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We discuss the dependence of the Josephson-current correlations in mesoscopic superconductor/normal-
conductor/superconductor �SNS� devices on the transparency of the superconductor/normal-conductor inter-
faces. Focusing on short junctions we apply the supersymmetry method to construct an effective field theory
for mesoscopic SNS devices which is evaluated in the limit of highly and weakly transparent interfaces. We
show that the two-point Josephson-current correlator differs by a universal factor of 2 in these two cases.
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I. INTRODUCTION

One of the most promising directions in the field of su-
perconductivity in mesoscopic structures is provided by re-
cent technological advances in hybrid superconductor/
semiconductor technology. As an example we want to
mention the very recently observed quantization of the criti-
cal current in superconducting quantum point contacts.1 An
important aspect of this development is that for hybrid semi-
conductor structures both the system geometry and the
chemical potential can be varied flexibly, which greatly fa-
cilitates the observation of mesoscopic fluctuations. In con-
trast, for ordinary metal heterostructures only external mag-
netic fields effectively qualify as averaging parameters,
implying that the dependence of fluctuation phenomena on
the phase of the superconducting condensate is difficult to
observe. Indeed, fabrication of such hybrid devices has ad-
vanced to the stage that fluctuation phenomena may be
measured2–7 in a wide range of geometries and conditions.

The observable behavior of a two-dimensional electron
gas �N�, as realized in a semiconductor heterostructure, in
contact with a superconductor �S� is highly sensitive to the
quality of the SN contact. In this work we discuss the SN
interface dependence of the Josephson-current J��� through
an electron gas, sandwiched between two superconductor ter-
minals whose order parameters exhibit a phase difference �.
A measurement of the fluctuation behavior varJ��� of this
quantity has been attempted already by Takayanagi et al.2 As
pointed out above, the use of a semiconductor heterostruc-
ture allows the use of an external gate voltage to tune fluc-
tuations in the supercurrent, while keeping the phase differ-
ence fixed.8 For typical experiments2,5 transmission tends to
be weak due to the presence of the Schottky barrier. How-
ever, as noted in Ref. 2, a theory of supercurrent fluctuations
in the weak-transmission regime has so far been missing. In
this work, we fill this gap and compare the behavior of the
supercurrent for weakly and highly transparent interfaces.
�We remark that an experimental realization of a crossover in
the transition strength has already been attempted in Ref. 5.�
Specifically, we will compute the mesoscopic fluctuations of
the current, varJ���, and, more generally, its correlation pro-
file

K��1,�2� � �J��1�J��2�� − �J��1���J��2�� . �1�

This latter function provides a wealth of information relating
to the design of the system, and it is clear that its experimen-

tal determination—along the lines of Ref. 2—would provide
a sensitive test of the theory of mesoscopic fluctuations in
SN systems. However, before proceeding, let us briefly put
our present analysis into the context of previous studies of
the problem.

A pioneering work in the theory of supercurrent fluctua-
tions is due to Altshuler and Spivak,9 who calculated the
supercurrent correlations by means of a diagrammatic pertur-
bation theory. Their results assumed the limit of a long junc-
tion, so that Ec��, where Ec is the Thouless energy and �
the superconducting order parameter. In this limit, the super-
current fluctuations are not universal: instead, the supercur-
rent variance is proportional to �eEc /��2.

The applicability of the diagrammatic theory is limited,
however, to conditions under which the fluctuations of the
supercurrent exceed its average. While such a situation may
be reached by application of a magnetic field or in the pres-
ence of a glassy structure in the N region, it clearly is rather
specialized. Under more usual conditions, the essentially
nonperturbative nature of the proximity effect leads to a pro-
liferation of diagrams whose summation is practically
impossible.10

A powerful alternative to the diagrammatic approach is
provided by a multiple-scattering theory.11,12 Here the prop-
erty in question is related to the scattering matrix of the N
region, whose statistical properties are known.11 The vari-
ance of the supercurrent through the N region at fixed phase
difference has been calculated by Beenakker11,12 using the
scattering approach. His results apply for a short junction
��Ec with highly transparent SN interfaces. In this case the
fluctuations become universal: the supercurrent variance is
proportional to �e� /��2.

In this work, we apply the supersymmetry method13 to
construct an alternative approach to the problem. A general
feature of our formulation is its close alliance to the quasi-
classical approach,10,14–16 itself a traditional means of de-
scribing the mean properties of SN systems. In particular,
using the fact that the stationary phase configurations of the
field theory of dirty17 SN systems are determined by the
quasiclassical Usadel equations,10 one can benefit from the
huge body of expertise on �ensemble averaged� Josephson
currents in mesoscopic SN devices. The evaluation of fluc-
tuations around the Usadel mean field then leads to results
for the mesoscopic fluctuations of the current.
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To be specific, we apply our approach to the analysis of
short junctions with moderately weak coupling of the super-
conductor condensate to the normal-metal “quantum dot,”
which allows us to use random-matrix theory �RMT� to
model the normal metal. That is, we assume the hierarchy of

energy scales ��Eg�Ec, where Eg� d̄g is the inverse of
the so-called dwell time,18,19 g�1 the normal-state conduc-

tance of the system, and d̄ its mean level spacing. �However,
the application of the method to other regimes requires only
technical rather than conceptual modifications.� Here on-
wards we put �=1.

II. MAIN RESULT

Deferring an outline of the technicalities of the analysis to
the last part of this work, we here merely anticipate that the
correlator K��1 ,�2� is obtained by a second-order perturba-
tive expansion around the Usadel functional free energy. In
this way we find

K���1,�2� =
c�e2�2

	2 sin �1 sin �2�
0




dx1�
0




dx2

�
�x1

2 + 1�x2
2 + 1

�x1
2 + cos2��1/2��x2

2 + cos2��2/2�

� ��x1
2 + 1�x2

2 + cos2��2/2�

+ �x2
2 + 1�x1

2 + cos2��1/2�	−2, �2�

where

c� = 
1/2 for highly transparent interfaces �� = 1� ,

1 for weakly transparent interfaces �� � 1� ,
�
�3�

and � is the transmission coefficient characterizing the trans-
parency of the SN interfaces; see below. While Eqs. �2� and
�3� are a new result for weakly transparent interfaces, current
fluctuations of the moderately weakly coupled quantum dot
with highly transparent interfaces have been the subject of an
earlier scattering theory analysis in Ref. 12. Within this ap-
proach both the diagonal contribution varJ���=K�� ,��
�Ref. 12� and the straightforward extension to the full corre-
lation function K��1 ,�2� are represented as a double integral
over eigenvalues of the transmission matrix, which despite
its difference in form, is numerically identical. The agree-
ment with these earlier results provides a check on the con-
sistency of the field theory. Notice that the validity of the
result is limited to values of the phase outside the domain20

��−	��g−1, a fact that was pointed out earlier in Ref. 12.
The main result of this work is that the Josephson-current
fluctuations for the case of weakly and highly transparent
interfaces differ by a universal factor of 2. This factor of 2, in
fact, can be anticipated by the observation that for small
phase differences �, one may establish contact to the theory
of universal conductance fluctuations �UCFs� through a dis-
ordered quantum dot—i.e., for ��1,

J��� 

ge�

2
� , �4�

where g is the �dimensionless� conductance through the dis-
ordered quantum dot. Using the fact that for the orthogonal
ensemble21

var g = �
1

4
for high barriers �� � 1� ,

1

8
for transparent contacts �� = 1� ,� �5�

one is led to the expectation ���1�

var J��� = �
e2�2

16
�2 for high barriers �� � 1� ,

e2�2

32
�2 for transparent contacts �� = 1� ,�

�6�

in agreement with Eqs. �2� and �3�.
Figure 1 shows the Josephson-current fluctuations

�varJ���=�K�� ,�� as a function of �. We observe that the
maximum falls to a fixed value ��2.7. The strong increase
of the fluctuations is a manifestation of the fact that �=	
defines an instability of the Josephson action, in the vicinity
of which minute changes of the disorder/boundary geometry
trigger drastic changes in the configuration-specific J���.

III. FORMALISM

Having discussed our results for the SNS quantum dot, we
next provide a brief outline of the formalism.

Assuming M channels coupling the disordered quantum
dot to the superconductors �with each M /2 modes propagat-
ing to the left and to the right, respectively22� the Hamil-
tonian of the SNS junction is given by

H = Hd + H�
1 + H�

2 + Hc
1 + Hc

2, �7�

where �i=1,2�

FIG. 1. Plot of �K̃�� ,�� against phase �, where K̃

�	2 / �c�e2�2�K. The inset shows how �K̃�� ,�� falls to zero
within a narrow window around �=	.
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Hd = �

�

��
�Hdot

����� , �8�

H�
i = �

aa�
� dE��a

i �E��HBdG
i,aa���a�

i �E�� , �9�

Hc
i = �


a
� dE���
�Wi


a��a
i �E�� + ��a

i �E��Wi

a��
�	 .

�10�

���
�� denotes a set of dot states �for further convenience we
use the Nambu formalism; i.e., the states ��
� comprise par-
ticle and hole degrees of freedom in a single object� and
���a

i �E��� a set of scattering states into superconductor i. The
dot Hamiltonian is of the form Hdot=�3

ph
� h where h is

drawn from the orthogonal Gaussian ensemble with the vari-
ance set by the spectrum width �, HBdG

i is the Boguliubov–de
Gennes Hamiltonian of superconductor i with order param-
eters �i=�ei�i, and the coupling matrices Wi are character-

ized by the transmission coefficients23 �, WiWi
t=

f���

	 ��ch,i
op ,

where f���= 2
� −1− 2

�
�1−� and �ch,i

op describes a diagonal
matrix with entries 1 for the M /2 open channels connecting
the dot to superconductor i and 0 otherwise �We assume that
the sets of dot states coupling to superconductors 1 and 2 are
disjoint.� The capacitance of the dot is assumed to be suffi-
ciently large that the Coulomb blockade can be ignored.

To compute Josephson-current correlations we introduce a
supersymmetric field integral representation of the free
energy:13

K��1,�2� = � e

	
�2� d�1� d�2� d2F��̂,��

d�1d�2
�

�1=�2=0
,

�11�

where

F��̂,�� =� DQe−S�Q	 �12�

with

S�Q	 =
M

2
Re str ln�1 +

f���
��2 + �2

��̂�3
ph + ��2

phei��3
ph�3

tr
	Q� .

�13�

Here, Q is a 16-dimensional matrix acting on the product of
particle-hole �ph� space, a two-component space �f� required
to distinguish between the two supercurrents, a boson-
fermion �bf� space implementing the supersymmetric struc-
ture of the theory, and a time reversal �tr� space required to
correctly describe the behavior of the system under time-
reversal. Further, the symbol “str� denotes the supersymmet-
ric generalization of the matrix trace, and �̂=diag��1 ,�2�
and �=diag��1+�1 ,�2+�2� are diagonal matrices in f
space where �1,2 and �1,2�1bf are the two energy and phase
arguments entering the integral representation of the super-
current and the sources �1,2=diag��1,2 ,0�bf break supersym-
metry.

Referring for a detailed discussion of the derivation of
Eqs. �11�–�13� and of the internal structure of the matrix Q to
Ref. 10, we here merely recapitulate that it originates from
the coherent-state representation of the free energy along the
standard procedure, including the generalization of the parti-
tion function to a supersymmetry formulation, RMT en-
semble average, Hubbard-Stratonovich transformation, and
expansion in Goldstone modes around the metallic saddle
point �3

ph.
Notably, the nonlinear constraint Q2=1 indicates that the

matrix Q represents a generalization of the Green function g
central to the quasiclassical approach. Indeed, it is straight-
forward to see that a variation of Eq. �13� �under the restric-
tion Q2=1� leads to

�Q̄,��3
ph + � cos ��2

ph	 = 0, �14�

i.e., an equation which, upon identification of the matrix Q
with the quasiclassical Green functions, immediately is rec-
ognized as the zero-dimensional limit of a Usadel equation
�extended, however, to a larger structure accommodating
more than one impurity averaged observable.� Void of ele-
ments coupling between the two observables �f space�, Eq.

�14� admits a block-diagonal solution Q̄=diag�g1 ,g2��bf

�R�3
phR−1, where

gi =
1

��i
2 + �2

��i�3
ph + � cos �i�2

ph� �15�

are the quasiclassical Green functions computed for phase
difference �1,2 and the second representation expresses the
solution as a rotation away from the metallic reference point,
�3

ph. The ensemble-averaged Josephson current may now be
calculated from the saddle-point action

S�Q̄	 =
M

4
str ln�1 + f2��� + 2f���

��2 + �2 cos2 �

��2 + �2 � ,

�16�

and one obtains for highly transparent interfaces

J��� =
eM

2	
� sin �

��
0




dx
1

�x2 + 1 + �x2 + cos2 �/2

1
�x2 + cos2 �/2

,

�17�

while for weakly transparent interfaces

J��� =
eM�

4	
� sin ��

0




dx
1

�x2 + cos2 �/2

1
�x2 + 1

. �18�

Equations �17� and �18� coincide with quasiclassical
results.11,18,19,24

Josephson-current correlations can now be explored by
defining10
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Q = RT�3
phT−1R−1, �19�

where the generalized rotation matrix T describes fluctua-
tions around the Usadel mean field and the free energy
F��̂ ,��=�DT exp�−S�Q	�.

Going beyond the mean field level by substituting the
generalized parametrization, Eq. �19�, into the field integral,
one finds that fluctuations around T=1 are penalized by a
parameter cos��i /2�g which is much larger than unity, unless
��−	 � �g−1 lies in the anomalous window discussed above.
While in the latter case the correlator, Eq. �11�, has to be
evaluated by full integration over the manifold of T’s �cf. the
analogous situation with computing the fine structure of
spectral correlation functions on energy scales smaller than
the single particle level spacing13�, in general it is sufficient
to perturbatively expand the matrix T=1+W+ 1

2W2+¯ to
second order around unity. Expansion of the logarithm then
leads to the Gaussian actions for highly and weakly transpar-
ent interfaces,

S��1
�2� �W	 =

�M

4
str���̂���W2	 , �20�

S�=1
�2� �W	 =

M

4
str�W2

+ � 1

1 + ��̂���
�

��̂2 + �2
sin ��2

ph�3
trW�2� ,

�21�

where we introduced ��̂���ª
��̂2+�2cos2 �

��̂2+�2 . Performing the
twofold derivative with respect to the sources followed by
Gaussian integrals over the W’s one obtains the final result,
Eqs. �2� and �3�.

IV. GENERALIZATION

While the outline above was specific to the case of a
spatially structureless quantum dot, the generalization to
more complex geometries is straightforward. Under condi-
tions where the spatial variation of the quasiclassical Green
function is no longer negligible, Eq. �13� generalizes to the
action of a matrix field Q. For example, for an extended
diffusive N region �i.e., for Ec�� ,Eg� and weakly transpar-

ent interfaces, S�Q	=−�	D� /8��ddrstr��Q�Q�+S��Q	
+Sc�Q	 assumes the form of a generalized diffusive �
model,10 where S��Q	=−�	� /2��ddrstr�Q�̂�3

ph� and Sc�Q	
describes the coupling to the superconductor. Similarly, for a
�nearly� clean system, S�Q	=−vF�ddrdnstr�T�3

phn ·�T−1�
+S��Q	+Sc�Q	 becomes the free energy of the ballistic �
model.25 In complete analogy to our discussion above, the
variation of these actions leads to the general Usadel14 and
Eilenberger15 equations, respectively. To compute
Josephson-current correlations, one again employs the pa-
rametrization, Eq. �19�, where, however, both R and T are
field configurations with nonvanishing spatial variation. By
evaluating the action of a generalized quadratic variation T
= +W+ 1

2W2 and subsequent computation of the correlator,
Eq. �11�, one can then, in principle, obtain the Josephson-
current correlations of any SN system category �if amenable
to the approximation schemes of quasiclassics.� However, in
cases where the solution of the Usadel and Eilenberger equa-
tions displays a complex spatial profile, the concrete compu-
tation of the generalized Gaussian integrals over W can be
cumbersome. Under these conditions one expects the result
for the current correlations to be less universal �e.g., depen-
dent on the system geometry, disorder concentration, etc.�
than in the quantum dot case discussed above.

V. SUMMARY

In summary, we showed that the mesoscopic Josephson-
current fluctuations through a weakly coupled disordered
quantum dot differ by an universal factor of 2 for the cases of
weakly and highly transparent interfaces. In our calculations
we applied a supersymmetric field-theoretical approach. Al-
though we concentrate on the case of short junctions �and
use RMT to model the normal metal�, this method allows for
a microscopic derivation capable to cover a wide range of
parameters characterizing the SNS junction. The observation
of the Josephson-current correlations should be feasible us-
ing semiconductor technology.
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