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The state-of-the-art method to calculate defect properties in semiconductors is density-functional theory
�DFT� in a supercell geometry. Standard implementations of DFT, like the local density or the generalized
gradient approximation, suffer from the underestimation of the band gap, which may lead to erroneous defect
level positions. One possible remedy to this problem is the use of the scissor operator, originally introduced in
the case of vacancies. Here we report a case study on interstitial hydrogen in silicon and silicon carbide, which
shows that the scissor correction cannot always be applied successfully for interstitial defects and can cause
significant errors, especially in wide-band-gap materials.
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Defect engineering, a key factor in the development of
semiconductor technology, has relied, in the past decade,
strongly on fundamental research, which was able to identify
important defects through comparison of spectroscopic data
with results of theoretical calculations. The state-of-the-art
method for the latter is represented by ab initio supercell
calculations of the electronic structure, using density-
functional theory �DFT� in one of the standard implementa-
tions: local density or generalized gradient approximation
�LDA/GGA�. These methods provide a valence-band maxi-
mum �VBM� for semiconductors, which approximates the
ionization energy reasonably well, but the conduction-band
minimum �CBM� is substantially lower than the electron af-
finity. The resulting severe underestimation for the band gap
causes significant uncertainties in the gap level of defects as
well, the error usually increasing with delocalization. The
reason for the gap error is the incomplete description of the
electron self-interaction in standard DFT. First-principles
corrections are computationally prohibitively costly for large
systems, but recently, an approximate GW method has been
developed1 to calculate the necessary corrections to the LDA
�or GGA� one-electron energies obtained in supercells. The
corrected electronic structure reproduces the observed one
quite nicely �alas, at considerable cost�, but the corrections
cannot be taken into account in the self-consistent total en-
ergy. Therefore, the recommended correction method for cal-
culating the self-consistent electronic structure of defects
�see, e.g., Ref. 2� is the use of the “scissor” operator,3 which
means a scaled shift with respect to the VBM. The scissor
method assumes that the error is negligible for valence states
and approximately constant for the conduction-band states.4

In principle, the wave function of a defect can be expanded
on the basis of the perfect crystalline states, and the amount
of shifting for a particular level is determined by the weight
of the conduction-band states in the expansion of the defect
state. The shift necessary for the CBM to reproduce the ex-
perimental gap is, therefore, scaled by the sum of overlaps
between the defect wave function and all CB states of the
perfect crystal. The scissor operator was originally intro-
duced for the case of the vacancy,3 but, according to experi-
ence, it works reasonably well also for substitutional defects
and even for split interstitials. However, by comparing the
scissor corrections to those obtained with the GW method, in
the following we will show that this is not the case for inter-

stitial defects in the low electron density region of the crys-
tal. For demonstration we will use the hydrogen interstitial in
silicon �Hi�. This is a very well-studied bistable defect,5,6

with established configurations both in the high and low
electron density regions of the crystal, providing an excellent
probe to investigate the consequences of the gap error on the
level position in different situations for the same atom. We
will also use the case of hydrogen in the wide-band-gap
semiconductor SiC to corroborate the result.

We have studied Hi in a 64-atom silicon and in a 96-atom
4H-SiC supercell, relaxing atoms until the forces were below
0.02 eV/Å. These supercells are sufficiently big to accom-
modate the induced relaxation, but cannot prevent dispersion
of the defect level. The level position of an isolated defect
was, therefore, estimated by making a tight-binding fit to the
defect band. The total energy and the forces were calculated
within the local spin-density approximation �LDA�.7 We ap-
plied a plane-wave basis with an energy cutoff of 36 Ry, a 23

Monkhorst-Pack k-point set,8 and either norm-conserving
pseudopotentials �PPs� in the FHI96MD code9 to calculate the
scissor corrections �and to be comparable with earlier PP
calculations� or the projector augmentation wave method
within the VASP code10 to calculate the GW corrections ac-
cording to Ref. 1. �The two methods yield practically iden-
tical geometries and one-electron energies at the LDA level.�
Convergence tests carried out with a 216-atom supercell and
64 Ry cutoff have shown that the energy levels are con-
verged within 0.1 eV.

The LDA band gaps of silicon and 4H-SiC were calcu-
lated to be 0.56 and 2.18 eV, respectively. Comparing these
to the low-temperature experimental band gaps of 1.17 and
3.26 eV gives the necessary rigid shifts of 0.61 and 1.08 eV,
respectively, for the CBM states of the perfect systems. The
scissor correction was obtained by multiplying these values
by the overlap between the defect state and the CB states of
the perfect supercell. The so obtained level positions, with
respect to the VBM of the perfect crystal, were then com-
pared to the quasiparticle �QP� energy difference between the
defect level and the VBM, obtained by the parameter-free
approximate GW method, as described in Ref. 1. For the
perfect crystals, the calculated QP band gaps are 1.22 and
3.35 eV for Si and 4H-SiC, respectively, in good agreement
with the experimental values.

In thermal equilibrium, Hi in silicon is only stable in its
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charged states: being at the bond center �BC� site in the
positive charge state and near the tetrahedral �T� interstitial
site in the negative charge state.5 The neutral charge state is
only metastable, but the �+�0� and �0 �−� charge transition
levels could still be deduced experimentally to be at CBM-
0.18 and CBM-0.65 eV, respectively.11 These values could
be reasonably well reproduced by DFT-LDA calculations,
assuming an a posteriori scissor correction of about the same
magnitude at the BC and the T site.12 Still, when the �����
transition levels of Hi �involving only correction near the T
site, because there is no occupied level in the positive charge
state� were compared in a wide range of semiconducting and
insulating materials,13 no correction at all appeared to be
necessary even in very-wide-band-gap materials, although
one expects the gap corrections to increase with the band
gap, as the gap error does.

Our LDA calculation also puts Hi
+ in silicon at the BC

position, with no occupied defect level in the gap. �The state
corresponding to the three-center Si-H-Si bond is below the
VBM.� The equilibrium of Hi

− we find, strictly speaking, to
be at one of four equivalent antibonding �AB� positions,
away from the T site along �111� by �0.3 Å. The energy
difference with respect to the T site is, however, small
�0.03 eV� and, considering the zero-point energy, Hi

− can be
regarded as being, on average, at the T site. The LDA elec-
tronic structure of Hi

− shows a fully occupied acceptor level
near the VB, and the estimated level position of the isolated
defect is slightly below the VBM. Hi

0 is most stable at the
BC site, however, we find that the AB site is also a true local
minimum �in accord with Refs. 14–16 but in contrast to
Refs. 12, 17, and 18�. The defect band of Hi

0 at the AB site
mixes strongly with the VB, and the determination of the
isolated defect level is not possible with a simple one-band
tight-binding fit. In contrast, the defect band of Hi

0 at the BC
site is disjunct from the CB, although the LDA level of the
isolated defect is estimated to be slightly above the CBM.

Table I compares the results of the two correction proce-
dures, mentioned in the Introduction, for Hi

0 at the BC site
and Hi

− at the AB site. As can be seen, the GW correction
shifts the donor level of Hi

0 at BC by 0.44 eV, 2/3 of the
CBM correction, 0.66 eV. The scissor correction, 0.53 eV
for the defect level, compared to the necessary correction for
the CBM, 0.61 eV, gives a reasonably good approximation
to that. In contrast, the deviation is rather big for the acceptor
level of Hi

− at AB. While the GW correction is only 0.17 eV,
the scissor gives 0.44 eV, almost as high as for the donor
state at BC. To examine the effect of a larger gap and a larger

gap error, we also calculated Hi in 4H-SiC. In accordance
with earlier LDA calculations,19–22 the BC site is not the
most stable one even for Hi

0 in SiC, but the stable state of Hi
−

is at an AB site behind a silicon atom. The corresponding
LDA acceptor level is at 0.5 eV above the VBM. As can also
be seen in Table I, the scissor correction for Hi

0 in Si and SiC
at the AB site is almost in proportion to the increase in the
gap error, while the GW correction remains very similar to
the case of silicon. Apparently, there is a general, non-
material-specific discrepancy between the scissor and the
GW correction at play here.

The explanation lies in the different nature of the defect
state at BC and AB. At BC it is essentially an antibonding
combination of the sp3 hybrids on the silicon neighbors of Hi
�with a node on the hydrogen atom�, i.e., clearly conduction-
band derived and delocalized. The defect state near T is the
arch example of a hydrogenic effective-mass state. Since the
crystalline electron density around T is small, the Coulomb
potential is weakly screened, so the state is strongly local-
ized. �Indeed, paramagnetic resonance data show a 30-times
stronger localization at T than at BC.5� This is the reason
why GW gives a much smaller correction for the defect state
at T than at BC. However, the sum of overlaps with the CB
states in the former case is almost as high �0.72� as in the
latter �0.87�, leading to a large shift by the scissor correction
in both cases. This is, of course, to be expected, because in
the interstitial “hole” in the diamond lattice �where the elec-
tron density is small�, only CB states can be used to expand
even an essentially valence state, such as the 1s state of the
hydrogen atom.

The same problem should occur in any case when a defect
resides in a low electron density region of the crystal, where
the VB states of the perfect crystal do not provide an ad-
equate basis for expanding a strongly localized defect state.
For such cases, the scissor operator provides a strong over-
correction. It should be emphasized, however, that in the
high electron density regions of the crystal, the necessary
correction might be rather large and given correctly by the
scissor method. The case of the hydrogen interstitial clearly
demonstrates that the consequences of the gap error might
vary strongly in different configurations of the same impurity
atom. Since the error in the one-electron levels should affect
the total energy, this might seriously impinge on the calcu-
lated diffusion routes, charge transition levels, and the rela-
tive stability of substitutional and interstitial configurations.

The question of using or not using a correction can be
critical in wide-band-gap semiconductors like 4H-SiC. If the
defect level is deep in the gap �small coupling to VB and CB
states�, the error in the total energy can be estimated, in a
first approximation, by the correction to the one-electron
level, multiplied by its occupation number. Using this proce-
dure with the scissor correction, we have reported earlier a
high-lying ����� charge transition level for Hi

− at VBM
+2.4 eV in 4H-SiC.21 The present GW result indicates that
this was in error, and the ����� level is only at about
VBM+1.4 eV. Through the formation energy of Hi

−, its
binding energy to dopants is also influenced. Based on the
scissor correction, we have reported23 the binding energy of
Hi

− to the nitrogen donor to be �2.0 eV, while the GW cor-
rection obtained here indicates a binding energy of only

TABLE I. Position of the CBM and the hydrogen-related one-
electron levels with respect to the VBM of the perfect crystal in eV.

Level LDA LDA+scissor LDA+GW

Si:CBM +0.56 +1.17 +1.22

Si:BC�0� +0.61 +1.14 +1.05

Si:AB��� −0.07 +0.37 +0.10

SiC:AB��� +0.50 +1.40 +0.62

SiC:CBM +2.18 +3.26 +3.35
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�0.4 eV �with a much lowered equilibrium concentration of
hydrogen in n-type samples, as a consequence�.

Finally, we note that the small correction given by the
GW method for Hi

− at the AB site of silicon is consistent with
Ref. 13 but is not sufficient to push the LDA �0 �−� transition
level up to the experimentally observed position. The differ-
ence can partly be attributed to a necessary charge
correction,24 but we believe that this is also connected to the
overestimation of the formation energy of Hi

0 at AB, due to

neglecting the vibrational coupling despite the strongly an-
harmonic potential for the electrons.25
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