �1/9�pq + �8/243�p2 	 0. �7�

This enhancement factor is a simplified expression obtained
with Green’s theorem �integration by parts in Eq. �1�� under
the assumption that n�r� and its gradients vanish as r→�. A
full expression for ��4�, involving derivatives of the density
of higher than second order, is given in Ref. 10. Although the
integration by parts that leads to Eq. �7� is inappropriate for
some nonanalytic densities,13 we shall incorporate Eq. �7�
into our MGGA. The sixth-order term,14 even if it provides a
useful correction to the fourth-order gradient expansion for
the formation energy of a monovacancy in jellium,7 diverges
for atoms after the integration of Eq. �1� and requires higher
derivatives of the density than we would like to use. For later
use, we define

Fs
GE4�p,q� = 1 + �5/27�p + �20/9�q + � . �8�

The von Weizsäcker expression15 ��W= ��n�2 / �8n�� is ex-
act for any one- or two-electron ground state, is accurate in
nearly iso-orbital regions, satisfies the exact nuclear cusp
condition ���0�=Z2n�0� /2, where Z is the nuclear charge�,16

is exact in the r→� asymptotic region �where the density
matrix behaves like Eq. �8� of Ref. 17�, and gives a rigorous
lower bound18–20 on the KED of Eq. �4�:

�W�r� � ��r� , �9�

or Fs
W�Fs. The semilocal bound of Eq. �9� is one of the most

important constraints in the construction of our functional.
The von Weizsäcker enhancement factor15

Fs
W = �5/3�p 	 0 �10�

is simple, but the von Weizsäcker KE functional gives, in
general, very poor approximate atomization kinetic energies
�see Table III of Ref. 21�, and this has been attributed22 to its
strong violation of Eq. �8� of Ref. 22.

Recently Tao et al.5 have constructed a nonempirical
meta-generalized-gradient-approximation for the exchange-
correlation energy. This functional, which satisfies as many
exact constraints as a meta-GGA can �see Table 1 of Ref. 23,
or Ref. 24 for a detailed explanation�, provides a good over-
all description of atoms, molecules, solids, and surfaces.23–32

We construct a Laplacian-level TPSS �LL-TPSS� by replac-
ing � by �MGGA in the TPSS exchange-correlation energy per
particle.

Gradient-level functionals for exchange and correlation,
first proposed in Ref. 33, have been extensively developed
since. Laplacian-level functionals for exchange and correla-
tion have been advocated in Ref. 34 and proposed in Ref. 35.
Recent interest in them is driven in part by the observation of

Ref. 36 that �2n can be used along with n to mimic some
exact exchange-correlation conventional energy densities.

The paper is organized as follows. In Sec. II, we present
the KED meta-GGA functional. In Sec. III, we test our func-
tional for several physical systems and models, and further
explain its behavior. In Sec. IV, we construct the LL-TPSS
exchange-correlation functional, and present numerical and
analytic evidence that �2n and � carry essentially the same
information beyond that carried by n and �n. In Sec. V, we
summarize our conclusions.

II. CONSTRUCTION OF A META-GGA KINETIC ENERGY
DENSITY

Our meta-GGA for the KED is an interpolation between a
modified gradient expansion and the von Weizsäcker expres-
sion. There are many ways to satisfy the inequality of Eq.
�9�, so we will have to rely on empiricism to select one of
them.

First, we construct a modified fourth-order gradient ex-
pansion enhancement factor

Fs
GE4-M = Fs

GE4�1 + � �

1 + �5/3�p�2

, �11�

which has the following properties:

�1� For small p and �q�,

Fs
GE4-M = Fs

GE4 + O��2� , �12�

so that it recovers the fourth order gradient expansion for a
slowly varying density.

�2� When �q � →�,

Fs
GE4-M → 1 + Fs

W, �13�

which is the correct limit for a uniform density perturbed by
a small-amplitude, short-wavelength density wave.37 When
p→�, Fs

GE4-M →Fs
W+o�p0�, which is reasonable for other

rapid density variations.
�3� The modified enhancement factor of Eq. �11� satisfies

a uniform damping property:

�Fs
GE4-M� 
 �Fs

GE4� . �14�

This is desirable because for large p and �q�, spuriously large
values of �Fs

GE4� can arise from truncation of the gradient
expansion.

We shall assume that the condition Fs
GE4-M 
 �Fs

W indi-
cates the need for Fs

MGGA=Fs
W. Our meta-GGA interpolates

between Fs
GE4-M and Fs

W. The smooth interpolating function
is

fab�z� = �
0, z � 0

� 1 + ea/�a−z�

ea/z + ea/�a−z��b

, 0 
 z 
 a

1, z 	 a ,
� �15�

where 0
a�1 and b�0 are parameters. This function is
plotted in Fig. 1. The meta-GGA KED is defined as follows:
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�MGGA = ��0�Fs
MGGA�p,q� , �16�

where

Fs
MGGA = Fs

W + �Fs
GE4-M − Fs

W�fab�Fs
GE4-M − Fs

W� . �17�

When fab=1, i.e., when Fs
GE4-M �Fs

W+a, Eq. �17� makes
Fs

MGGA=Fs
GE4-M. When fab=0, i.e., when Fs

GE4-M 
Fs
W, Eq.

�17� makes Fs
MGGA=Fs

W. In between, Fs
MGGA is an interpola-

tion between Fs
GE4-M and Fs

W. Our positive meta-GGA KED
keeps all the correct features of �GE4-M, tends to be exact in
iso-orbital regions, and satisfies the important constraint of
Eq. �9�:

Fs
MGGA 	 Fs

W. �18�

The meta-GGA depends on the empirical parameters a
and b. These parameters were found numerically by mini-
mizing the following expression:

Error = 1
2 �mare atoms� + 1

4 �mare clusters�

+ 1
4 �mare LDM�N = 8�� , �19�

where “mare atoms” is the mean absolute relative error
�mare� of the integrated kinetic energy of 50 atoms and ions,
“mare clusters” is the mare of the KE of 2e−, 8e−, 18e−, 20e−,
34e−, 40e−, 58e−, 92e−, and 106e− neutral spherical jellium
clusters �with bulk parameter rs=3.93, which corresponds to
Na�, and “mare LDM�N=8�” is the mare of the KE of N
=8 jellium spheres for rs=2, 4, and 6, calculated in the liquid
drop model �LDM�,

Ts
LDM = �3/10�kF

2N + �sN
2/34�rs

2, �20�

where kF= �3�2n�1/3 is the Fermi wave vector, rs

= �3/4�n�1/3 is the radius of a sphere which contains, on
average, one electron, n is the bulk density, and �s is the
surface KE. The “exact” LDM value is one computed with
the exact �s. Because the relative errors of surface kinetic
energies are much larger than those of the atoms and spheri-
cal jellium clusters, we use the LDM approach for calculat-
ing the jellium surface KE errors; LDM gives mare compa-
rable to that of atoms and clusters �see Table I�. The densities

and orbitals we use are analytic Hartree-Fock38 for atoms
and ions and numerical Kohn-Sham for clusters and surfaces
�with the local-density approximation for the exchange-
correlation potential�.

In the process of optimization, we observed that the mare
decreases very slowly when the parameter b�3 increases,
but large values of b deteriorate the KED. So, we chose the
following set of parameters: a=0.5389 and b=3. As we can
see in Table I, this set of parameters gives an accuracy close
to �but better than� that of the fourth-order gradient expan-
sion.

In Fig. 1, we plot the interpolating function fab�z� using
our choice for the parameters. Near a nucleus, there is a large
region where Fs

GE4
0 and thus Fs
GE4-M 
0, making fab=0

and Fs
MGGA=Fs

W the correct behavior. �Nevertheless, as r
→0 and q→−�, Fs

GE4-M →1+Fs
W, making fab→1 and

Fs
MGGA→1+Fs

W�1.24, which is at least positive and finite.�
In the r→� asymptotic region, where p�q→�, Fs

GE4-M

→Fs
W, making fab→0 and Fs

MGGA→Fs
W the correct limit. In

the slowly varying limit, where p and q are small, fab�z�
→1, so meta-GGA recovers the fourth-order gradient expan-
sion. In Fig. 2, we plot the meta-GGA enhancement factor
versus s=p for different values of q. We observe an orderly
behavior of Fs

MGGA for p and q in the range appropriate to
physical densities. For the integrated KE, our meta-GGA is
size consistent and satisfies the uniform-scaling relation39

and the spin-scaling relation.3 The meta-GGA nonuniform-
scaling behavior is investigated in Sec. III.

III. RESULTS: KINETIC ENERGY AND ITS DENSITY

In Figs. 3 and 4, we plot the integrand of the KE, 4�r2�,
versus radial distance from the nucleus for the He and Ne
atoms. The KED of the fourth-order gradient expansion,
�GE4, is negative near the nucleus and is not a good approxi-
mation for �. The meta-GGA KE integrand is much im-
proved near the nucleus, and everywhere follows very nicely
the exact behavior.

Let us consider an ion model with ten electrons which
occupy the first hydrogenic orbitals and with a nuclear

FIG. 1. Interpolating function fab�z� �see Eq. �15�� versus z for
the optimized parameters a=0.5389 and b=3.

TABLE I. Mean absolute relative error �mare� of integrated ki-
netic energies of 50 atoms and ions, of neutral spherical jellium Na
clusters �2e−, 8e−, 18e−, 20e−, 34e−, 40e−, 58e−, 92e−, and 106e−�
and of jellium surfaces �with rs=2, rs=4, and rs=6� incorporated
into the liquid drop model �LDM� for a jellium sphere with N=8
electrons �see Eq. �20��. The atoms and ions are H, He, Be+2, Be,
Be+1, Li, Li+1, Ne, Ne+8, Ne+7, Ne+6, Ar, Ar+16, Ar+15, Ar+14, Ar+8,
Ar+6, Zn, Zn+28, Zn+20, Zn+18, Zn+12, Kr, Kr+34, Kr+26, Kr+24, Kr+18,
Xe, C+4, C+3, C+2, N+5, N+4, N+3, B+1, B+3, B+2, O+1, O+6, O+5,
O+4, Cu, Cu+27, Cu+26, Cu+25, Cu+19, Cu+17, Cu+11, Cu+1 and N.

Ts
�0� Ts

�0�+Ts
�2� Ts

�0�+Ts
�2�+Ts

�4� Ts
MGGA

mare atoms 0.0842 0.0112 0.0251 0.0139

mare clusters 0.0439 0.0099 0.0176 0.0245

mare LDM �N=8� 0.0810 0.0330 0.0170 0.0247

Error �Eq. �19�� 0.0733 0.0163 0.0212 0.0193
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charge Z=92. In such a closed-shell system, the KED is de-
termined by the density of the s electrons alone.40,41 In Fig.
5, we show the exact and the meta-GGA kinetic energy den-
sities for this system �for the s electrons and for the whole
system, separately�.

The KED of the one-electron Gaussian density is shown
in Fig. 6. This system does not have a cusp near the center
�r=0, where p=0 and q�−0.5� and, in this sense, it is an
important test for our meta-GGA, which we find to be as
accurate here as it is for the He atom.

The Hooke’s atom is a simple system of two interacting
electrons in a harmonic potential. For this system, the exact
KED is the von Weizsäcker one. The correlated wave func-
tion and its density can be calculated exactly42 for special
values of the spring constant k. The low-correlation case43

corresponds to k=0.25 a.u., and the high-correlation case44

to k=3.6�10−6 a.u. A modeled density very similar to the
exact Hooke’s atom density �with k=3.6�10−6 a.u.� is

n�r� = A�1 + BCr2�e−Cr2
, �21�

where A=0.67�10−6 a.u., B=11 a.u., and C
=0.001 021 2 a.u. Applying uniform scaling n�r�→3n�r�

=n�r�, we define the following scaled density:

n�r� = 0.021 45�1 + 10.5r2�e−r2
, �22�

with =31.753. In Fig. 7, we show the exact, meta-GGA and
fourth-order gradient expansion KE integrands for the
pseudo-Hooke’s atom �using the scaled density given in Eq.
�22�� in the high-correlation case. The region near the
nucleus of the pseudo-Hooke’s atom is unusual because there
strong correlation creates a deep “hole” in the density: q
decreases smoothly with increasing r �from 19.29 at r=0 to
�0 at r=0.68�, and p increases slowly with increasing r
�from 0 at r=0 to a peak value of 1.829 at r=0.233�. This
region cannot be described accurately by the meta-GGA, as
we can see in Fig. 7. Near r=1, where p�0 and q�
−0.495, the KED meta-GGA recovers the exact behavior.

Figures 7 and 8 show how our �MGGA can sometimes fail
to recognize iso-orbital regions where �=�W. For the 2e−

jellium cluster between r=0.1 and r=1, where p increases
very slowly with increasing r �from p=0.0016 at r=0.1 to

FIG. 3. KE integrand 4�r2� versus radial distance r for the He
atom. The integral under the curve is the KE for the helium atom:
exact, 2.862 a.u.; meta-GGA, 2.993 a.u.; and GE4, 2.963 a.u.

FIG. 4. KE integrand 4�r2� versus radial distance r for the Ne
atom. The integral under the curve is the KE for the neon atom:
exact, 128.546 a.u.; meta-GGA, 129.312 a.u.; and GE4,
129.749 a.u.

FIG. 5. KE integrand 4�r2� versus radial distance r for the
ten-electron �hydrogenic orbitals� ion with nuclear charge Z=92.
The curves EXACTs and MGGAs show the contribution of the four
s electrons �see Ref. 40�.

FIG. 2. Enhancement factor Fs
MGGA�p ,q� versus reduced gradi-

ent s=p for several values of the reduced Laplacian q �−10, 0,
1 /3, 1, 2, 3, and 4�. The parabolic asymptote is Fs

W.
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p=0.015 at r=1� and q�−0.29, the meta-GGA functional
switches from the fourth-order gradient expansion to the ex-
act behavior due to the construction of the interpolating func-
tion fab. This feature is important for molecules, because a
similar case arises at the center of a diatomic molecule X2.

In Fig. 9, we plot the KED � versus the scaled distance �
for the Airy gas, which is the simplest model of an edge
electron gas.45 In this model, the noninteracting electrons see
a linear potential. In the tail of the density, the KED meta-
GGA becomes exact �see Fig. 9� as we mentioned in Sec. II.
At least two orbital-free kinetic energy functionals have been
based upon the Airy gas model. In Ref. 46, the kinetic energy
density of the Airy gas is transferred to other systems in a
local Airy gas approximation, which seems accurate for jel-
lium surfaces but makes � diverge at nuclei. In Ref. 47, a
density functional is constructed for the linear potential; it
has an unphysically rapid oscillation48 in its correction to ��0�

for a slowly varying density.
For a quasi-two-dimensional �quasi-2D� electron gas

�quantum well� whose orbitals are those of noninteracting

electrons confined by infinite barriers,49 the exact KE per
electron can be calculated analytically and has the following
simple expression:

Ts

N
=

�2

2L2 +
�kF

2D�2

4
, �23�

where L is the width of the quantum well, kF
2D=2/rs

2D is the
two-dimensional Fermi wave vector, and rs

2D is the radius of
the circle that contains, on average, one electron of the quasi-
two-dimensional gas. Figure 10 is for the electron gas at
rs

2D=4. Ts
�4� diverges due to the infinite barriers, so it is not

shown in the figure. As we can see, the KED meta-GGA
functional solves this nonuniform-scaling problem almost
exactly.

The nonuniform-scaling inequality50 is

Ts�n�
x� � �2Ts

x�n� + Ts
y�n� + Ts

z�n� , �24�

where � is a positive scale factor, the nonuniformly
scaled density is n�

x�x ,y ,z�=�n��x ,y ,z�, and Ts
q�n�

= �1/2���Ts�n�
q� /����=1, where q is x, y, or z. For the von

FIG. 6. KE integrand 4�r2� versus radial distance r for the
one-electron Gaussian density. The integral under the curve is the
kinetic energy: exact, 0.750 a.u.; meta-GGA, 0.778 a.u.; and GE4,
0.865 a.u.

FIG. 7. KE integrand 4�r2� versus radial distance r for the
pseudo-Hooke’s atom in the high-correlation case using the scaled
density given in Eq. �22�. The integral under the curve is the kinetic
energy: exact, 1.115 a.u.; meta-GGA, 1.264 a.u.; and GE4,
1.185 a.u.

FIG. 8. KE integrand 4�r2� versus radial distance r for the 2e−

Na jellium spherical cluster. The integral under the curve is the
kinetic energy: exact, 0.114 a.u.; meta-CGA, 0.120 a.u.; and GE4,
0.124 a.u.

FIG. 9. Kinetic energy density versus Airy scaled distance �Ref.
46� for the Airy gas. The exact KED is given by Eq. �11� of Ref. 46.
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Weizsäcker functional, and thus for an exact treatment of the
nonuniformly scaled hydrogen atom of density n��r�
= �� /��exp(−2��x�2+y2+z2), Eq. �24� becomes an
equality.50 In Figs. 11 and 12, we show the KE of the non-
uniformly scaled hydrogen atom as a function of � for the
prolate case ���1� and oblate case ��	1�, respectively. As
we can see, the meta-GGA KE functional does not satisfy the
nonuniform-scaling inequality, but is still very close to the
exact behavior. The von Weizsäcker KE is always less than
or equal to the meta-GGA functional �see Eq. �18��. So, the
meta-GGA seems to describe the nonuniform-scaling rela-
tion with considerable fidelity, a potentially important feature
for molecules where the bonding causes nonuniform distor-
tions in the density.

When a molecule at its equilibrium geometry is broken up
into separate atoms, the total energy increases and �as sug-
gested by the virial theorem� the kinetic energy decreases. In
Table II, we present the atomization kinetic energies for a set
of molecules used in Ref. 21. The meta-GGA kinetic energy
functional gives the best overall results, but is still not accu-

rate enough for chemical applications. We observe that for
NO and O2 molecules, where the other listed functionals fail
badly, the meta-GGA keeps the right sign. �In fact, with the
exception of N2 and F2, the atomization kinetic energies of
the meta-GGA all have the right sign.�

IV. LAPLACIAN-LEVEL META-GGA FOR EXCHANGE-
CORRELATION ENERGY

The exchange-correlation meta-GGA uses as ingredients
the spin densities and their gradients and the positive Kohn-
Sham kinetic energy densities:

FIG. 10. Integrated kinetic energy per electron versus L /rs
2D for

a quasi-2D electron gas in the infinite barrier model. The exact
curve is given by Eq. �23�. rs

2D is the areal density parameter of the
quasi-2D electron gas and L is the width of the quantum well �L

3.85rs

2D, see Ref. 49�. Note that Ts
�4� diverges here.

FIG. 11. Integrated KE versus scaling parameter � for the non-
uniformly scaled hydrogen atom in the prolate case.

FIG. 12. Integrated KE versus scaling parameter � for the non-
uniformly scaled hydrogen atom in the oblate case.

TABLE II. Integrated atomization kinetic energy �KE atoms
−KE molecule, in a.u.� for a few small molecules. The kinetic en-
ergies were calculated using the PROAIMV code with Kohn-Sham
orbitals given by the GAUSSIAN2000 code �with the uncontracted
6-311+G�3df ,2p� basis set, Becke 1988 exchange functional �Ref.
51�, and Perdew-Wang correlation functional �Ref. 52��. The last
line shows the mean absolute errors �mae�.

Ts
exact Ts

�0� Ts
�0�+Ts

�2� Ts
�0�+Ts

�2�+Ts
�4� Ts

MGGA

H2 −0.150 −0.097 −0.114 −0.119 −0.216

HF −0.185 −0.305 −0.186 −0.133 −0.352

H2O −0.304 −0.308 −0.136 −0.057 −0.634

CH4 −0.601 −0.737 −0.571 −0.498 −1.036

NH3 −0.397 −0.231 −0.060 0.014 −0.477

CO −0.298 −0.323 −0.085 0.015 −0.458

F2 −0.053 0.128 0.282 0.338 0.154

HCN −0.340 −0.1835 0.079 0.186 −0.328

N2 −0.158 0.344 0.565 0.650 0.319

CN −0.431 −0.215 0.005 0.094 −0.231

NO −0.268 0.092 0.330 0.422 −0.084

O2 −0.100 0.106 0.335 0.431 −0.194

mae 0.177 0.311 0.384 0.201
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Exc
MGGA =� drn�r��x

�0�
„n�r�…

�Fxc
MGGA

„n↑�r�,n↓�r�,�n↑�r�,�n↑�r�,�↑�r�,�↓�r�… ,

�25�

where �x
�0��n�= �−3/4���3�2n�1/3 is the exchange energy per

electron of a uniform, spin-unpolarized density n. The local-
density approximation �LDA� is recovered for �n↑=�n↓=0
and �↑=�↑

�0�, �↓=�↓
�0�. Our Laplacian-level noninteracting

KED functionals �↑
MGGA�r� and �↓

MGGA�r� can replace the ex-
act Kohn-Sham kinetic energy densities �↑�r� and �↓�r� in
Eq. �25�. The resulting LL-MGGA is an explicit density
functional, while Eq. �25� is an implicit one. Once an MGGA
�Eq. �25�� is programed, it runs to self-consistency almost as
fast as a gradient-level GGA.30 The programming may be
simpler for an LL-MGGA, and the construction of the func-
tional derivative is certainly simpler; the LL-MGGA may,
however, show spurious oscillations in the functional deriva-
tive.

We have constructed in this way the LL-TPSS exchange-
correlation meta-GGA.5 Like TPSS, LL-TPSS recovers the
fourth-order gradient expansion5,53 for the exchange energy
in the slowly varying limit. Moreover, like TPSS, LL-TPSS
has a finite exchange potential at a nucleus. The need for an
ingredient beyond n and �n �e.g., �2n� to satisfy this exact
constraint was emphasized in Refs. 34 and 44. The nuclear
cusp of an atom can be defined by q→−� and s�0.376, so
the constraint used in the construction of the TPSS exchange
enhancement factor5

�dFx
TPSS�s,z = 1�/ds�s=0.376 = 0, �26�

where z=��r� /�W�r�, becomes

�dFx
LL-TPSS�s,q → − ��/ds�s=0.376 = 0. �27�

Such constraints can be satisfied by a Laplacian-level meta-
GGA, but not by a GGA �using only n and �n�.

In Fig. 13, we show the exchange enhancement factor
Fx

LL-TPSS as a function of the inhomogeneity parameter s
=p for several values of the reduced Laplacian q. The en-

hancement factor interpolates in an orderly way between the
exact slowly varying limit �for small s and �q�� and a rapidly
varying limit �for large s� while satisfying Eq. �27�.

In Figs. 14 and 15, we compare the TPSS and the LL-
TPSS enhancement factors �for exchange and exchange cor-
relation� for the Zn atom, which was also studied in Ref. 24.
The LL-TPSS exchange-correlation energies are close to the
TPSS values for this and other atoms. �For the H atom,
Ec

TPSS=0 and Ec
LL-TPSS=−1.537�10−6; for the other 49 atoms

and ions, the mare of LL-TPSS with respect to TPSS is
0.001 32 for exchange, 0.0098 for correlation, and 0.001 33
for the combined exchange-correlation energy.�

In Fig. 16, we show that the LL-TPSS exchange func-
tional, like the TPSS, shows a strong enhancement in the 1s
region of an atom but is elsewhere not so different from the
second-order gradient expansion for exchange, as discussed
in Ref. 6.

FIG. 13. Exchange enhancement factor Fx
LL-TPSS versus reduced

gradient s=p for several values of the reduced Laplacian:
q=−10,−1/3 ,0 ,1 /3 ,1 ,2 ,3.

FIG. 14. Exchange enhancement factors Fx
LL-TPSS and Fx

TPSS

versus radial distance r for the Zn atom. Ex
TPSS=−69.798 a.u. and

Ex
LL-TPSS=−69.528 a.u. Note that �r−1�−1 is 0.65 for the 3d and 2.26

for the 4s electrons.

FIG. 15. Exchange-correlation enhancement factors Fxc
LL-TPSS,

Fxc
TPSS, Fxc

PBE, and Fxc
LDA versus radial distance r for the Zn

atom. Exc
TPSS=−71.208 a.u., Exc

LL-TPSS=−71.073 a.u., and Exc
PBE

=−70.934 a.u. Note that �r−1�−1 is 0.65 for the 3d and 2.26 for the
4s electrons. PBE is the nonempirical GGA of Ref. 54.
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V. CONCLUSIONS

We have constructed a Laplacian-level kinetic energy
density �KED� meta-GGA functional which depends on two
empirical parameters. These parameters control an interpola-
tion between a modified fourth-order gradient expansion and
the von Weizsäcker expression. This interpolation is de-
signed to respect the exact constraint of Eq. �9�. From our
tests and results of Sec. III, we conclude that the KED meta-
GGA functional is a successful approximation to the positive
Kohn-Sham KED.

Our functional uses a simplified expression for the fourth-
order gradient expansion12 of �. We also tested the meta-
GGA with the full fourth-order terms,10 but did not find a
considerable improvement in KED or integrated KE.

We have built a Laplacian-level meta-GGA for exchange
and correlation �LL-TPSS� which seems to imitate faithfully

the TPSS �Ref. 5� exchange-correlation meta-GGA. Several
constraints of the TPSS meta-GGA are exactly satisfied by
the LL-TPSS, but others, such as Ec=0 for any one-electron
system, are approximately satisfied. It appears to us that �2n
and � carry essentially the same information beyond that
carried by n and �n. Either �2n or � can be and are used to
recover the fourth-order gradient expansion of the exchange
energy in the slowly varying limit and to make the exchange
potential finite at a nucleus.

Integration of our Laplacian-level meta-GGA for the ki-
netic energy density yields an orbital-free density functional
for the kinetic energy that seems to improve upon the fourth-
order gradient expansion, especially for rapidly varying den-
sities. We have made all our tests for electron densities con-
structed from orbitals, and do not know what might be found
from a self-consistent solution of the orbital-free Euler equa-
tion for the electron density. It was argued in Ref. 55 that KE
functionals employing only n and �n cannot yield both ac-
curate integrated energies and accurate functional deriva-
tives. We believe that accurate results could be expected in
some rapidly varying regions �near nuclei and in density
tails� from KE functionals that employ n, �n, and �2n; our
specific expressions, however, may encounter a problem due
to the sharper features in Fig. 2 �also visible in Fig. 13�. It is
generally believed that correct quantum density oscillations
and shell-structure oscillations can only be found from a
fully-nonlocal orbital-free density functional for the kinetic
energy.56,57
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