
Phase diagram of vortices in high-Tc superconductors from lattice defect model with pinning

Jürgen Dietel and Hagen Kleinert
Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany

�Received 12 December 2006; published 30 April 2007�

The theory presented is based on a simple Hamiltonian for a vortex lattice in a weak impurity background
which includes linear elasticity and plasticity, the latter in the form of integer valued fields accounting for
defects. Within a quadratic approximation in the impurity potential, we find a first-order Bragg-glass, vortex-
glass transition line showing a reentrant behavior for superconductors with a melting line near Hc2. Going
beyond the quadratic approximation by using the variational approach of Mézard and Parisi established for
random manifolds, we obtain a phase diagram containing either a first-order or a third-order glass transition
line depending on the form of the disorder potential. Disorder potentials resulting in a unified glass transition
line of a third-order part �high magnetic fields� and a first-order part �low magnetic fields� are possible. The
glass transition line separates the vortex glass and the vortex liquid. Furthermore, we find a unified first-order
line consisting of the melting transition between the Bragg glass and the vortex liquid phase as well as a
disorder induced first-order line between the Bragg glass and the vortex glass phase. The reentrant behavior of
this line within the quadratic approach mentioned above vanished. We calculate the entropy and magnetic
induction jumps over the first-order line.
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I. INTRODUCTION

The phase diagram of high-Tc superconductors in the H-T
plane is dominated by the interplay of thermal fluctuations
and disorder.1,2 It is believed that at low magnetic fields near
Tc the vortex solid melts into a vortex liquid �VL� via a
first-order melting transition. Prominent examples of high-Tc
superconductors exhibiting a solid-liquid melting are the an-
isotropic compound YBa2Cu3O7−� �YBCO� and the strongly
layered compound Bi2Sr2CaCu2O8 �BSCCO�. When includ-
ing weak pinning, the solid phase becomes a quasi-long-
range-ordered Bragg glass �BG�.1 At higher magnetic fields,
the quasi-long-range order is destroyed and there exist also a
vortex glass �VG� phase. The transition is marked by the
disappearance of Bragg peaks in scattering data. There is
strong experimental evidence especially for BSCCO �Refs. 3
and 4� but also for YBCO �Ref. 5� that the BG-VG transition
is first order, although in YBCO it has not been confirmed
that this is really a proper phase transition, not just a cross-
over. So far, the transition line has been identified only by
some magnetic anomalies in the response to the external
magnetic field.

For BSCCO it seems that the two melting lines are part of
a unified first-order transition line. For YBCO there are two
possible experimental scenarios: First, the BG-VG and the
BG-VL transition lines meet in a multicritical point6 �MCP�
where the thermodynamical character of the BG-VG line is
not clear. The first-order BG-VL melting line should con-
tinue beyond the multicritical point ending in a critical
point7,8 �CP� where a new fluidlike phase, the slush phase
�VS�, emerges �see Fig. 1�.

The second scenario consists of a unified melting line5

without a multicritical point which is the case for BSCCO.
We note that the experimentally realized scenario is strongly
sensitive on the doping of the superconductor.8

In addition to the first-order transition lines, a glass tran-
sition line between the VG and VS phases exists, if the VS

phase exists, or between the VG and VL phases, if VS is
absent. This glass transition line was predicted by Fisher et
al. in Ref. 9, and observed when confirming scaling rules for
special current-voltage characteristics across the transition
line.10 Alternatively it was proposed in Ref. 11 that the glass
transition is window-glass-like with no scaling. Some people
define an irreversibility line beyond which magnetization
sweeps are no longer reversible.12 This seems to coincide
with the glass transition line. A direct experimental determi-
nation of the order of the glass transition in the vortex system
of YBCO has not yet been possible. For BSCCO, there is
recent experimental evidence that the glass transition line
could be of second order.13 A sketch of the phase diagram for
YBCO which contains the two scenarios is shown in Fig. 1.

In addition to experiments to determine the phase dia-
gram, information comes from computer simulations based
on the Langevin equation14 or on frustrated XY models.15–17

The Langevin simulations confirm the second phase scenario
without a slush phase, and the existence of a multicritical
point on the melting line being unclear. In the frustrated XY
model, the existence of a slush phase and of a multicritical
point are also controversial.18 In addition, Lidmar19 carried
out a Monte Carlo simulation based on a defect model where
he only obtains a first-order melting line and a glass transi-
tion line, but not a VS phase.

Analytic approaches are based mainly on the Ginzburg
Landau model,20 which is especially useful for YBCO, the
cage model,21 or the elasticity model of the vortex lattice22–28

with pinning. The Ginzburg Landau model with pinning was
analyzed recently by Li et al.,20 where they found a phase
diagram of the second scenario, with a single first-order
melting line between the VG and VL phases as well as be-
tween the BG and VG phases, without an additional slush
phase. The calculation was restricted to second order in the
disorder potential. In a recent paper they also carry out an
analysis of a possible glass transition line in the fluid phase
of the Ginzburg-Landau model where they found such a line
only under a certain disorder model29 by using replica
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symmetry-breaking techniques which we also use in this pa-
per. In Refs. 21–23 and 25–27 the phenomenological Linde-
mann criterion extended to include pinning was used in order
to calculate the BG-VG and BG-VL transition lines. In Refs.
24 and 28 defects were taken into account for determining
the transition lines. These approaches allow for an explana-
tion of both phase scenarios.

It is the purpose of this paper to investigate the above
phase transitions in a defect melting model which was re-
cently constructed for the study of defect-induced melting of
square �YBCO� and triangular �BSCCO� vortex lattices. The
model is a modification of a simpler version in Ref. 30 which
explained the melting transition of ordinary crystals by the
statistical mechanics of defects on a hypothetical square lat-
tice. This model was generalized for two-dimensional trian-
gular crystals in Ref. 31. The model is Gaussian in the elastic
strains and takes into account the defect degrees of freedom
by integer valued gauge fields. The melting line is found
from a lowest-order approximation, in which one identifies
the melting point with the intersection of the high-
temperature expansion of the free energy density dominated
by defect fluctuations with the low-temperature expansion
dominated by elastic fluctuations.

In this paper we shall consider, in addition, the effect of
weak disorder on the melting line near Hc2. This will lead to
a determination of the BG-VG and BG-VL transition line.
The most prominent example for a high-Tc superconductors
with such a melting line is YBCO but also superconductors

with a low critical temperature Tc such as BCS type super-
conductors or with a small anisotropy factor should have a
melting line near Hc2. For concrete calculations, we will re-
strict us in the following to the case of YBCO.

The paper will first review the model and derive an effec-
tive Hamiltonian for the vortex lattice in the low-temperature
solid phase and the high-temperature fluid phase without dis-
order. The model has two mutually representations. One can
be evaluated efficiently in the low-temperature phase, the
other in the high-temperature phase. The lowest approxima-
tion to the former contains only elastic fluctuations of the
vortex lattice without defects. The dual representation sums
over all integer-valued stress configurations, which to lowest
approximation are completely frozen out. The tranverse part
of the vortex fluctuations in the high-temperature approxima-
tion corresponds to noninteracting three-dimensional elastic
strings where the length in the z direction is discretized with
the dislocation length as the lattice spacing.32 It is well
known, that the lower critical dimension for an elastic string
in a random potential33 is 3. This dimension separates the
string system in higher dimensions with two phases �a disor-
der dominated low-temperature phase and a temperature
dominated high-temperature phase� from a single disorder
dominated phase in lower dimensions. We encounter a simi-
lar situation for the high temperature Hamiltonian in Sec. V.
This is the reason, why we shall have to consider higher-
order expansion terms.34

We shall first expand the free energy to lowest order in the
disorder potential in Sec. III. The result will be a unified
melting line. This line bends to lower magnetic fields in the
direction for decreasing temperatures due to the disorder, in
agreement with experiments. We obtain a remarkable reen-
trant behavior for this line. We do not obtain, however, a
good agreement with experiments at low magnetic fields. In
order to get better agreement with experiment and to deter-
mine also the glass transition line we further calculate, in the
solid low-temperature phase and in the fluid high-
temperature phase, the free energy nonperturbatively by us-
ing once the replica trick and further the variational approach
set up by Mézard and Parisi35 for random manifolds and spin
glasses.36 It is based on replacing the nonquadratic part of
the replicated Hamiltonian by quadratic one, with possible
mixing of replica fields. A transition line from a liquid to a
glass consists within the Mézard-Parisi approach on a bound-
ary in thermodynamical space from a replica symmetric qua-
dratic Hamiltonian to a Hamiltonian which breaks the sym-
metry in the replica fields. The best quadratic Hamiltonian in
the low-temperature solid phase is full replica symmetry bro-
ken corresponding to the BG phase. In the high-temperature
phase we find a region where the solution is full replica
symmetric corresponding to the VL phase. Furthermore, we
find a glassy region �VG� were the optimal quadratic Hamil-
tonian depends on the form of the disorder correlation func-
tion. Also the thermodynamical order of the transition de-
pends on this form. By carrying a comprehensive stability
analysis in Sec. VII we show that for the form of the glassy
state the kurtosis �1 defined in Eq. �85� as functional on the
positional disorder function is relevant. A Gaussian correla-
tion function has kurtosis �1=1. For high magnetic fields
near Hc2 we obtain the following.

FIG. 1. �Color online� Sketch of the two possible scenarios of
the phase diagram of YBCO or similar high-Tc superconductors
where the phase transition line lies near Hc2. The straight line cor-
responds to the BG-VG, BG-VL first-order lines with an extension
of the first-order line beyond the lower multicritical point �MCP�.
This is the first scenario discussed in the text. The dashed line
corresponds to a unified BG-VG, BG-VL first-order line without a
slush phase �VS� corresponding to the second scenario. The dashed-
dotted line is the glass transition line. The point GP is the intersec-
tion point of the glass transition line with the BG-VG, BG-VL line.
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For �1�1 we get a one-step replica symmetry broken
solution with a third-order phase transition line. This corre-
sponds to a correlation function with flatter tip and smaller
tail than the Gaussian correlation function. In the case �1

�1 we obtain a full replica symmetry broken solution. The
glass transition line is of first-order in this case. Disorder
correlation functions with smaller tips and larger tails than
the Gaussian correlation function belong to this case. For
lower magnetic fields we obtain that the border in the disor-
der function space of first- and third-order phase transitions
moves to lower kurtosis.

The VG-VL phase transition happens just at the depinning
temperature of a one-dimensional string in three dimensions
subjected to impurities.1 We calculate the free energies in the
low-temperature solid and in both high-temperature phases.
By the intersection criterion we obtain further the first-order
BG-VL and BG-VG transition line. We do not find an addi-
tional first-order line which separates the slush phase VS
from the vortex liquid VL. Summarizing, we obtain within
our approach only the second scenario. In the low-
temperature solid phase our analysis corresponds to the
analysis of Korshunov37 and Giamarchi and Doussal38 using
the Mézard-Parisi approach for the vortex lattice system in
random potentials. Because this system does not contain de-
fects only the Bragg glass phase can be described correctly.
Within our approach we include beside the disorder ones also
the defect degrees of freedom by integer valued fields which
are important to obtain the melting transition. This allows us
to compute the whole phase diagram for YBCO. In this sense
our theory is a direct generalization of the earlier vortex lat-
tice approaches in random potentials.

In addition to the results above, we give in Appendix B a
derivation of some stability theorems of saddle point solu-
tions similar to the theorems of Carlucci et al.39 derived
within the large N�-limit approach of Mézard and Parisi35

where N� are the number of components of the random
manifold. Because, in general, the number of components of
a given random manifold is rather small it is useful to gen-
eralize these theorems also to the variational approach of
Mezard-Parisi not existent in literature yet.

The paper is organized as follows. In Sec. II we state the
model of the vortex lattice with defects and impurity degrees
of freedoms. We derive in Sec. III the effective low and
high-temperature Hamiltonian of the vortex lattice without
impurities. With the help of these effective Hamiltonians we
calculate in Sec. IV the BG-VG, BG-VL transition line
within the second order perturbation theory in the disorder
potential. In Sec. V we introduce the Mézard-Parisi varia-
tional approach. Section VI calculates the saddle point solu-
tions of the self-energy matrices for the variational free en-
ergy within the Mézard-Parisi approach in the fluid high-
temperature phase. Section VII deals with the stability of the
calculated saddle-point solutions. Section VIII calculates the
saddle point solutions in the solid phase. In Sec. IX, we
discuss the phase diagram of the Mézard-Parisi approach for
YBCO and compare it with the experimental ones. Further-
more jump quantities are calculated in this section. Section X
contains a summary of the paper.

II. MODEL

The partition function used here for the vortex lattice
without disorder was proposed in Ref. 32. It is motivated by
similar melting models for two-dimensional square30 and
triangular31 crystals. Motivated by the fact that YBCO has a
square vortex lattice we restrict us here to a discussion of the
phase diagram of such type of lattice. The generalization to
triangular vortex lattices is straightforward32 resulting only
in a slight difference in numerical values. We briefly summa-
rize the important features of the model. The partition func-
tion of the disordered flux line lattice can be written in the
canonical form as a functional integral

Zfl =� D�ui,�im,ni�e−�H0�ui,�im,ni�+Hdis�ui��/kBT, �1�

where

H0�ui,�im,ni�
kBT

= �
x

1

2�
��

i�j

�ij
2 +

1

2�
i

�ii
2 − ��

i

�̄i

�i
�ii	

�
c11 − 2c66

4�c11 − c66�
��

i

�̄i

�i
�ii	 + �

i

�i3
c66

c44
�i3


− 2�i�
x
��

i,m
�im�mui + �

i	j

�ijNij	 �2�

is the canonical representation of elastic and plastic energies
summed over the lattice sites x of a three-dimensional lattice,
and �ij where �21��12 are stress fields which are canoni-
cally conjugate to the distortion fields.30 The subscripts i , j
have the values 1,2, and l ,m ,n run from 1 to 3. The param-
eter � is proportional to the inverse temperature �
�a2a3c66/kBT�2��2, where a is the transverse distance of
neighboring vortex lines, and a3 is the persistence length
along the dislocation lines introduced in Ref. 32. Note that a3
is assumed to be independent on the disorder potential on the
average. The volume of the fundamental cell v is equal to
a2a3 for the square lattice.

The matrix Nij�x� in Eq. �3� is a discrete-valued local
defect matrix composed of integer-valued defect gauge fields
n1 ,n2. It depends on the lattice symmetry.31 For a square
vortex lattice it is given by

Nij = �n1 n2

n2 − n1
	 . �3�

The lattice derivatives �m and their conjugate counterparts

�̄m are the lattice differences for a cubic three-dimensional
crystal. In the xy plane they are defined by

�i f�x� � �f�x� − f�x − aei��/a ,

�̄i f�x� � �f�x + aei� − f�x��/a �4�

for a lattice function f�x�, where ei are unit vectors to the
nearest neighbors in the plane. The corresponding derivatives
in the z direction are defined similarly. We have suppressed
the spatial arguments of the elasticity parameters, which are
functional matrices cij�x ,x���cij�x−x��. Their precise forms
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were first calculated by Brandt40 and generalized in Ref. 32
by taking into account thermal softening relevant for
BSCCO.

The second term in the exponent of Eq. �1�

Hdis�ui� = �
x

V�x + u� , �5�

accounts for disorder. The measure of the functional integral
is

� D�ui,�im,ni� = det� c66

4�c11 − c66�

1/2

det� 1

2��

5/2

� �

x
�


i	m
�

−





d�im
�

j

�
nj�x�=−



 

���

−



 du

a 
� . �6�

The disorder potential V�x� due to pinning is assumed to
possess the Gaussian short-scale correlation function

V�x�V�x�� = ��xi − xi���x3,x3�
= d�T�a3

�0
4
ab

3

�̃ab
4

K�xi − xi���x3,x3�
,

�7�

where K�xi−xi���1/ �
��2 for �x−x���
�, and is zero else-
where, and �0 is the magnetic flux quantum �0=hc /2e. The
parameter 
� is the correlation length of the impurity poten-
tial which is similar to the coherence length 
ab in the xy

plane. �̃ab=�ab / �1−b� is the screened penetration depth in
the xy plane.23 The temperature dependence of the parameter
d�T� is mainly due to the temperature dependence of the
correlation length and the pinning mechanism where we dis-
cuss in the following the �Tc-pinning or �l-pinning
mechanisms.1

Both pinning mechanisms are extensively discussed in the
review of Blatter et al.1 We just mention that the �Tc-pinning
mechanism has its origin in fluctuations in Tc in the
Ginzburg-Landau free energy and the �l-pinning mechanism
is due to fluctuations in the mean free path coming from
fluctuations in the impurity density. The parameter d�T� is
different for both pinning mechanisms1

d�T� = d0�1 − T/TC�−1/2 for �Tc pinning, �8�

d�T� = d0�1 − T/TC�3/2 for �l pinning. �9�

The correlation functions for both mechanisms can be de-
rived in Fourier space by taking into account the order pa-
rameter shape of a single vortex.1 This is of long range,
resulting in a divergence of the Fourier transformed disorder

correlation function K̂�q� at q=0 for the �Tc-pinning mecha-
nism. This divergence is regulated for a vortex in a lattice by
omitting the regime q�1/a because the order parameter of
the superposition of noncutoff single vortex order parameters
on the lattice would otherwise scale with the system size. We
shall see below in Sec. VII that this is the momentum region
of the disorder correlation function which determines mainly

the form of the free energy in the fluid phase near the glass
transition line and thus the order of the glass transition. Other
correlation mechanism as for example screening of impuri-
ties are not taken into account in these single vortex disorder
correlation functions. The screening of impurity potentials is
important because the nearest neighbor distance between im-
purities is typically of the same size as the coherence length

ab.1

All this leads us to use in the calculations to follow an
effective disorder correlation function with the Fourier trans-
form

K̂�q� = 2� exp�− 
�2qi
2/2� �10�

leading also to an exponentially vanishing of the disorder
correlation function in real space. The advantage for using
this effective correlation function is that one gets simple ana-
lytical formulas in the calculations. The parameter 
� in Eq.
�10� is an effective correlation length which can also include,
for example, screening effects of the impurities in the
�l-pinning case. The approximation �10� leads to well known
approximations for the temperature softening of quantities
which use the disorder correlation functions as an input as
for example the temperature softening of the coherently
time-averaged pinning energies.1

In the following sections, we come back to the more gen-
eral case without the assumption �10� for the disorder corre-
lation function especially in Sec. VII where we show that the
order of the glass transition line depends strongly on the
form of the correlation function. The free high-temperature
energy formulas �16�, �55�, �64�, �75�, and �100�, are valid
irrespective of the form of the disorder correlation function.
In the low-temperature regime, the form of the energy ex-
pression cannot be find out for general correlation functions.
In this case we restrict us to the effective disorder potential
�10�, where, in contrast to the glass transition line, the final
energy expression should not change much when changing
the disorder potential.

III. PARTITION FUNCTION OF SOLID AND FLUID
PHASES FOR V=0

In this section we determine the partition function of the
low temperature phase �solid phase� and the high-
temperature phase �fluid phase� for V=0. This was done be-
fore in Ref. 32. Here, we give similar expressions which are
appropriate for calculating correlation functions of vortex
displacements useful for a discussion of the disorder prob-
lem.

For the low-temperature limit of the partition function in
Eq. �3� we first integrate out the stress fields �ij. Then the
low-temperature part of the partition function corresponds to
the defect configuration ni=0. This results in a fluctuating
part of the form

Zfl = N

x,i
��

−



 ui�x�
a 
exp�−

1

kBT
H0�ui�
 �11�

with the low-temperature Hamiltonian
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H0�ui� = HT→0�ui�

=
v
2�

x
��̄iui��c11 − 2c66���̄iui� +

1

2
��iuj + � jui�

�c66��iuj + � jui� + ��3ui�c44��3ui�

=
v
2�

x
��iuL�c11��iuL� + ��3uL�c44��3uL�

+ ��iuT�c66��iuT� + ��3uT�c44��3uT� �12�

and the normalization factor N=1. Here uL=PLu is the lon-
gitudinal part of the displacements where the projector PL is

given by �PL� jk�−�1/���i
2��� j � �1/���i

2���̄k. The transver-
sal part of the displacements is then given by uT=PTu�u
−uL. The corrections to the fluctuating part of the free energy
−ln�Zfl� /kBT in the low-temperature expansion is exponen-
tially vanishing with an exponent proportional to −1/kBT.30

For the high-temperature limit of the partition function �1�
we carry out first the sum over the defect fields n1 ,n2. By a
redefinition of the stress fields �g= ��11+�22� and �u= ��11

−�22� we obtain that �12 and �u can only have integer num-
bers. The lowest-order terms in the high-temperature expan-
sion of the partition function �1� for V=0 corresponds to
�12=�u=0. After carrying out the integrals over the stress
fields �g and �i3 we obtain a partition function of the form
�11� with

H0�ui� = HT→
�ui�

=
v
2�

x
��̄iui��c11 − c66���̄iui� + ��3ui�c44��3ui�

=
v
2�

x
��iuL��c11 − c66���iuL�

+ ��3uL�c44��3uL� + ��3uT�c44��3uT� �13�

and N=1/ �4���N. Similar as in the case of the low-
temperature expansion one can show that corrections to the
fluctuating part of the free energy −ln�Zfl� /kBT due to non-
zero terms in the stress fields �12�0 or �u�0 in the high-
temperature expansion are exponentially vanishing with an
exponent proportional to −kBT.30

Expression �13� shows the remarkable fact that the trans-
verse part of the high-temperature Hamiltonian �13� is effec-
tively one dimensional with a nonzero dispersion only in the
z direction. This results in diverging thermal fluctuations in
uT. In contrast to this we obtain for that part of the Hamil-
tonian �13� corresponding to longitudinal fluctuations an ef-
fectively three-dimensional Hamiltonian as in the low-
temperature case �12� with finite temperature fluctuations.
This can be better understood by the fact that only the trans-
verse fluctuating part of the vortices couples to the defect
fields while the longitudinal part is still not effected by
them.32,41,42 The reason is that the flux lines in a vortex lat-
tice cannot be broken which means that defect lines are con-
fined in the plane spanned by their Burger’s vector and the
magnetic field. In conventional crystals we do not have such
a constrained.30 It then clear that the large thermal fluctua-

tions of the transverse part results in a destruction of the
long-range order in the sense that Bragg peaks are vanishing
in the fluid phase.

Summarizing, with the help of the stress representation
�2� we obtained the lowest-order Hamiltonians for the solid
�12� and the fluid phase �13�. We saw further that the higher-
order corrections to this lowest-order results corresponds to
integer-valued defect contributions ni�0 in the solid phase,
signals for the liquid, and integer valued stress contributions
�12�0 or �u�0 in the fluid phase, signals typical for a
solid. In the following we restrict us to the lowest-order
Hamiltonians �12� for the solid phase and Eq. �13� for the
fluid phase to discuss disorder corrections in both phases.

IV. QUADRATIC APPROXIMATION IN DISORDER
STRENGTH

To lowest nonvanishing order in the disorder potential V
we obtain for the first nonvanishing term in the free energy
F=−kBT ln�Z� a term proportional V2 given by

Ffl,V2 = −
1

2kBT��
x,x�

�V�x + u�V�x� + u��

− �V�x + u���V�x� + u��	 . �14�

Note that the dimension of � is �kBT�2 �7�.
We restrict us to the diagonal summands x=x� where non-

diagonal terms results in corrections only to the low-
temperature expansion of Ffl,V2 being a factor ��u2�
+
2�1/2 /a smaller than the diagonal terms. The calculation
can be most easily done by working in the Fourier represen-
tation

By using Eqs. �12� and �13� we obtain for the low- and
high-temperature part of the free energy

Ffl,V2
T→0 =

− N

2�kBT� � d3q

�2��3V�q�V�− q�

� �1 − exp�− q · �u · u�T→0 · q�� , �15�

Ffl,V2
T→
 =

− N

2�kBT� � d3q

�2��3V�q�V�− q� . �16�

For the determination of the melting line only the second
term in the bracket of Ffl,V2

T→0 is relevant because of a cancel-
lation when determining the intersection of the high and low-
temperature expansions of the free energy.

After carrying out the momentum integral and disorder
averaging we obtain for this term NDkBT /2 with the disorder
constant D defined by the help of the generalized disorder
constants

D0�2�u2�� = d�T�
a3

�kBT�2

�0
4
ab

3

�̃ab
4

� d2q

�2��2 K̂�q�e−�q2/2��u2�,

�17�
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D
�q� = d�T�
a3

�kBT�2

�0
4
ab

3

�̃ab
4

K̂2�0�
2� � d

d�q2/2�
K̂�0� ,

�18�

where D�2�u2��=D0�2�u2��. Note that we have D�0�
=D
�0�=D0�0� for the Gaussian correlation function �10�.
For this correlation function, we obtain

D�2�u2�� � d�T�
a3

�kBT�2

�0
4
ab

�̃ab
4


ab
2

��
��2 + �u2��
. �19�

Furthermore, we define the corresponding disorder correla-
tion lengths by

1


0�
2 =

1

�2�� � d2qK̂�q�� K̂�0� , �20�

1



�
2 = K̂�0�� d

d�q2/2�
K̂�0� �21�

with 
�2=

�
2=
0�

2 for the Gaussian correlation function �10�.
In the following, we carry out the calculation of the free
energies explicitly for the Gaussian correlation function
where we use D and 
� without indices. As mentioned in the
Introduction our final results in this section and also for the
fluid phase in the Mézard-Parisi approach are more general
valid without restrictions on the disorder correlation func-
tions.

By recalling the results for Zfl without disorder32 with the
low-temperature Hamiltonian �12� we obtain

Zfl,0
T→0 = �a3

a
	2N 1

det��2���c44/c66�
e−N�i��1,6�lii, �22�

and for the high-temperature part �13�

Zfl,0
T→
 = �a3

a
	2N 1

2N

1

det��2���2c44/c66�
e−Nh �23�

with

lii =
1

2

1

VBZ
�

BZ
d2kdk3 ln� ciia3

2

c44
Kj

*Kj + a3
2K3

*K3
 ,

h =
1

2

1

VBZ
�

BZ
d2kdk3 ln�1 +

c11 − c66

c44

Kj
*Kj

K3
*K3


 , �24�

where Km is the eigenvalue of i�m. The k ,k3 integrations in
Eq. �22� run over the Brioullin zone of the vortex lattice of
volume VBZ= �2��3 /v. According to the intersection criterion
we equate Eqs. �22� and �23� and obtain the equation for the
temperature32

kBT

v

1

det1/N�c66�
=

e−�l11+l66�+h−D/2

�
. �25�

The solution determines the first-order BG-VG, BG-VL tran-
sition line with disorder. The disorder enters the equation via
the disorder function D. Analytic expressions can be ob-

tained by taking into account that c66,c44�c11. This implies
that we can neglect h and l11 in Eq. �22�.

Brandt40 determined the elastic constants for two different
regimes b�0.2 and b�0.5 where b=B /Hc2�T�. We shall see
below that for YBCO we have to determine Eq. �25� in both
regimes to find the entire relevant part of the BG-VG and
BG-VL line. The most important part, however, lies in the
regime b�0.5 which will now be treated explicitly. In this
regime the elastic moduli c44 and c66 are given by40

c66 = 0.71�1 − b�
B�0

64�2�̃ab
2

, �26�

c44 =
B2

4��1 + �̃c
2k2 + �̃ab

2 k3
2�

+
B�0

16�2�̃c
2

. �27�

�̃=� / �1−b�1/2 is the screened penetration depth calculated
from the penetration depth �. In the xy direction, we denote
it by �ab, and in the z direction by �c. For YBCO we have43

��T�=��0��1− �T /Tc��−1/3, 
ab�T�=
ab�0��1− �T /Tc��−1/2.
For later use, we define the Lindemann parameter32

cL
2 =

a3
2

a2v

kBT

VBZ
�

BZ
d2kdk3

1

c44
�

i=1,6

1

ciia3
2

c44
Kj

*Kj + a3
2K3

*K3

�
kBTm

4�c44�KBZ

�2
,0	c66�KBZ

�2
,0	
1/2

a3

�28�

given by cL
2 = �u2�T→0 /a2 where the average is taken with

respect to the low-temperature Hamiltonian �12� representing
the elastic energy of the vortex lattice. KBZ is the boundary
of the circular Brillouin zone KBZ

2 =4�B /�0. For YBCO, we
obtain32 cL�0.18 on the melting line without disorder in
accordance with typical Lindemann numbers for crystals.30

We note that this number does not depend on the magnetic
field which specifies the point on the melting line. In the
following we denote c44�KBZ/�2,0� and c66�KBZ/�2,0� in
final expressions as for example in Eq. �28� by the abbrevia-
tions c44 and c66.

From Eq. �25� we can easily calculate the BG-VG,
VG-VL line. By taking into account cL

2a2�
�2 which results
in D�2�u2���D�0� for YBCO we obtain for the unified BG-
VG, VG-VL line

Bm �
�0

5�1 − b�3

�kBT�2�ab
2 �c

2

3.9 � 10−5

�4 e−D0�0�. �29�

Here we used a=��0 /�B and the typical defect length a3
�4a�2�ab /�c

���1−b�1/2,32 which results in the disorder
function

D0�0� � �d�T�

ab

2


0�
2	3.2�1 − b�3/2

�kBT�2

�0
4
ab

�ab
3 �c

�0
1/2

B1/2 . �30�

Note that Eq. �29� is valid irrespective of the disorder corre-
lation function.
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Parameter values for optimally doped YBCO were given
by Ref. 43 as �ab�0��1186 Å, 
ab�0��15 Å, Tc=92.7 K.
The CuO2 double layer spacing is as=12 Å, and the aniso-
tropy parameter ���c /�ab is approximately equal to 5.
From Eq. �30� we obtain a unified BG-VG, BG-VL line
which scales as Bm�e−AY/�Bm. Here AY is some constant in-
dependent of Bm. This results in a BG-VG, BG-VL line
showing a reentrant behavior. In Fig. 2 we show Bm with �Tc
pinning on the upper figure and �l pinning on the lower
figure for various values d0. d0 of the straight line curves is
chosen such that we have approximately the best experimen-
tal curve fitting to the BG-VG, BG-VL curve of Bouquet et
al.6 shown by the dashed line with square points. We obtain
in fact a reentrant behavior of the BG-VG, BG-VL line. This
is in accordance with the quadratic in disorder calculation for
YBCO within the Ginzburg-Landau approach by Li et al.20 A
reentrant behavior of the BG-VG line was also seen in the
experiments of Pal et al.7 and Stamopoulos et al.44 We must
clarify that these experiments are in contradiction to the ma-
jority of experiments which do not see any reentrant behav-
ior of the BG-VG line �see, for example, Refs. 5, 6, 12, 45,
and 46�. The discrepancy in the shape of the BG-VG transi-
tion line lies presumably in different physical setting of these
experiments to the standard ones showing no reentrant be-

havior. The experiment of Pal et al. uses a crystal with a low
density of twins which could lead to deviations in the shape
of the BG-VG line.47 The experiments of Stamopoulos et al.
measures the ac permeabilities which drives the crystal out
of thermodynamical equilibrium.

The solid lines with the stars at the left hand side of Fig.
2 are calculated by solving Eq. �25� restricted to the trans-
verse fluctuations with the elastic moduli in the range b
�0.2 given in Refs. 32 and 40. To calculate the transition
curves with the elastic moduli b�0.2 as well is rather im-
portant because the solid curves in Fig. 2 calculated with
moduli b�0.5 reaches immediately the range b�0.2. Note
that the solid curves and the solid curves with stars are cal-
culated by using the same disorder constant d0 of values
d0
ab

2 /
�2=8.5�10−8 ��Tc-pinning� and d0
ab
2 /
�2=1.01

�10−6 ��l pinning�.
We obtain from Fig. 2 that the curves of the �l-pinning

mechanism fits much better to the experimentally given BG-
VG, BG-VL line than the �Tc-pinning curves. This is in ac-
cordance to the observation in Ref. 46. Whatever the correct
experimental BG-VG, BG-VL line shows a reentrant behav-
ior or not, it is not satisfactory within our approach which is
restricted to second order in the impurity potential, that the
solid curves with the stars �b�0.2� goes to zero at T�Tc.
That this is true can be best seen in a logarithmic plot of the
BG-VG, BG-VL transition line Bm �29� which is shown in
Fig. 3. The straight line and the straight line with the stars
correspond to the curves of the �l-pinning mechanism shown
in the lower part in Fig. 2. The dashed curve with the triangle

FIG. 2. �Color online� Unified BG-VG, VG-VL transition line
Bm�T� �29� as a function of the temperature. The curves in the upper
figure are calculated for �Tc-pinning mechanism �8�, the lower for
�l-pinning mechanism �9�. The parameter d0 of the solid curves are
chosen such that we get a good fitting to the experimentally deter-
mined VG-VL line by Bouquet et al. �Ref. 6� �dashed curve with
square points� for both pinning mechanisms. The dotted curves are
variations from these best fitting curves given by disorder param-
eters d0

±= �1±1/2�d0, where d0 are the disorder parameters of the
solid curves of both mechanisms given by d0
ab

2 /
�2=8.5�10−8 �
�Tc pinning� and d0
ab

2 /
�2=1.01�10−6 ��l pinning�. The solid
curves with the stars are calculated by solving Eq. �25� with elastic
moduli in the range b�0.2 with d0 given above.

FIG. 3. �Color online� Logarithmic plot of the BG-VG, BG-VL
first-order line Bm�T� �29�. The experimental points �triangles� cor-
respond to the experiment of Pal et al. �Ref. 7� showing a reentrant
BG-VG line. The theoretical determined solid curves are derived
from Eq. �29�. The pure solid curve �b�0.5� and the solid curve
with the stars �b�0.2� correspond to the lower curves in Fig. 2 ��l
pinning�. The theoretical curves are calculated with the disorder
parameter d0
ab

2 /
�2=1.01�10−6 of Fig. 2.
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points is the BG-VG, BG-VL line measured by Pal et al. in
Ref. 7 mentioned above. This curve shows a reentrant behav-
ior. Both curves are in disagreement at small magnetic fields.
Thus, we should go beyond second order in the disorder
strength to get better accordance with the experiments. This
will be done in the following sections.

V. REPLICA VARIATIONAL METHOD OF MÉZARD
AND PARISI

In order to go beyond second-order perturbation theory in
the impurity potential, we use the well known replica trick48

ln Z=limn→0�1/n��Zn−1�, where the overline means disorder
averaging and

Zn = �

�
� D�ui

�,�im
� ,ni

��
e−���H0�ui
�,�im

� ,ni
��+Hdis�ui

���/kBT

= �

�
� D�ui

�,�im
� ,ni

��
e−��H0�ui
�,�im

� ,ni
��/kBT

� e−��,�Hdis� �ui
�,ui

��/kBT, �31�

with

Hdis� �ui
�,ui

�� =
− 1

2kBT
�
x,x�

�x3,x3�
��xi + ui

��x� − xi� − ui
��x��� .

�32�

Here, the extra kBT term in the denominator in Eq. �32�
comes from the disorder average.

The average Zn cannot be calculated without further ap-
proximations. In the following we use the low- and high-
temperature approximations of Sec. III for the result after the
integration over the stress fields �ij

� and defect fields ni
� in Zn

�31�. Thus, we have to calculate partition functions of the
following form:

Zn = �

�

N

x,i
��

−



 ui
��x�
a 

e−H/kBT, �33�

with the total Hamiltonian

H = �
�

H0�ui
�� + �

�,�
Hdis� �ui

�,ui
�� , �34�

where H0 is given by Eq. �12� in the solid phase and by Eq.
�13� in the fluid phase. Both are complicated expressions
which will need further approximations. The complications
comes from the large replica mixing interaction part Hdis� in
Eq. �31�. In the following, we shall use a variational replica
method which was first given by Mézard and Parisi.35 With
the help of this method also used before for random spin
models36 they were able to calculate the glass transitions of
isotropic random manifold systems. These systems are de-
scribed by the Hamiltonian

HRM =� dd−N�x�− u�x��� · ��u�x� + V�u�� . �35�

Here u is an N�-dimensional vector describing an
N�-dimensional manifold embedded in d-dimensional space.

V is an impurity potential with a certain correlation function.
When comparing the solid Hamiltonian �12� with the random
manifold Hamiltonian �35� and further by setting the corre-
lation length 
�=0 in Eq. �19� we obtain that the transversal
part of Eq. �12� looks similar to a random manifold with d
−N�=3 in d=5 dimensions35 where the impurity correlation
potential is �-like correlated. In the fluid phase described by
the high-temperature Hamiltonian �13� we obtain for the
transversal part a random manifold with d−N�=1 and d=3
well known as a string embedded in three dimensions35. The
difference to the random manifold system comes then mainly
from the discretization in the third direction by the disloca-
tion length a3 relevant in the fluid phase as will be shown
below. It is well known that there exist for N��2 in a d
=N�+1 random manifold system corresponding to a string in
d dimensions a roughening transition separating a low-
temperature disorder dominated phase from a high-
temperature thermal phase.33 For N��2 this phase transition
is not existent and the system is dominated mainly by disor-
der fluctuations. It is now believed by computer simulations
that at the critical dimension N�=2 corresponding to a string
in three dimensions with a �-correlated impurity potential the
roughening transition of the string system is described by a
crossover.33 Below we show that this roughening transition
corresponds to the glass transition of the vortex lattice. That
the vortex lattice at d=3 is in fact at the lower critical di-
mension for a glass transition was mentioned before for an
XY model of the gauge class type.49 This XY model as simi-
lar ones with other disorder potentials mentioned in the In-
troduction are toy models for a disordered vortex lattice in
superconductors.

The Mézard-Parisi theory consists in replacing the non-
quadratic part of the Hamiltonian as quadratic with a pos-
sible mixing of replica fields. By using the Bogoliubov varia-
tional principle we can find the best matrix of this quadratic
form so that the free energy of the variational Hamiltonian is
as close as possible to the actual free energy of the system.
This means that we have to search the minimum of the varia-
tional free energy

Fvar = Ftrial + �H − Htrial�trial �36�

with the harmonic trial Hamiltonian

Htrial =
v
2 �

x,x�
�
�,�

u��x�G��
−1 �x − x��u��x�� . �37�

Here �¯�trial stands for the averaging with respect to the
Gibb’s measure of the trial Hamiltonian Htrial, and Ftrial de-
notes the associated free energy. In Sec. IX, we shall use the
intersection criterion with Fvar for the solid and fluid phase to
determine the BG-VG, BG-VL transition line. By using Eq.
�37�, we obtain the free energy associated with Eq. �33�:

Fvar = − kBT
N

2VBZ
�

BZ
d2kdk3�ln�det�2�kBT

va2 G	

+ Tr��G−1�k� − G0

−1�k�I�G�k��	 − kBT ln�N�

+ ��
�,�

Hdis� �ui
�,ui

���
trial

, �38�
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where we use bold symbols for vectors and matrices in the
vortex displacement plane. The symbol I denotes the unit
matrix in replica space. The trace Tr�¯� runs over the replica
indices and vortex displacement indices. In principle, we can
obtain a general expression for the disorder term given by
the last term in Eq. �38�. Because one should use different
approximations for the solid phase and the liquid phase, we
shall give directly approximations for this term in both
phases at the beginning of the following sections.

It will be clear soon for the solid as well as the fluid phase
that G�� can be chosen to have the form

G��
−1 = G0

−1��� + ���I , �39�

where I is the two-dimensional unit matrix in the vortex
displacement plane. To find a local minimum of Eq. �38� in
the space of all symmetric self-energy matrices ��� was sim-
plified considerably by Parisi in the case of spin glasses.
There he restricted the search of the minimum for Eq. �36� to
the case of some sort of closed algebra known as the algebra
of Parisi matrices.36,50 In Appendix B we prove some stabil-
ity theorems for stationary points of Fvar �38�. These are
summarized at the end of Appendix B 2. The restriction of
the minimum search to self-energy matrices in the Parisi al-
gebra is justified among others by the fact that a local mini-
mum within the Parisi-algebra is automatically a local mini-
mum in the whole self-energy space without the restriction to
the Parisi algebra. This is shown in Appendix B.

In general the minimum self-energy matrix ��� is not
symmetric under the interchange of replica indices which
means that the local minimum ��� of Fvar �38� is not unique.
This is typical for glasses where the minimum of the free
energy is degenerate.36 This degeneracy corresponds to the
degeneracy of the stable states in glasses with high energy
barriers between them. These are responsible for the irrevers-
ibility phenomena beyond the glass transition lines in high-
temperature superconductors mentioned in the Introduction.

VI. FLUID PHASE

In this section, we derive the variational free energy Fvar
in the liquid phase. We obtain

��
�,�

Hdis� �ui
�,ui

���
trial

� −
N

2kBT
�
�,�

1

�2��2 � d2q�̂�q�

�e−�1/2�q·�G���0�+G���0�−G���0�−G���0��q

� − kBT
N

2 �
�,�

D�2B��� �40�

with

B�� =
kBT

2v
tr�G���0� + G���0� − G���0� − G���0�� ,

�41�

where �̂�q� is the two-dimensional Fourier transform of
��x�. The trace tr�¯� runs over the vortex displacement in-

dices. In Eq. �40� we restricted us in the double sum over
x ,x� on the diagonal summands x=x�. The reason for the
validity of this restriction comes from the observation that
due to Eq. �13� the nondiagonal summands are given by

���
�,�

Hdis� �ui
�,ui

���
trial



x�x�

= −
1

2kBT
�

x�x�

�x3,x3��
�,�

1

�2��2 � d2q�̂�q�eiqi�xi−xi��

� e−�1/2�q·�G��
T �0�+G��

T �0�−G��
T �x−x��−G��

T �x−x���q

� e−�1/2�q·�G��
L �0�+G��

L �0�−G��
L �x−x��−G��

L �x−x���q, �42�

where GL=PLG ·PL and GT=PT ·G ·PT are the longitudinal
and transversal components of the Green function. By using
Eq. �13� the second exponent in Eq. �42� corresponding to
the transversal part of the vortex fluctuations can be tran-
formed to

−
1

2
��qT�2�0��G��

T �0� + G��
T �0��

− �qT�2�x − x���G��
T �0� + G��

T �0��� , �43�

where G��
L,T�x�=Tr�G��

L,T�x��. Due to the large thermal effec-
tive one-dimensional transverse fluctuations we have either
G��

T �0�→
, where G��
T �0�−G��

T �0� is finite and � ,� is arbi-
trary or G��

T �0�→
 and G��
T �0� is finite for ��� where in

both cases the self-energy matrix is restricted to the Parisi
algebra. This is shown in Ref. 35. From this we obtain the
vanishing of Eq. �42�.

First, we take the variation of the free energy �38� with
respect to the diagonal Green function matrix elements G��.
This results in

�
�

��� = 0. �44�

That the minimum of Fvar should be found in the symmetric
self-energy matrices with the constraint �44� is suggestive
because Eq. �44� justifies that the Hamiltonian �37� has the
global translational symmetry u��x�→u��x�+ t for any vec-
tor t, which has also the disorder Hamiltonian �32�.

In the most general case within the Parisi algebra, the
form of the self-energy ��� with the constraint �44� can be
described by a continuous function ��s� with 0�s�1.35 In
that case the trial free energy takes the form

�fvar �
1

N
lim
n→0

1

n
�Fvar�B���� − Fvar�0��

=
kBT

2
�

0

1

ds� 1

s2�
0

��s�

d��
d

d�
g��� + D0�2B���s���


�45�

PHASE DIAGRAM OF VORTICES IN HIGH-Tc… PHYSICAL REVIEW B 75, 144513 �2007�

144513-9



fvar�0� =
1

N
limn→0

1

n
Fvar�0�

= − kBT� 1

N
ln N +

1

2� 1

VBZ
�

BZ
d2kdk3

ln�det�2�kBT

va2 G0	
 + D0�0��	 , �46�

where

g��� =
1

VBZ
�

BZ
d2kdk3Tr��G0

−1 + �I�−1� . �47�

The gap function ��s� and the self-energy function ��s� cor-
responding to the self-energy matrix ��� in the noncontinu-
ous case is related by

��s� = �
0

s

ds�s�
d��s��

ds�
. �48�

B���m�� corresponding to B�� �41� in the continuous case is
given by

B���s�� =
kBT

v

1

s
g���s�� −

kBT

v
�

s

1

ds�
1

s�2g���s��� . �49�

In order to find the local minimum of fvar we have to take the
derivative of Eq. �45� with respect to ��m�. This results in

��s� = − 2
kBT

v
D0��2B���s��� , �50�

where D��x� is the derivative �d /dx�D�x�. We point out that
Eq. �50� shows that

��s� � 0, ��s� � 0. �51�

In the following, we discuss solutions of this equation in the
case that ��s� does not break the replica symmetry, is one-
step replica symmetry breaking or continuous replica sym-
metry breaking.

A. Symmetric solution

We now solve Eq. �50� for ��s� with an ansatz which does
not break any replica symmetry. The ansatz for ��s� in this
case is

��s� = �0. �52�

By using Eqs. �48� and �50� we obtain

��s� = 0, �53�

��s� = 0. �54�

From this we obtain that B���m��→
 for infinite area of the
system. This results in

�fvar = 0. �55�

B. One-Step replica symmetry breaking

The simplest possible extension of the replica symmetric
case above consists of a one-step replica symmetric solution
given by

��s� = ��0 for 0 � s � m1,

�1 for m1 � s � 1.
� �56�

By using this ansatz in Eq. �45� we obtain

�fvar = −
kBT

4
�1 −

1

m1
	

� �� �̃1

1 + �̃1/4
	1/2

− 4 arcsinh� �̃1
1/2

2
	


+
kBT

2
�1 − m1�D�2

kBT

v
g��1�	 , �57�

where we used �0=0 which can be derived from Eqs. �50�
and �48� similar to the replica symmetric case. Furthermore,

we used the abbreviation �1=m1��1−�0�=m1�1 and �̃i

��ia3
2 /c44. We restricted us in the calculation of �fvar to

the transversal components of G0 which effectively
means that we set G0

L=0 in the calculation g��� in Eq. �47�.
The longitudinal term in g��� is a factor a2c44/a3

2c11

= �a2c44/a3
2c66��c66/c11���� /4��c66/c11� smaller which is

justified by c66�c11 irrespective of the value of �̃1.40 For the
derivation of �fvar we used for g��� in Eq. �47�

g��� �
a3

2

c44

1

VBZ
�

BZ
d2kdk3

1

�2 − 2 cos�k3a3�� + �̃

=
1

2

1

�̃1/2�1 + �̃/4�1/2

a3
2

c44
. �58�

We now determine the stationary point of �fvar �57�. By
setting the derivative of �fvar with respect to �1 and m1
equal to zero we obtain two equations for the stationary val-
ues of �1 and m1. These are given by

1

8
�1 −

1

m1
	�̃1

−1/2 =
1

4
�1 − m1�

kBT

�̃1
3/2

a3

c44a
2D��2

kBT

v
g��1�	 ,

�59�

1

4

1

m1
2�4 arcsinh� �̃1

1/2

2
	 − � �̃1

1 + �̃1/4
	1/2


=
1

2
D�2

kBT

v
g��1�	 . �60�

In the following solution of �59� and �60� we use that �̃1
�1 in the interesting range near the glass transition line

which we expect at �̃1=0. This will be shown below. These
two equations can be solved exactly in this limit resulting in
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m1
3 = �D�0�A�−1, �61�

�̃1
1/2 = 2A−1� 1

m1
− 1	 , �62�

where constant A similar to the Lindemann constant written
for general disorder correlation functions �see the definitions
�17�–�21��

A0,
 =
4

kBT

c44a
2
0,
�2

a3
�63�

with A�A0=A
 for the Gaussian correlation function �10�.
Here, we mention that A�b /2�cL

2 �1 near the melting line
without disorder V=0.32 This is the magnetic-temperature
regime, we are interested in. With the help of Eqs. �57�, �61�,
and �62� we can calculate the free energy �fvar getting

�fvar =
kBT

2
D
�0��1 − �D
�0�A
�−1/3�3 �64�

for D
�0�A
�1 in the regime ��D�0�A�1/3−1� /A�1 for the
Gaussian correlation function �10�. As suggested by the in-
dices, expression �64� is more general valid irrespective of
the disorder correlation potential in the restricted regime
��D
�0�A�


1/3−1��1 �see the discussion above Eq. �90��.
Next, we must calculate also the replica symmetry-breaking
solutions of the free energy �45� having more than one dis-
crete step. To solve the minimum problem in this case is
rather difficult. Therefore, we restrict us first to the determi-
nation of the continuous symmetry-breaking solutions.

C. Continuous symmetry breaking

Finally, we look for solutions ��s� of Eq. �50� which are
continuous. In this case, we can solve the stationary equation
by a partial integration of B���s�� in Eq. �49� resulting in38

B���s�� = B���sc�� −
kBT

v
�

s

sc

ds����s��g����s��� . �65�

Here we assumed that ��s�=const for s�sc. By taking two
derivatives of Eq. �50� we obtain that ��s� fulfills the equa-
tion

���s� = − 2���s���s�3/2 �kBT�1/2


�D1/2�0�
1

v1/2g����s�� . �66�

Similar as in the case of the one-step symmetry-breaking
solution we can neglect the longitudinal component in g���
�47� being a factor c66/c11�1 smaller than the transverse
term in g��� �see the discussion below Eq. �57��. We point
out that this is true irrespective of the value of �. Using Eq.
�58� we obtain two solutions of Eq. �66� by taking once more
the derivative with respect to s. This results in the following
solutions of Eq. �66�:

���s� = 0, �67�

2� a3
2

c44
	��s�s =

�̃�s��1 +
1

4
�̃�s�
�1 +

5

4
�̃�s�


1 +
2

3
�̃�s� +

1

6
�̃2�s�

. �68�

By inserting Eq. �66� into Eq. �68� we obtain for the second
type of solutions

2s�D�0�A�1/3 =
�1 +

5

4
�̃�s�
5/3

1 +
2

3
�̃�s� +

1

6
�̃2�s�

. �69�

Finally, we determine the constant sc defined in �65� where
��s�=constant for sc�s�1. By using Eq. �50� we obtain

��sc� = − 2
kBT

v
D��2B���sc��� . �70�

With the help of Eq. �68� we obtain

2D�0�Asc =
�1 +

5

4
�̃�sc�


1 +
2

3
�̃�sc� +

1

6
�̃2�sc�

� �1

2
A�̃1/2�sc��1 +

1

4
�̃�sc�
1/2

+ 1�2

�71�

which leads with Eq. �69� to

�D�0�A� =
�1

2
A�̃1/2�sc��1 +

1

4
�̃�sc�
1/2

+ 1�3

�1 +
5

4
�̃�sc�
 . �72�

Under consideration of Eq. �51� we obtain that Eq. �72� can
be solved only for D�0�A�1. Furthermore, by taking into

account Eq. �69� in the case of �̃=0 which is the same equa-

tion when taking only the most leading �̃ term for �̃→0 in
Eq. �58�, we obtain in this limit no solution of Eq. �69�. As
mentioned above, this corresponds to the marginality of a
string in d=3 dimensions in an impurity background. Due to
the nonquadratic polynomial behavior of the expressions
above, it is not possible to get simple analytic solutions in

the whole �̃ range. Therefore, we shall solve Eqs. �67�, �69�,
and �71� for small �̃�1. This corresponds to the restriction
��D�0�A�1/3−1� /A�1. We obtain in this range the following
solutions:
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�̃�s� =�
0 for 0 	 s 	

1

2�D�0�A�1/3 ,

12

17
�2�D�0�A�1/3s − 1� for

1

2�D�0�A�1/3 	 s 	 sc,

4

A2 ��D�0�A�1/3 − 1�2 for sc 	 s 	 1,
�

�73�

with

sc �
1

2�D�0�A�1/3 +
17

6
D2�0�

��D�0�A�1/3 − 1�2

�D�0�A�7/3 . �74�

Finally, we can calculate the free energy �fvar for the replica
symmetry-breaking solution �73� by using Eqs. �45�, �58�,
and �68� for ��D�0�A�1/3−1� /A�1. We obtain

�fvar = −
kBT

4
�̃1/2�sc�� 1

sc
−

�DA�1/2

�2sc�1/2 
�1 − sc�

= − kBT
D
�0�

D
�0�A


��D
�0�A
�1/3 − 1�

� �2�D
�0�A
�1/3 − 1��1

2
−

1

4
�D
�0�A
�1/3
 .

�75�

This expression is valid for ��D�0�A�1/3−1� /A�1 in the
case of a Gaussian disorder potential. However, one can gen-
eralize the calculation above to obtain the validity of Eq. �75�
in the smaller regime ��D
�0�A
�1/3−1��1 irrespective of
the disorder correlation function �see the discussion above
Eq. �90��. Summarizing, we obtain a saddle point of �fvar
which is symmetric in replica space for D
�0�A
	1. In the
case of D
�0�A
�1 we obtain a replica-symmetric solution,
a one-step replica symmetry-breaking solution and also a
continuous replica symmetry-breaking solution appears. To
get more insight into the true minimum, we have to consider
the stability of the various saddle point solutions in this case.

VII. STABILITY OF SOLUTIONS

In this section we determine whether the various solutions
for the fluid phase discussed in the last section are stable in a
sense specified below and whether we have to take into ac-
count also higher-step replica symmetry-breaking solutions
to get a stable saddle point. A typical example of an exactly
solvable system with finite-step replica symmetry-breaking
saddle point solutions which are not stable is a string in two
dimensions with a �-impurity correlation function resulting
in an unphysical negative variance of the free energy with
respect to disorder averaging.51 This negative variance is
vanished in the case of the infinite or continuous replica
symmetry-breaking solution. Mézard and Parisi35 show two
different ways to obtain a theory which includes replica sym-
metry breaking such as �45�–�50� for random manifolds. The
first approach consists of a large N� expansion of the parti-
tion function where N� is the number of components of the

fields. There is only a slight difference between the large N�
approach and the variational approach used above. In the
saddle point equation of the large N�-approach we have to
substitute D�x� in Eqs. �45�–�50� by ���x� / �kBT�2 for the
application of this approach to the fluid phase of the vortex
lattice. This is discussed in Appendix B. The large N� expan-
sion consists effectively in a saddle point approximation in
suitable chosen auxiliary fields.35 The stability of solutions of
these equations consists in going one step further to the qua-
dratic expansion of the action in these auxiliary fields with
the requirement that the partition function calculated from
this saddle point approximation is not divergent when inte-
grating out the auxiliary fields. It was shown by Carlucci et
al.39 that continuous replica symmetry-breaking solutions
calculated in the last subsection are generally stable in this
sense. This is reviewed by us in Appendix B 1. Due to the
smallness of N�=2 in the vortex lattice system we do not
think that the large N� expansion is appropriate in our case.

We derived Eqs. �45�–�50� by another way also stated first
by Mézard and Parisi35 via the variational approach in Eq.
�36�. It is clear that in this case we should require for the
eigenvalues of the matrix built of the second derivatives of
�Fvar with respect to the self-energies ��� that these are all
positive in the stationary point. Here we take further into
account the symmetry of ��� and Eq. �44� in the variation of
the free energy. The concrete derivation was carried out by
Šášik in Ref. 53. Starting from his expression for the Hessian
we carry out in Appendix B 2 a similar stability analysis as
was done in the large N� case by Carlucci et al. in Ref. 39
summarized in Appendix B 1. We also find in the variational
approach that the continuous symmetry-breaking solutions
are generally stable which means that all eigenvalues of the
Hessian are larger than or equal to zero. Furthermore, we
show in Appendix B 2 that the full Hessian has positive or
zero eigenvalues if and only if the replicon sector consists of
positive or zero eigenvalues. Thus it is enough to consider
only the replicon sector for stability. The lowest eigenvalues
in the replicon sector39 are given in Eq. �B17� where k= l

=r+1. Here f̃ is replaced by the disorder function D in our
case and Lkl� is given in Eq. �B7�. G0 is the transversal Green
with zero self-energy and G� ,�� are the value of the trans-
versal full Green function and gap function in the Paris block
1	�	R+1 in a Parisi hierarchy of level R.

We now come to a discussion of the stability of the saddle
point solutions in the fluid high-temperature phase in the
symmetric form given in Sec. VI A and the one-step replica
symmetric form given in Sec. VI B. First, we consider the
saddle point solution given in Sec. VI A for the replica sym-

metric form. The most relevant replicon eigenvalue �̃�0;1 ,1�
is given by Eq. �B17�

�̃�0;1,1� � 1 + 4
�kBT�2

v2 D��2
kBT

v
g�0�	g��0� . �76�

Here the proportionality factor is positive. The stability cri-

terion �̃�0;1 ,1��0 leads to
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D�0�A 	 1. �77�

Note that D�0�A=1 corresponds to m1=1 in the one-step
replica symmetric solution �61�.

Next, we consider the stability criterion for solutions of
the stationarity condition �50� in the one-step replica symme-
try breaking form. Here, we obtain the lowest replicon eigen-
values from Eq. �B17�

�̃�0;1,1� � 1 + 4
�kBT�2

v2

� D��2
kBT

v
�g��1� +

1

m1
�g�0� − g��1���	g��0�

�78�

�̃�1;2,2� � 1 + 4
�kBT�2

v2 D��2
kBT

v
g��1�	g���1� . �79�

Because g�0� is divergent �Eq. �58�� we obtain for the stabil-

ity criterion �̃�0;1 ,1��0

m1 	 1. �80�

By using Eqs. �58�, �61�, and �62� we obtain ��1;2 ,2�=0 in

the leading order in �̃1�1,1 /A2. This can be seen much
easier without using the solutions �61� and �62� from Eqs.
�59� and �60�. By taking the square of Eq. �59� times the
inverse of Eq. �60� we obtain under the consideration of
D��x�=2D��x�2 /D�x� which we obtain from Eq. �19� that

��1;2 ,2�=0 when using Eq. �60� in the leading order in �̃1.
This now gives the possibility to calculate the stability crite-

rion also in the non-leading order in �̃1. We obtain

1 = 2
�kBT�2a3

2

c44
2 a4

1

�̃1
2�4 arcsinh� �̃1

1/2

2
	 − � �̃1

1 + �̃1/4
	1/2


�
�D��2�2kBTg��1�/v�

D�2kBTg��1�/v�
�81�

which results in

�̃�1;2,2� � 1 −
�kBT�2a3

2

c44
2 a4

�1 + 5�̃1/4�

��̃1�1 + �̃1/4��3/2

� D��2
kBT

v
g��1�	 � 0 �82�

when taking the correlation function �19� into account. Sum-
marizing, the one-step replica symmetry-breaking solution
for the correlation function �19� is unstable. Nevertheless,

this instability is very weak for �̃�1 which is the interesting
region near the glass transition line. More generally, we
show in Appendix C that all finite-step replica symmetry
broken solutions of the saddle point equation �50� are un-
stable for the Gaussian disorder correlation function �10�. In
summary, we have shown that the stable self-energy matrix
for D�0�A�1 has the continuous replica symmetry broken
form derived in Sec. VI C corresponding to the VG phase.
For D�0�A�1 we obtain that the full replica symmetric so-

lution derived in Sec. VI A is stable. This phase corresponds
to the vortex liquid VL. The glass transition line between VG
and VL is determined by D�0�A=1.

By taking into account the free energies �55� and �75� in
the VL and VG phase, we obtain that the glass transition
should be a first-order transition. On the other hand, in the
case of the free energy of the one-step replica symmetry
broken solution �64� we obtain a third-order phase transition
line. It is now widely believed that the glass transition line
between the VG-VL phases is a continuous transition �sec-
ond or higher-order transition� for YBCO. The reason is that
one finds a �small� critical region near the transition line
where the current voltage characteristics determined by
Fisher et al.9 under the assumption of a continuous transition
was experimentally justified10 �see also the discussion at the
end of Sec. IX�. Therefore, we shall look at our theory con-
cerning its dependence on the correlation function a little bit
closer.

It is very difficult to solve the saddle point equation �50�
for a general disorder potential K̂�q�. Nevertheless, the glass
transition line D
�0�A
=1 where D
 is defined in Eq. �18� is
valid in the general case. We point out that Eq. �81� leading
to the instability of the one-step replica symmetry-breaking
solution in the case of the effective Gaussian disorder poten-
tial �10� is still valid irrespective of the correlation potential

K̂�q�. In general, the one-step replica symmetry-breaking so-
lution is stable if

�1��̃1��1�K̂ exp�− q2kBTg��1�/2v�� 	 1 �83�

with

�1��̃� = �̃2 �1 + 5�̃/4�

��̃�1 + �̃/4��3/2

� �4 arcsin� �̃1/2

2
	 − � �̃

1 + �̃/4
	1/2
−1

, �84�

�1�f� =
�� d2q

2�
q4f�q�
�� d2q

2�
f�q�


2�� d2q

2�
q2f�q�
2 , �85�

where we get an unstable one-step replica symmetry-
breaking solution if and only if �1�1�1. Next, we consider
the existence of the continuous replica symmetry-breaking
solution. For their existence it was crucial that in Eq. �69� the
right-hand side was larger than zero. The corresponding
equation without restrictions on the correlation function is
given by

2s„D
�0�A
…
1/3 = �2��̃�s���2„K̂ exp�− q2B���s��/2�…

�86�

with
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�2��̃�s�� =
�1 +

5

4
�̃�s�
5/3

1 +
2

3
�̃�s� +

1

6
�̃2�s�

, �87�

�2�f� =
22/3

3

�� d2q

2�
q6f�q�
 f�0�1/3

�� d2q

2�
q4f�q�
4/3 . �88�

To solve this equation for a general correlation function K̂�q�
without further approximations is not an easy task. Neverthe-
less, the condition that a continuous replica symmetry broken
solution exist is given by the possibility to solve Eq. �86� for
sc resulting in

�2��̃�sc���2„K̂ exp�− q2B���sc��/2�… � 1. �89�

Quantities such as �1 ,�2 are well known quantities in prob-
ability theory. The corresponding quantity called kurtosis
measures in one dimension the curvature of a probability
function compared to the Gaussian probability function. This
is also valid for Eqs. �85� and �88�. The Gaussian correlation
function �10� has �1 ,�2=1. A correlation function with a
sharper tip and longer tails such as �exp�−q�� for ��2 has
�1 ,�2�1. For ��2 which is more flat near the origin with a
shorter tail than the Gaussian function has �1 ,�2�1.

Next, we specialize the stability condition �83� and �89� to

the vicinity of the glass transition line where �̃1/2A
 /2�1.
By using Eqs. �61�, �62�, and �73� one can derive the validity
of this condition by ��D
�0�A
�1/3−1��1 irrespective of the
disorder correlation function. In this regime, we obtain by an

expansion of K̂ around the origin which is justified due to

�̃1/2A
 /2�1

�1�K̂ exp�− q2kBTg��1�/2v��

� 1 +
4v2

�kBT�2g2��1�
1

K̂2�0�

��K̂�0�� �

��q2�
	2

K̂�0� − � �

��q2�
K̂�0�	2
 , �90�

�2�K̂�0�exp�− q2B��s���

� 1 +
8

B2���s��
1

K̂2�0�

��K̂�0�� �

��q2�
	2

K̂�0� − � �

��q2�
K̂�0�	2
 . �91�

One can derive the simple identity

�1�K� = K̂�0�� �

��q2�
	2

K̂�0��� �

��q2�
K̂�0�	2

�92�

where �1�K� is the kurtosis �85� built with the disorder cor-

relation function K �7� in position space. By using �1��̃�

�1+20�̃ /24 and �2��̃��1+17�̃ /12 we obtain the simple
rules in Table I in the regime ��D
�0�A
�1/3−1��1 for the
stable saddle point where A
 has to be taken at the transition
point. We obtain from Table I a small transition region at 1
−20/6A


2 	�1�K�	1−17/6A

2 where a higher-step replica

symmetry broken saddle point solution of Eq. �36� should
give the best free energy. We expect that this finite-step rep-
lica symmetry-breaking solution leads to a third order glass
transition in this range as was also the case for the one-step
solution.

By using A
=4c44a
2

�

2 /a3kBT�b /2�cL
2 �see the discus-

sion below Eq. �63�� we obtain for the high magnetic field
part b�0.5 of the glass transition line the following simple
result. When the kurtosis �1 of the positional disorder corre-
lation function K is smaller than the kurtosis of a Gaussian
function �flatter tip, shorter tail�, the stable saddle point so-
lution of Eq. �50� is given by a one-step replica symmetry
broken solution with free energy �64� in the VG phase. We
obtain a third-order glass transition. When the kurtosis �1 is
larger or equal the kurtosis of a Gaussian function then we
have a continuous replica symmetry broken solution with
free energy �75� in the VG phase. The glass transition is a
first-order one.

According to Table I we obtain that for lower magnetic
fields the border in the disorder function space of first- and
third-order phase transitions moves to lower kurtosises. This
makes it possible that for certain correlation functions with
�1�K��1 we have a critical point on the glass transition line
separating a first-order transition VG-VL line at lower mag-
netic fields from a third-order glass transition line at higher
magnetic fields.

VIII. SOLID PHASE

In this section we determine the free energy in the solid
phase. This system corresponding to a string lattice in a ran-
dom potential was discussed in Ref. 38. Here, we reconsider
it where we took more emphasis on the determination of the
free energy of the vortex lattice in the low-temperature phase
than the former work. For Fvar we use again the approxima-
tion �40�. For deriving this expression one has to consider
other arguments than in the fluid phase below Eq. �40�. First,
we use that the saddle point Green function calculated with
Eq. �40� fulfills kBT �G���0�−G���aei� � /v�a2 justified in
Appendix A. Here aei is a nearest neighbor vector in the xy
plane. Similar as in the considerations below Eq. �14� we can
restrict us to the diagonal summands x=x� corresponding to

TABLE I. Stable saddle points of Eq. �36� as a function of the
kurtosis �1�K� �85� of the disorder correlation function K in real
space. The second line of the table denotes the character of the
stable solution of Eq. �50�. The third line stands for the order of the
VG-VL transition.

�1�K� 	1–20/6A

2 �1–17/6A


2

saddle point one-step breaking continuous breaking

order of transition third order first-order
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Eq. �40�, where nondiagonal terms being a factor �B��

+
2�1/2 /a smaller because as is shown in Appendix A B��

�a2 for almost the whole range of replica indices. We point
out that the � ,�-range where this inequality is not fulfilled is
important for the long distance behavior of the lattice fluc-
tuations beyond the random manifold regime38 �see Eq.
�103� below�. Nevertheless, due to the � ,� sum in the vari-
ous free energy terms in Eq. �38� one can show that these
contributions to the free energy are negligible where the in-
equality B���a2 is not fulfilled �see the continuous version
�45� of Eq. �38� and the inequality �A2��. Under the consid-
erations above, we arrive at the disorder Hamiltonian �40� as
the basic disorder Hamiltonian for the solid low-temperature
phase.

It is well known and can be also shown by a similar
analysis as was done for the fluid phase in the last section
that finite-step replica symmetry breaking solutions are un-
stable but the continuous replica broken solution exist which
is stable as is shown by Carlucci et al. in Ref. 39 and Ap-
pendix B. This breaking of the replica symmetry corresponds
to a glassy phase. We now calculate this replica broken so-
lution. The calculation is similar to the calculation of the
continuous symmetry broken solution in the fluid phase car-
ried out in Sec. VI C. As was done before for the fluid phase
we can restrict us to the transversal fluctuations in the dis-
placement fields u because c11�c66. Then we have to calcu-
late g��� where we restrict us to the two lowest-order expan-

sion terms in �̃�1. By using Eq. �12� we obtain

g��� �
a3

2

c44

1

VBZ
�

BZ
d2kdk3

�
1

�2 − 2 cos�k3a3�� +
a3

2c66

a2c44
�i

�2 − 2 cos�kia�� + �̃

�
a3

2

c44
�0.21 −

�̃1/2

16
	 . �93�

Here we use the same approximation as in Ref. 32 which
means a3

2c66/a2c44�4/�.
First, we determine the two solutions of Eq. �50� corre-

sponding to Eqs. �67� and �69�. This results in

���s� = 0, �94�

�̃�s� =
8

33/2 �D�0�A�1/2s3/2. �95�

Instead of Eq. �71� for sc in the case of the fluid phase we
find for the solid phase

sc
1/2 =

31/2

2
D2�0��D�0�A�−3/2. �96�

This value was calculated by using Eq. �70� with the ap-
proximation D�2B���sc����D�0� valid for cL

2 �1. This is
correct in the vicinity of the melting line.32 Summarizing, we

obtain for �̃�s�

�̃�s� = � 8

33/2 �D�0�A�1/2s3/2 for s 	 sc,

D6�0��D�0�A�−4 for sc 	 s 	 1.
� �97�

From A�1 near the melting line �see the remarks below Eq.

�63�� we obtain that �̃�s��1 is in fact fulfilled in the mag-
netic temperature regime, we are interested in �note that
D�0�A�1 on the melting line for temperatures larger or in
the vicinity of the glass transition line�. Finally, we calculate
the free energy corresponding to Eq. �75� by using Eq. �45�
with Eq. �93�. For �̃�1 we obtain

�fvar �
kBT

2
D�0��1 −

3

20
D4�0��D�0�A�−3
 . �98�

Here we neglect energy terms coming from the first term in
Eq. �45� corresponding to the kinetic part which is a factor
�1/10 smaller. When comparing Eq. �98� with the free en-
ergy of the quadratic disorder case �15� of Sec. IV we obtain
that only the second term in Eq. �98� is different. This term
should cancel the first term in Eq. �98� for lower tempera-
tures resulting in a vanishing of the reentrant behavior of the
BG-VG, BG-VL line in the quadratic disorder case.

It can be seen from the derivation above and also Appen-

dix A that the actual form of the self-energy function �̃�s�
depends on the form of the disorder correlation function not
only by one small parameter. For s=sc we have B���sc��
�
�2 but for s�sc we have B���sc���
�2 which means that
the form of the whole correlation potential is important when
solving the saddle point equation �50�. This makes it difficult
to solve this equation in general. Nevertheless, for disorder
correlation functions in the vicinity of the effective Gaussian
disorder correlation function �10� we think that the result
�98� should not be much changed.

IX. OBSERVABLE CONSEQUENCES

Let us now apply the results obtained above to find the
BG-VG line and the glass transition line of YBCO. The en-
tropy and magnetic induction jumps over the transition lines
will also be discussed. We saw in Sec. VII that the form of
the local minimum of the variational free energy �36� in the
high-temperature phase depends on the kurtosis of the disor-
der correlation function K where the results are summarized
in Table I. Here the Gaussian disorder correlation function
with �1�K�=1 separates the regime where we have a local
minimum of Fvar of the one-step symmetry-breaking form
with free energy �64� ��1�K��1� and of the continuous rep-
lica symmetry-breaking form with free energy �75� ��1�K�
�1� for large A
. For the solid phase we obtain the continu-
ous symmetry-breaking solution �98� for the Gaussian corre-
lation function. For disorder correlation functions in the vi-
cinity of the Gaussian correlation function we can use this
free energy as a first approximation for the free energy of a
general disorder correlation function. Taking into account
Eqs. �45� and �46� we obtain
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�fvar
T→0 �

kBT

2
D�0��1 −

3

20
D4�0��D�0�A�−3
 BG phase, �99�

�fvar
T→
 ��

kBT

2
D
�0��1 − �D
�0�A
�−1/3�3��D
�0�A
 − 1�, VG-VL phase for �1�K� 	 1 – 20/6A


2 ,

−
kBT

2
D
�0�� 1

2D
�0�A


��D
�0�A
�1/3 − 1�
��D
�0�A
 − 1� for �1�K� � 1 – 17/6A

2 � �100�

in the regime near the melting and glass transition line. The
free energy is given by Ffl�Nfvar=N�fvar�0�+�fvar� �45� and
�46�, where the disorder part of the free energy �fvar is given
by Eq. �99� in the solid phase and Eq. �100� in the fluid
phase. The intersection criterion corresponding to Eq. �29� in
the quadratic approximation in the disorder strength which
determines the BG-VG, VG-VL line reads

Bm �
�0

5�1 − b�3

�kBT�2�ab
2 �c

2

3.9 � 10−5

�4 e−�2/kBT��fvar
T→0−fvar

T→
�

�BG-VG,BG-VL line� . �101�

Without disorder we have shown in Ref. 32 that the melting
criterion �31� is equivalent to a Lindemann criterion where
the Lindemann parameter is given by cL�0.18. There are
many papers which used Lindemann-like criteria also to de-
termine the disorder induced BG-VG line.21–23,25,26 In Ref.
24 Mikitik and Brandt even tried to derive a Lindemann-like
criterion for the BG-VG, VG-VL line from an intersection
criterion similar to the one used here. Because these
Lindemann-like rules do not look similar to our microscopi-
cally derived melting criterion �101� we do not try to go
further in this direction.

As derived in Sec. VI B, the glass transition line which is
the border of the replica symmetric solution of the Mézard-
Parisi variational calculation and the one-step replica
symmetry-breaking solution, where the stabilities was dis-
cussed in Sec. VII, is determined by m1=1 in Eq. �61� re-
sulting in

D
�0�A
 = 1 �VG-VL line� . �102�

This equation corresponds to the depinning temperature Tdp
of a one-dimensional string in three dimensions in a random
environment.1 The Larkin length Lc is defined by the length
where we have a coherently pinning of the string which
means u2�0,Lc�=
�2�
ab

2 with

u2�L,L3� � ��u�L,L3� − u�0,0��2� . �103�

When temperature fluctuations become larger there is a soft-
ening of the impurity potential which is important for the
length of the coherently pinned vortices. This correction is
important when this fluctuation length becomes equal to Lc
calculated for T=0. This depinning temperature is given by
Eq. �102�.1 We mention that it is difficult to distinguish ex-
perimentally by diffraction experiments in which of the two

classes �1�K��1−17/6A

2 or �1�K�	1−20/6A


2 the disor-
der correlation potential K of a given experiment belongs. In
both regimes we obtain u2�0,L3�� �kBT�L3 /c44a

2 in the
VG-VL phase �the proportionality constant is different for
both regimes, see also the discussion in Appendix A�. This is
reasoned in the vanishing support of ��s� in the vicinity of
the origin, fact for the the one-step replica symmetry-
breaking regime �1�K�	1−20/6A


2 �56� as well as the con-
tinuous replica symmetry-breaking regime �1�K��1
−17/6A


2 �68� and �73�. It means that thermal fluctuations
are dominant over disorder fluctuations. Note that u2�L ,L3�
for L�0 diverges in the VG as well as the VL phase char-
acteristic for defect dominated phases also seen before for
the system without disorder. For the BG-phase in the random
manifold regime we obtain u2�L ,L3�� �L2+L3

2�1/6 in accor-
dance with former calculations.38 The derivation beyond the
random manifold regime where the lattice structure is impor-
tant leads to u2�L ,L3�� log�L2+L3

2�.38

Mikitik and Brandt found in Refs. 23 and 24 that their
analytical derived BG-VG, BG-VL curve is a function of the
Ginzburg number Gi=32�4��ab�0��c�0�Tc /�0

2
ab�0��2, b,
T /Tc, and the disorder function D�0�. This can be also shown
easily for the melting curve �101�. Note that the disorder
constant D in Refs. 23 and 24 is a function of b, T /Tc, Gi and
our disorder function D�0�.

In Fig. 4 we show the BG-VG, BG-VL curves given by
Eq. �101� for various values d0 ,
�. For clearance we restrict
us to the use of the disorder free energy �100� with �1�K�
	1−20/6A


2 in Eq. �101� corresponding to a third-order
glass transition line. The general statements derived from the
figure below are also valid in the case �1�K��1−17/6A


2 .
The upper curves are calculated with a �Tc-pinning correla-
tion function �8�, the lower curves for a �l-pinning impurity
correlation function �9�. For clearance we do not show the
critical points CP on the melting line in the figure which are
characterized by zero entropy jumps �Sl per double layer
and vortex over the transition line. These points can be easily
marked in the figure since they correspond to the extrema of
the melting line Bm due to the Clausius-Clapeyron equation
given in Eq. �105� below.

The intersection point of the glass transition line BG-VL
which is calculated by Eq. �102� with the BG-VG, BG-VL
line is denoted by GP in the figure. The square points with
the dashed line denotes the experimentally determined BG-
VG, BG-VL line of Bouquet et al.6 shown also in Fig. 2 for
comparison. In the �Tc pinning part of the figure, we find no
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solutions for Eq. �101� near T�Tc. The parameters of the
straight lines in the figure are chosen in such a way that we
reproduce in one of the best ways the form of the experimen-
tally melting line of Bouquet et al.6 and also the position of
the experimentally found CP and GP. These experimentally
chosen parameters are d0
ab

2 /
�2=1.32�10−6 and 
ab /
�
=1.49 for �l pinning, d0
ab

2 /
�2=1.5�10−7 and 
ab /
�
=1.59 for �Tc pinning. Thus, we obtain that the correlation
length 
� of the disorder potential almost corresponds to the
coherence length 
ab of the superconductor. The reason that

ab /
� is larger than one could be due to lattice influences on
the effective broadening of the vortex �see the notes below
Eq. �9��. Finally, we mention the similarity of the d0 param-
eter values in the Parisi case and the corresponding values in
the quadratic disorder case of Sec. IV.

The curves of representative variations of these almost
optimal parameter values are shown by the dotted curves. We
obtain from the figure as was also the case in the second-
order perturbative discussion in Sec. IV that the �Tc pinning
curves fits less to the experiment than the �l-pinning curves.
This comes mainly from the smoothness of the disorder pa-
rameter d�T� in Eq. �9� as a function of T resulting in the

slow variation of the transition line Bm�T� seen in the upper
part of Fig. 4. From Fig. 4 we obtain that the glass intersec-
tion point GP and the critical point CP does not, in general,
coincide. This was just mentioned in Ref. 13 for BSCCO
where in the experiments this difference is not seen yet
maybe because of experimental uncertainties.

One of the most interesting results of our calculation is
that the reentrant behavior of the melting line and the experi-
mentally not seen low B parts of the BG-VG curves in the
quadratic disorder calculation of Sec. IV �see Figs. 2 and 3�
vanished in the Parisi approach. It is remarkably that the
large descend of the curves in the direction to lower tempera-
tures in Fig. 2 within the quadratic approach is smoothed
within the Mézard-Parisi approach such that the BG-VG
transition curves are almost horizontal. There are various
forms of the BG-VG lines in the literature. One of the rea-
sons for the differences in the various experiments comes
presumably from the strong dependence of the BG-VG line
on the depinning function d�T� via an exponential behavior
in Eq. �101�. Any perturbational effects such as surface ef-
fects or twinning areas in the crystal can change the func-
tional form of the curve at small temperatures easily. We note
that especially the strong dependence of the BG-VG curve
on small variations of the disorder correlation length 
� hav-
ing its reason in the quadratic dependence of 
� in A �63�
which is contained as a third-order summand in the free en-
ergy of the solid phase in Eq. �98�. The form of the free
energy in the solid phase is the most dominant factor for the
form of the BG-VG curve in the vicinity of the critical point
CP. This is in contrast to the free energy in the high-
temperature phase which just grows in importance beyond
the glass intersection point GP but is still small compared to
the free energy part of the solid phase.

In Fig. 5 we show the whole phase diagram for the pa-
rameters of the solid curve in the lower �l-pinning part of
Fig. 4 �solid curve�. This time we show the BG-VG, BG-VL
line for both �1�K� regimes. Here, upper curve of the BG-VG
transition line corresponds to �1�K�	1−20/6A


2 the lower
curve to �1�K��1−17/6A


2 . For comparison �square points
with dashed curve� we show also the experimentally deter-
mined phase diagram of Bouquet et al. of Ref. 6. Both phase
diagrams look rather similar except that the CP and GP
points of the theoretical determined phase diagram lies a
little bit lower in temperature in comparison to the experi-
mental ones. The upper curve between the VG-VL phases
show the glass transition line calculated by Eq. �102�. There
is a small discrepancy in the slope of the line between theory

and experiment. Note that for �̃�� which is the case for
BSCCO �Ref. 40� we get that D
�0�A
 is in fact independent
of the magnetic field B resulting in a vertical glass transition
line. This is in good accordance with the experiments.13

Next, we calculate the entropy and magnetic induction
jumps over the BG-VG, BG-VL first-order line and over the
glass transition line in the case �1�K��1−17/6A


2 . Denoting
the spacing between the CuO2 double layers by as we obtain
for the entropy jump per double layer and vortex over the
BG-VG, BG-VL line

FIG. 4. �Color online� The BG-VG, BG-VL first-order transition
lines Bm�T� given in Eq. �101� for �Tc pinning �upper figure� and �l
pinning �lower figure�. The solid lines are calculated with param-
eters for d0 and 
� which gives one of the best fits to the experi-
mentally determined6 BG-VL line �square points� within the pin-
ning mechanism �d0
ab

2 /
�2=1.5�10−7 and 
ab /
�=1.59 for �Tc

pinning, d0
ab
2 /
�2=1.32�10−6 and 
ab /
�=1.49 for �l pinning�.

Dotted curves are calculated by a variation of these parameters
given by d0

±= �1±1/2�d0 and 1/
�±= �1±1/2�1/2 /
� where only one
parameter was varied. We wrote that parameter at the curve. The
vertical markers denote the intersection points of the glass transition
line and the BG-VG, BG-VL line named GP. From Clausius-
Clapeyron equation �105� the critical points CPs are determined by
an extremum of the BG-VG, BG-VL lines
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�Sl � kBTm
as

a3

�

�Tm
ln�Zfl

T→
/Zfl
T→0� �104�

and a corresponding equation for the glass transition line.
Now we make use of the Clausius-Clapeyron equation which
relates the jump of the entropy density of a first-order tran-
sition line to the jump of the magnetic induction by

a3�Sl

vas
= −

dHm

dT

�B

4�
. �105�

Here Hm is the external magnetic field on the BG-VG,
BG-VL line. Because B�Hc2�T� for YBCO we can use H
�B in the Clausius-Clapeyron equation �105�. Equation
�105� is not appropriate for a numerical evaluation of �B
because of the vanishing of the denominator at dBm
�dHm /dT=0 on the BG-VG, BG-VL line which are can-
celed due to zero points in the numerator. By using the in-
tersection criterion for the transition line we can transform
Eq. �105� to

�B � kBTm
4�

v
�

�Bm
ln�Zfl

T→
/Zfl
T→0� . �106�

This equation can be also derived from thermodynamical
relations under the considerations �B /Bm�1 which we also
used by taking the intersection criterion for the free energy
and not for the corresponding Gibb’s potential in this paper.53

In the following we use Eq. �106� and the corresponding
equation for the glass transition line for �1�K��1−17/6A


2

to calculate numerically the magnetic jumps over both lines.
In Fig. 6 we show �Sl and �B for the parameters used in

Fig. 5 over both lines. Solid curves corresponds to the jumps
over the BG-VG, BG-VL transition line for �1�K��1
−17/6A


2 and �1�K�	1−20/6A

2 , respectively. Dashed

curves correspond to the jumps over the glass line for
�1�K��1−17/6A


2 . We show in the upper part of the figure
�Sl with experimental points of various torque and supercon-
ducting quantum interference device experiments �circles,54

squares,55 triangles6� for the entropy jump over the BG-VG,
BG-VL line. For the parameters used in Fig. 5 we obtain a
value for the CP of 68 K. In the lower part of Fig. 6 we show
the magnetic induction jumps �B. The square and circle
points are experiments �circles,54 squares56�. Finally, we note
that our curves of the entropy and magnetic induction jumps
over the BG-VG, BG-VL line is in qualitative agreement
with similar curves calculated within the Ginzburg-Landau
approach for YBCO by Li and Rosenstein.20 The main dif-

FIG. 5. �Color online� Phase diagram for YBCO. Solid lines
represent the theoretical determined phase transition lines between
the various phases calculated for �l pinning with d0
ab

2 /
�2=1.32
�10−6 and 
ab /
�=1.49 corresponding the solid line in the lower
picture in Fig. 4. The glass transition line VG-VL was calculated
from Eq. �102�. Square points represent the experimentally deter-
mined phase diagram of Bouquet et al. �Ref. 6�. The lower curve of
the BG-VG transition line was calculated by Eq. �101� with the free
energy �fvar

T→
 �100� for �1�K��1−17/6A

2 in the VG-VL phase

resulting in a first-order glass transition line VG-VL, the upper
BG-VG line was calculated for �1�K�	1−20/6A


2 resulting in a
third order VG-VL transition.

FIG. 6. �Color online� In the upper figure we show the entropy
jump �Sl per double layer and vortex according to Eq. �104�. The
points in the figure are entropy jumps determined by experiments
�circles �Ref. 54�, squares �Ref. 55�, triangles �Ref. 6��. In the lower
figure we show the magnetic induction jumps �B calculated by the
help of Eq. �106�. Experimental points in this figure are from Ref.
54 �circles� and Ref. 56 �squares�. The solid curves in both figures
correspond to the jumps over the BG-VG, BG-VL line, the dashed
curves are the jumps over the glass transition line VG-VL. The
dashed curves were calculated with the free energy �fvar

T→
 �100� for
�1�K��1−17/6A


2 resulting in a first-order VG-VL glass transition
line. The BG-VG, BG-VL jump curves for �1�K��1−17/6A


2 are
the solid curves in both figures with the discontinuities at GP. The
solid curves without discontinuity correspond to the BG-VG,
BG-VL jumps calculated with �fvar

T→
 �100� for �1�K�	1
−20/6A


2 . The curves for �1�K��1−17/6A

2 and �1�K�	1

−20/6A

2 are in correspondence for temperatures larger than GP.

We used for the whole figure parameter values d0
ab
2 /
�2=1.32

�10−6 and 
ab /
�=1.49 in correspondence to the parameter values
in Fig. 5.
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ference is that they obtain a zero point in the magnetic in-
duction jump curve in the vicinity of the critical point which
has its reason in the reentrant behavior of their calculated
melting line to second order in the disorder potential �see Eq.
�105� by taking into account that dBm /dT is infinite at the
reentrant points�. We expect, as was also the case in the
elasticity approach used here, that this zero point vanishes
when going beyond second-order perturbation theory leading
to the vanishing of the reentrant behavior.

Finally, we come back to a discussion of the scenarios of
the phase diagram for YBCO given in the introduction of this
paper. We did not find a slush phase within our numerical
examinations of Eq. �101� during this work irrespective of
the parameter range. This in accordance to the Ginzburg-
Landau calculations of Li and Rosenstein in Ref. 20. This
means that our phase diagram is only in accordance with the
second scenario of a unified BG-VG, BG-VL first-order line
discussed in the Introduction of this paper. Due to the con-
troversy of this phase we cannot determine within our theo-
retical approach whether it is in fact existent or not. It was
claimed in the experimental paper12 that the slush phase only
exists within a really small doping region where the entropy
jumps over the first-order line between the slush phase VS
and the vortex liquid VL is two orders smaller than the en-
tropy jumps over the BG-VL melting line. The intersection
criterion of the high- and low-temperature free energy used
in this paper by a perturbative calculation in both phases uses
the assumption that the slope difference corresponding to the
entropy jumps is not too small. This could be the reason that
we do not see the slush phase. We point out that to our
knowledge there exist no theoretical model which shows
without doubt the existence of this phase.

One of the main findings in this work for vortex model �2�
is that the order of the glass transition VG-VL is either first
or third order depending on the disorder correlation potential.
We point out that a third order phase transition having a
smooth heat capacity should show scaling behavior with a
nontrivial fix point in a renormalization group calculation.
Such a scaling behavior is not seen in first order phase tran-
sitions. Prominent examples of third order phase transitions
is the noninteracting homogeneous three dimensional Bose
gas across the Bose Einstein transition57 or the large N�-limit
of the two dimensional U�N�� lattice gauge theory with a
variation in the coupling constant.58 It was noticed in Ref. 57
that the heat capacity curves for BSCCO over the supercon-
ducting transition without magnetic field looks rather similar
to the heat capacity curves of the homogeneous Bose gas.
For YBCO this transition looks more similar to the � transi-
tion of 4He. A discussion of scaling relations in higher order
phase transitions and their classification due to Ehrenfest can
be found in Ref. 59.

Fisher et al. proposed in Ref. 9 a scaling behavior of the
VG-VL glass transition where they introduce a disorder
phase correlation length 
G with scaling 
G��T−TG�−� in the
fluid phase near glass transition temperature TG on the
VG-VL transition line. This scaling proposal was later on
approved experimentally via measurements of the current
voltage characteristics over the transition region.10 There are
now a number of experiments10,60 and computer
simulations19,49,61 of various models for superconductors

showing also this scaling behavior where in most cases the
disorder phase correlation exponent lies in between 0.8	�
	1.7. One can connect the phase correlation scaling expo-
nent � with the heat capacity exponent � defined by C��T
−TG�−�, where C is the heat capacity via the hyperscaling
relation �d=2−�. Here d is the dimension of the system
which means d=3 in our case. Thus, most of the experimen-
tally determined and computer simulated systems have an �
exponent lying in between −3.1	�	−0.4. This corresponds
to a phase transition of order three or even higher within the
Ehrenfest definition of phase transitions.59

X. SUMMARY

In this paper, we have derived the phase diagram for su-
perconductors having their phase transition lines at high
magnetic fields near Hc2, such as YBCO. The aim was to
obtain a unified analytic theory for the BG-VG, BG-VL tran-
sition as well as for the glass transition lines. The model
consists of the elastic degrees of freedom of the vortices with
additional defect fields describing in the most simple way the
defect degrees of freedom of the vortex lattice. For the im-
purity potential we restricted us to weak pinning �Tc and
�l-correlated impurities.1

First, we have derived the effective low- �12� and high-
temperature Hamiltonians �13� without disorder in Sec. III.
The low-temperature Hamiltonian consist of the well-known
elastic Hamiltonian of a vortex lattice where defects are fro-
zen out. At high-temperatures, the stress fields are frozen out
leading to the high-temperature Hamiltonian �13�. In Sec. IV
we have carried out the disorder averaging to second-order
perturbation theory with these low- and high-temperature
Hamiltonians to find the BG-VG, BG-VL transition line by
the application of the intersection criterion. The result given
in Eq. �29� and displayed in Fig. 2 shows a reentrant behav-
ior. The low-B behavior of the calculated transition line was
not in agreement with experiment. This led us to calculate
the free energy in the low- and high-temperature phases us-
ing the nonperturbative approach of Mézard-Parisi. In Sec.
VI we calculated the variational free energy in the high-
temperature liquid phase. We obtain a glass transition from a
replica symmetric solution corresponding to the vortex liquid
VL to a symmetry broken solution corresponding to the vor-
tex glass phase VG. The position of the glass transition line
fulfills Eq. �102� describing the depinning transition of a
string with stiffness c44a

2 in three dimensions. The order of
the transition as well as the degree of replica symmetry
breaking of the variational Hamiltonian depends on the form
of the disorder correlation function. The high-temperature
part of the free energy is given by Eq. �100�. For high mag-
netic fields near Hc2 we got the following result: We obtain a
one-step replica symmetry-breaking solution when the kurto-
sis �1 of the disorder correlation function in position space
defined in Eq. �85� is smaller than 1. This leads to a third-
order VG-VL transition line. In the case that the kurtosis is
larger than or equal to one we obtain a full replica symmetry
broken solution with the free energy given in Table I. The
glass phase transition line VG-VL corresponds to a first-
order transition line in this case. The Gaussian correlation
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function is the border in the disorder correlation function
space of third and first-order transitions with �1=1 for mag-
netic fields near Hc2. Corrections to this simple rule relevant
for lower magnetic fields are given in Table I. For lower
magnetic fields the border moves to lower kurtosis where A


is defined in Eq. �63�. This makes it possible that for certain
correlation functions with �1�K��1 we have a critical point
on the glass transition line separating a first-order transition
VG-VL line at lower magnetic fields from a third-order glass
transition line at higher magnetic fields.

In Sec. VIII, we calculate the free energy of the vortex
system in the low-temperature solid phase �BG�, given by
Eq. �99�. The stationary solution for the self-energy matrix in
replica space is continuous replica symmetry broken. By us-
ing the intersection criterion for the low- and high-
temperature free energies, we calculate the expression for the
unified BG-VG, BG-VL line given by Eq. �101�. In Fig. 4 we
show the unified BG-VG, BG-VL line for various parameters
for both pinning mechanisms. We obtain that �l-pinning fits
much better to the experiments than �Tc pinning. It is seen
that the reentrant behavior of the second-order perturbation
theory carried out in Sec. III vanished in this nonperturbative
approach. In Fig. 5, we show the theoretical determined
phase diagram for YBCO. Figure 6 shows the entropy jumps
and magnetic field jumps over the BG-VG, BG-VL transition
line. Finally, we calculated heat capacity scaling exponents �
from disorder phase correlation exponents � determined from
experiments and computer simulations via the hyperscaling
relation across the glass transition line VG-VL which is only
consistent with a third or even higher order VG-VL phase
transition line.

APPENDIX A: JUSTIFICATIONS FOR APPROXIMATION
OF DISORDER HAMILTONIAN EQ. (40)

We restrict ourselves here to the case of transversal fluc-
tuation where the generalization to arbritrary fluctuations is
straightforward. That Eq. �40� is valid for the high-
temperature fluid phase was shown below �Eq. �43��.

In the solid phase, we first have to show that
kBT2�Gs

T�aei�−Gs
T�0�� /v�a2 in the interesting regime near

the melting line where Gs
T is the full Green function. aei is a

nearest neighbor vector in the xy plane and s is a continuous
Parisi index. It follows from35

Gs
T�x� =

1

VBZ
�

BZ
d2kdk3eik·xG0

T

� �1

s

��s�
�G0

T�−1 + ��s�
+ �

0

s ds

s2

��s�
�G0

T�−1 + ��s�

�A1�

that the nearest neighbor fluctuations are in fact much
smaller than the nearest neighbor distance a when taking into
account Eqs. �93� and �97�, cL

2 �1 and D�A�A�1 near the
melting and glass line which is the regime we are interested
in.

Finally, we have to show that B���s���a2 for almost all
s�0. From Eqs. �49� and �97� with Eq. �93�, cL

2 �1 and
D�0�A�1 we obtain B���s���a2 for

s � cL
8 �A2�

which is almost the whole s region. The extreme small range
s�cL

8 has no relevance for the free energy result. As men-
tioned above, this small s region of ��s� becomes relevant
only when calculating disorder fluctuations �103� beyond the
random manifold regime which corresponds to distances
L ,L3, where u2�L ,L3��a2.38

APPENDIX B: STABILITY OF MÉZARD-PARISI
SOLUTIONS

In this appendix, we consider the stability criterion of the
Mézard-Parisi theory in the large N� limit and in the Bogo-
liubov variational method. First, we reconsider the deriva-
tions of Carlucci et al.39 for the stability conditions in the
case of the large N� limit. Then we derive the corresponding
stability criteria in the variational approach considered in
Sec. VI. To our knowledge this was not done before in the
literature.

In order to compare the vortex lattice theory with two
component displacement fields with the N�=2 isotropic ran-
dom manifold theory of Mézard and Parisi we restrict us in
the following first to the transversal displacement fields jus-
tified above as a good approximation in both phases. A gen-
eralization to the full fluctuations is straightforward. The dif-
ference of the stationary and stability expressions in both
phases for the vortex lattice and the isotropic N�=2 random
manifold theory of Mézard and Parisi comes then mainly due
to a difference in the kinetic part of the Hamiltonian G0

−1 in
Eq. �39�. As was shown in Ref. 36 the saddle point equation
of both approaches looks rather similar except that in the
large N�-limit the saddle point equation �50�, D0�x� should
be replaced by f�x� where f�x�=���x� / �KBT�2 �we take the
reversed sign to the Mézard-Parisi definition�. ���x� is the
impurity correlation function in Eq. �32�. To derive this,
Mézard and Parisi insert in the action of the isotropic random
manifold system, auxiliary fields. By integrating out the fluc-
tuating displacement fields of the random manifold the large
N� limit corresponds to a saddle point approximation in the
auxiliary fields. This results in the saddle point equation �32�.
By the definition of

f̃�x� = �
0




d�e−�f��x� , �B1�

Mézard and Parisi obtain Eq. �50� for the general variational
approach where the disorder function D0�x� is replaced by

f̃�x�.

1. Stability in the large N�-limit approach
of Mézard and Parisi

The stability of the stationary solution �50� comes from
the stability of the saddle point approximation of the action
in the auxiliary fields. This results in the stability matrix35

�we take into account only the less stable part of the stability
matrix corresponding to zero moments�
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M��,�� =
1

2f��L��,��
�1� �

���,�� − L��,��
�2� �B2�

with

L��,��
�1� =

�kBT�
vVBZ

�
BZ

d2kdk3�G�� − G�� − G�� + G��� ,

�B3�

L��,��
�2� =

�kBT�2

v2VBZ
�

BZ
d2kdk3�G�� − G�� − G�� + G���2,

�B4�

and ��� and ���. Here G���k� stands for the transversal
component of the Green function �39� in the case of the
vortex lattice or the corresponding Green function in the case
of the isotropic two component N�=2 random manifold
system.35 The stability of the saddle point of Eq. �38� fulfill-
ing the discrete version of the self-energy equation �50� is
given when all eigenvalues of the stability matrix �B2� are
positive.

M��,�� is a four index ultrametric matrix.36 It was shown
by Kondor et al.62 and later on by Temesvári et al.63 that one
can divide the eigenvalues of matrices of the form �B2� in
three classes. The first two families consist of vectors in the
longitudinal sector of dimension R+1 and R anomalous sec-
tors of dimension R+1 depending explicitly on the form of
the ultrametric matrix. Here, we denote R by the level of
hierarchy of the self-energy matrix ��� fulfilling the station-
arity condition �50�. This means R=0 for the replica sym-
metric solution calculated in Sec. VI A and R=1 for the one-
step solution given in Sec. VI B for the fluid phase.

There is no closed form in the literature for the eigenvec-
tors and eigenvalues of the matrix in Eq. �B2� for the first
two families. Nevertheless, it is able to block diagonalize the
matrix M� given by Eq. �B2� in the various sectors.63 Follow-
ing Temesvári et al.,63 we denote the size of the Parisi blocks
as pr, r=1, . . . ,R, where R is the maximum level of replica
symmetry breaking. We denote p0=n and pR+1=1, the latter
being the size of diagonal elements. The matrix elements
���, that belong to the rth level of replica symmetry break-
ing are all equal to a number denoted by �r, r=0, . . . ,R. The
replica overlap function is defined by ���=r when ���

=�r.
Denoting ur

k with 0	r	R the basis vectors in the first
two families. For k=0 which is the longitudinal sector we
obtain for the R+1 basis vectors63

�ur
0��� = �1 for � � � = r ,

0 for � � � � r .
� �B5�

The basis vectors ur
k for k�0 corresponding to the anoma-

lous sector can be found in Ref. 63.
The third family of eigenvectors of ultrametric matrices,

for example, Eq. �B2�, is named the “replicon sector.” It
consists of several one-dimensional subfamilies labeled by
r=0, . . . ,R and k , l=r+1, . . . ,R+1. The corresponding one-
dimensional subspaces are eigenspaces with the eigenvalues
denoted by ��r ;k , l�. The eigenvectors corresponding to the

basis vectors in this sector can be found in Ref. 63. Note that
these eigenvectors do not depend on the entries of the ultra-
metric matrix. The eigenvalues ��r ;k , l� can be generally ex-
pressed via the matrix elements of the ultrametric matrix.63

In the case of the concrete ultrametric matrix M� �B2� one
finds39

��r;k,l� =
1

2f��2�KBT/v��gR+1 − gr��
− Lkl� �B6�

with

Lkl� = 2
�kBT�2

v2VBZ
�

BZ
d2kdk3

1

��G0�−1 + �l−1�
1

��G0�−1 + �k−1�
.

�B7�

Here gk corresponds to the value of the transversal compo-
nent of the Green function G�� �39� integrated over the mo-
menta as in Eq. �47� or the corresponding random manifold
Green function with ���=k. The eigenvalues ��r ;k , l� for
k= l=r+1 are the most singular ones for definite r. One can
show easily39 that these most singular eigenvalues are zero in
the case of continuous symmetry-breaking solutions as in
Sec. VI C for the fluid phase. We note that for the stability
matrix sector of moments unequal to zero there are only
eigenvalues larger than zero.39

Finally, we sketch the proof given in Ref. 40 that eigen-
values of the first two families, which is the longitudinal
sector and the anomalous one, has only eigenvalues which
are larger or equal to the replicon eigenvalues given above.
With the definitions

�r
k ��

1

2
�pr − pr+1� for r � k − 1,

1

2
�pk−1 − 2pk� for r = k − 1,

pr − pr+1 for r � k − 1
� �B8�

and

�k�r� � � ��r;k,r + 1� for k � r + 1,

��r;r + 1,r + 1� for r � k − 1,
� �B9�

we obtain

det�M� �k� − �I� = 

r=0

R

��k�r� − ��det�I + M� ��k�� �B10�

with

Mrs�
�k� = Kk

rs �s
k

2��k�s� − ��
, �B11�

where we denote M� ��k� by the matrix Mrs
��k� and Kk

rs is a
generalized discrete Fourier transform of the ultrametric ma-
trix M� �k�.40 The matrix Kk

rs is denoted as the kernel for the
ultrametric matrix M��,�� which means that M��,�� is given
by Mrs

�k�=�k�r�+Kk
rs�s

k /2 in the longitudinal or anomalous
sector k and r, s runs over the basis vectors in the k sector.

We point out that Kk
rs can be written as
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Kk
rs = 4Bk�max�r,s�� , �B12�

where the function Bk can be expressed explicitly by the
Green functions Gs �Ref. 39� so it does not depend on the
disorder function f . One finds

Bk�r� � 0 and Bk�r + 1� − Bk�r� � 0. �B13�

Denoting detS,S��M� ��k�� by the determinant of the sub-matrix
of M� ��k� with lines in S� �0, . . . ,R� and columns in S�
� �0, . . . ,R� where we suppose that S and S� has the same
number of elements denoted by #S�= #S�. We obtain

det�M� �k� − �I� = 

r=0

R

��k�r� − ���
S

detS,S�M� ��k�� .

�B14�

In Ref. 39 it is shown that the right hand side is larger than
zero for �	Minr��k�r��. This means that the eigenvalues in
the nonreplicon sectors are always larger than the smallest
eigenvalue in the replicon sector. We now give a more gen-
eral proof of this fact useful in the next subsection:

This is true if detS,S��M� ��k���0 for S ,S�� �0, . . . ,R�. We
suppose the ordering si�si+1 for s�S and similar for S�. By
subtracting appropriate line and columns of the matrix K� k,
where K� k denotes the matrix Kk

rs we obtain a matrix where its
determinant is built purely from its diagonal elements given
by

detS,S��K� k� = 4#SBk�max�s#S,s#S�
� ��

� 

i=1

#S−1

�Bk�max�si,si��� − Bk�max�si+1,si+1� ��� .

�B15�

By using Eq. �B11� with �r
k	0 �B8� for n→0 and Eq. �B3�

we obtain detS,S��M� ��k���0 for �	Minr��k�r��.
It is clear from the considerations above that the various

sectors especially the longitudinal sector depends on the con-
crete hierarchical structure we choose. This means, that we
can also get other eigenvalues for the various sectors by
starting from a given minimal level of hierarchy by an ap-
propriate artificial division of the various sectors leading to a
larger level of hierarchy. Nevertheless the lowest eigenvalue
of the stability matrix being in the replicon sector did not
change. Now suppose, we try to restrict the stability matrix
M��,�� to the k=0 longitudinal sector of a suitable subdi-
vided hierarchy, corresponding to a search of the minimum
of Fvar �36� in the self-energy matrices ��� which are con-
tained in the Parisi algebra.

For a subdivision of blocks we obtain that Bk�r� given
explicitly in Ref. 39 is constant on two blocks in the subdi-
vided hierarchy originating from the same blocks k and r in
the precursor hierarchy. Furthermore, we get doublings in the
eigenvalues �k�r� corresponding to the subdivision. How-
ever, this results in detS,S�M� �k���0 only if S does not contain
two blocks in the subdivided hierarchy originating from the
same block. Then we immediately obtain from Eqs. �B11�,
�B12�, and �B14� that we can always subdivide the hierarchy
in such a way that the lowest eigenvalue in the k=0 longitu-

dinal sector is given by the minimum of the eigenvalues in
the replicon sector Minr��0�r��. This means that by restrict-
ing the stability matrix M��,�� to the subspace of symmetric
self-energy matrices in the Parisi-algebra with the constraint
�44� we obtain that the lowest eigenvalue of the restricted
matrix M��,�� is equal to the lowest eigenvalue in the repli-
con sector.

2. Stability in the variational approach
of Mézard and Parisi

In this section, we carry out a similar analysis for the
Bogoliubov variational approach of the Mézard-Parisi
theory, outlined in Sec. IV, as was done for the large N�-limit
theory in the last subsection. The self-energy within this ap-
proach is calculated by searching for the stationary points of
the variational free energy �35�. We get a stability matrix of
this stationary point by taking the second derivative of Fvar
with respect to the self-energy matrix under the constraint
�44�. This was calculated in Ref. 52. We obtain

M̃��,�� =
KBT

Nv2

�2Fvar

��������

=
1

2
L��,��

�2� − L��,����
�2� f̃��L����,����

�1� �L����,��
�2� .

�B16�

This matrix corresponds to the matrix M��,�� �B2� in the

large N�-limit approach. Because M̃��,�� is a ultrametric ma-
trix we obtain by using the rather general consideration for
eigenvalues in the replicon sector of these types of
matrices63

�̃�r;k,l� = Lkl��1

2
− f̃��2�KBT/v��gR+1 − gr��Lkl�� .

�B17�

By comparing Eq. �B17� with Eq. �B6� we obtain also in the
variational approach that the most divergent eigenvalues

�̃�r ;r+1,r+1� are zero in the continuous replica symmetry-
breaking solutions as was also the case in the large N�-limit
approach.

In the following we show that in the variational approach
the eigenvalues of the longitudinal and anomalous sectors
are larger than zero. We first define the reduced stability
matrix

M̃� red � �L� �2��−1M̃� �L� �2��−1. �B18�

Here L� �2� is the matrix L��,��
�2� . By using that the kernel of L� �2�

is given by −Kk
rs we obtain for the kernel of �L� �2��−1 �Ref. 40�

F� k
0 = ��� k

0�−1/2�N� 0�k
−1��� k

0�−1/2K� k��� k
0�−1 �B19�

with

N� k
0 = I −

1

2
��� k

0�−1/2K� k��
k��� k

0�−1/2, �B20�

where ��� k
0�rs=�k

0�r��rs and �k
0�r� is given by
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�k
0�r� � � Lk,r+1� for k � r + 1,

Lr+1,r+1� for r � k − 1.
� �B21�

We mention that L� �2� has positive eigenvalues which can be
seen from the positivity of G��

−1 . This has to be assumed for
the stability of Ftrial, leading to the positivity of L� �2� for n
→0 because only the first term in Eq. �B16� is unequal to

zero for f̃ =0 where the second term in Eq. �38� does not
contribute to the stability matrix.52 Now we use that L� �2� is
given by �� k

0−K� k��
k /2 which means that N� k

0 has only positive
eigenvalues. By using the same considerations for the eigen-
value equation det�N� k

0−��=0 as was done at the end of the
last subsection we obtain further that all eigenvalues of N� k

0

are lower than one. This leads to the fact that the denomina-
tor �N� k

0�−1 in F� k
0 �Eq. �B19�� can be expanded in a geometric

series.

The eigenvalue equation for M̃� red is given by the right
hand side of Eq. �B10� with Kk

rs in Eq. �B11� is substituted by
the expanded form of �Fk

0�rs �B19�. �k�r� is built of the rep-

licon eigenvalues of M̃� red corresponding to Eq. �B9�. By car-
rying out the calculation of the resulting subdeterminants of
sums and products of matrices by standard rules �Cauchy-
Binet formula� we obtain as in the last subsection that the

non-replicon eigenvalues of M̃� red are larger than the smallest
replicon eigenvalue given in Eq. �B17�.

Furthermore, we obtain also with a similar proof as in

subsection 1 that the projected matrix M̃red
��,�� to the space of

the symmetric self-energy matrices ��� of the Parisi form
with the constraint �44� contains the smallest replicon eigen-
value.

Up to now, we have only shown that the results of the
large N� approach considered in the last subsection are also

valid for the reduced stability matrix M̃red
��,��. It is not clear

whether this is also valid for the full stability matrix M̃��,��

�B16� of the Mézard-Parisi variational approach. Neverthe-
less, one normally does not need the results above in their
general form for a stability analysis of saddle point solutions
of Eq. �36�. It is enough for this analysis to know the results
concerning the positivity of the eigenvalues. This can be im-
mediately reached by using the defining equation �B18� of
the reduced stability matrix and the general conclusions
above.

This leads to the following results for the stabilities in the
large N� and the variational approach of the Mézard-Parisi
theory

�1� The eigenvalues in the replicon sector are given by
��r ;k , l� in Eq. �B6� for the large N� approach and by

�̃�r ;k , l� in Eq. �B17� for the variational approach. In the
case that the eigenvalues in the replicon sector are all posi-
tive in the large N� approach or the variational approach we
obtain also that all eigenvalues of the full stability matrices

M��,�� or M̃��,��, respectively, are larger than zero. This
leads to the stability of the corresponding saddle point solu-
tion.

�2� The eigenvalues of the continuous symmetry-

breaking solution are larger than or equal to zero.
�3� The eigenvalues of the stability matrix projected on

the subspace of variations in the symmetric self-energy ma-
trices ��� in the Parisi algebra with the constraint �44� are
larger than or equal to zero if and only if the eigenvalues of
the full stability matrix not restricted to variations in the
Parisi algebra in both approaches are larger than or equal to
zero.

We further note that the eigenvalues ��r ;k , l� �B6� and

�̃�r ;k , l� �B17� of both approaches are proportional to each
other with a positive proportional constant when neglecting

the distinction in the effective disorder functions f and f̃
related by Eq. �B1�.

APPENDIX C: INSTABILITY OF FINITE-STEP REPLICA
SYMMETRY-BREAKING SOLUTIONS IN THE

FLUID PHASE

In this appendix we show in general that finite-step rep-
lica symmetry-breaking solutions for the fluid phase of the
vortex lattice with a Gaussian disorder correlation function
�10� are not stable. This will be shown irrespective of the
number of steps. We have shown this in the case of one-step
replica symmetry breaking in Sec. VI. From Eq. �45� and
�58� we obtain in the case of a R-step replica symmetry-
breaking solution in the fluid phase

�fvar =
kBT

2 �
i=1

R �� 1

mi+1
−

1

mi

S��̃mi

�

+ �mi+1 − mi�D�2B��mi
��� �C1�

with

S�x� =
1

2
�4 arcsinh� x1/2

2
	 −

x1/2

�1 + x/4�1/2
 , �C2�

B��mi
� =

kBT

v ��
j=i

R−1
1

mj+1
�g��mj

� − g��mj+1
�� + g��R�� .

�C3�

In Eq. �C1� we used that �0=0 and mR+1�1. The R station-
arity conditions ��fvar /��i=0 for i=1¯R lead to

�
i=1

l �mi
− �mi−1

ml
= − 2

kBT

v
D��2B��ml

�� �C4�

for l=1¯R corresponding to Eq. �59� in the case of the
one-step replica symmetry-breaking solution. The saddle
point conditions ��fvar /�mi=0 for i=1¯R lead to

�
i=1

l
1

mi
2 �S��̃mi

� − S��̃mi−1
�� = D�2B��ml

�� − Zl �C5�
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for l=1, . . . ,R with

Zl = − �
j=1

l

�
i=1

j−1 �mi

mj
� 1

mi
−

1

mi+1
	�g��mj

� − g��mj−1
�� � 0.

�C6�

One should compare this equation with Eq. �60� in the case
of a one-step replica symmetry-breaking solution. Since Z1
=0 we can use Eqs. �C4� and �C5� similarly as in the deri-

vation of Eq. �81� to obtain �̃�1;2 ,2��0 irrespective of the
number R of hierarchical steps for �1�0. Furthermore, we

obtain �̃�1;2 ,2�=0 at �1=0 as was also the case in the one-
step hierarchical symmetry-breaking case.
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