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Various local probes have been applied to understanding current flow through superconducting films, which
are often surprisingly inhomogeneous. Here, we show that magnetic imaging allows quantitative reconstruction
of both current density J and electric field E resolved in time and space in a film carrying subcritical ac current.
Current reconstruction entails inversion of the Biot-Savart law, while electric fields are reconstructed using
Faraday’s law. We describe the corresponding numerical procedures, largely adapting existing work to the case
of a strip carrying ac current, but including other methods of obtaining the complete electric field from the
inductive portion determined by Faraday’s law. We also delineate the physical requirements behind the math-
ematical transformations. We then apply the procedures to images of a strip of YBa2Cu3O7−� carrying an ac
current at 400 Hz. Our scanning Hall probe microscope produces a time series of magnetic images of the strip
with 1 �m spatial resolution and 25 �s time resolution. Combining the reconstructed J and E, we obtain a
complete characterization including local critical current density, E-J curves, and power losses. This analysis
has a range of applications from fundamental studies of vortex dynamics to practical coated conductor
development.
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I. INTRODUCTION

Developing high-temperature superconducting films to
carry high current densities with low dissipation has proven
to be an enormous challenge, resulting in composite materi-
als that are inhomogeneous down to the atomic scale.1 For
characterizing inhomogeneous current flow, magnetic imag-
ing has emerged as an important tool. By measuring the
magnetic field in a plane above a film’s surface, one can
invert the Biot-Savart law to reconstruct a two-dimensional
map of current density J in the film, as described in Sec.
IV A.2–4 Such a measurement can be obtained by various
methods including magneto-optical imaging,5–7 scanning
Hall probe microscopy,8,9 and scanning superconducting
quantum interference device microscopy.10,11

Other imaging techniques, such as scanning
potentiometry,12 scanning laser microscopy,10,13 and scan-
ning electron microscopy,14 can map out the electric field E
that arises from vortex movement or other changes in local
supercurrent density. In these techniques, to generate measur-
able electric fields, the superconductor is biased with a cur-
rent I slightly greater than the dc critical current Ic at which
vortices start to flow. In principle, such measurements could
be combined with magnetic imaging of the same sample, and
together, J and E would provide a complete, spatially re-
solved electrical characterization of the material, including
the local critical current density Jc and the local power input,
which can be calculated as J ·E.

In this work, we demonstrate that for I� Ic, time-resolved
magnetic imaging can simultaneously determine both J and
E in a superconducting film. Figure 1 summarizes the opera-
tions involved. The instantaneous magnetic field B deter-
mines J, while the time rate of change of B is related to E
through Faraday’s law,

� � E = − �tB . �1�

This relation only constrains the inductive portion of electric
field Ei. To reconstruct the remaining electrostatic part Ep,
we must impose the additional restrictions that I� Ic, as dis-
cussed in Sec. V, and that E is parallel to J, discussed in Sec.
V C. However, many important applications that are not ac-
cessible to techniques operating above Ic do lie within these
restrictions, such as ac losses in superconducting films.

Faraday’s law has been applied previously to derive ac
loss from a critical state model of magnetic fields in a homo-
geneous, infinitely long superconducting wire.15,16 It has also
been applied to one-dimensional magnetic measurements of
strips.17 In the present work, the electric-field reconstruction
is reformulated to allow for the two-dimensional inhomoge-
neity of a real conductor revealed by our magnetic images.
This method also applies to the case of magnetization decay
due to flux creep, which was recently analyzed using
magneto-optic images.18

Here, we use a cryogenic scanning Hall probe microscope
to obtain a series of images of Bz, the component of magnetic
field perpendicular to the sample surface, as it evolves with
time. The microscope is described in Ref. 8 and further in-
formation is given in Sec. II A.

To analyze ac losses, we image a strip of the high-
temperature superconductor YBa2Cu3O7−� �YBCO�, de-
scribed in Sec. II B. We apply an ac current to the strip at
400 Hz, a typical operating frequency for applications,19 and
must image the magnetic response faster than this. Our scan
speed—a few pixels per second—is slow in comparison, so
instead of acquiring an entire sequence of images within one
cycle of applied current, we obtain an average response over
many cycles, as explained in Sec. II C, with 25 �s time reso-
lution.
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Section III presents this time series of magnetic images,
which are then transformed into images of current and elec-
tric field in Secs. IV and V. These quantities are combined in
Secs VI and VII to yield maps of dissipation and supercon-
ducting characteristics.

II. EXPERIMENTAL PROCEDURE

A. Apparatus: Scanning Hall probe microscope

The apparatus is described in Ref. 8, but essential experi-
mental details and notable modifications are included here.
The instrument generates magnetic images by rastering a
Hall sensor above the sample surface, measuring magnetic
field at each pixel. The sensor’s Hall resistance is approxi-
mately proportional to Bz, the component of magnetic field
perpendicular to the sample surface, with a field resolution of
4�10−3 G/�Hz.

The scanning stage, based on stepper motors driving mi-
crometers, offers a 1cm�4cm scan area for aligning to
samples and macroscopic features and can zoom in for
200 nm positioning resolution. However, the image resolu-
tion is limited by the sensor: First, its lithographic size leads
to averaging of the field over 500 nm. Second, though its tip
remains in contact with the sample during scanning, the sen-
sor’s slight tilt lifts the sensitive area 1 �m above the sample
surface. These factors yield 1 �m spatial resolution.

The sensitive area is coated with a grounded gold gate to
screen electric fields, followed by an insulating aluminum
oxide layer to isolate the gate from sample voltages.20 The
oxide is also intended to provide protection against mechani-
cal wear.

B. Sample: YBCO strip

The YBCO film studied is 180 nm thick, grown epitaxi-
ally by pulsed laser deposition on a SrTiO3 �001� substrate.
Photolithographic patterning followed by argon ion milling
removes parts of the film, leaving a bridge as shown in Fig.
2�a�. The substrate is held in vacuum, attached to the micro-
scope’s copper cold finger by a thin layer of low-temperature
varnish. The cold finger is cooled by a continuous flow of
liquid helium. The film’s Tc �defined by the maximum in
dR /dT� is measured in this cryostat to be 90 K. For imaging,
the film’s cold finger is held at 40 K, while the Hall sensor is
held at 54 K. However, the current return lead �to the right of
the segment imaged� is narrower than the bridge �32 �m
versus 50 �m�, and a magnetic scan �not shown� indicates
that the applied current of 0.75 A rms exceeds its critical
current. The consequent dissipation in the return lead may
heat the sample several degrees above 40 K.

C. Data acquisition

The images shown in Figs. 2�c�–2�j� are all derived from
one scan as described in Ref. 8. A 402.7 Hz ac current is
applied continuously to the sample. The sensor rasters over a
100�m�150�m area with 0.5 �m pixel spacing. It pauses
at each pixel and records the wave forms I�t� and B�t� for
approximately 80 cycles of applied current. These cycles are
overlaid and averaged. Values from the averaged waveforms
are collated into images by their phase within the cycle. The
complete set of images is presented as the movie BJE.avi in
the supplemental material.21 The images correspond to 100
time slices over the cycle of applied current, each represent-
ing the average magnetic field over a 25 �s interval.

III. MAGNETIC IMAGE RESULTS

This work is primarily concerned with deriving quantities
of interest from time-resolved magnetic images, but it is
worth first examining the images directly. From them, we
extract a great deal of qualitative information that shapes the
assumptions under which further quantities are derived.

Figures 2�c�–2�j� are selected from a larger set of frames
and represent one half-cycle of ac applied current. Initially,
the maximum current I=1.07 A is applied and flux has

FIG. 1. A flow chart illustrating how we use a series of
magnetic-field images to reconstruct current density and electric
field in the sample, and finally power input.
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penetrated, somewhat inhomogeneously, into both edges of
the strip. I is apparently below the critical current Ic as a
central flux-free region separates the two flux fronts. This
condition is necessary for our calculation of electric field, as
explained in Sec. V.

In Fig. 2�f�, the applied current is reduced to zero, and
vortices remain trapped in the edge regions. Flux of the op-
posite sign starts to enter at the edges. We then see this
opposite flux erase and replace the trapped flux as negative
current is applied. The succeeding half of the cycle approxi-

FIG. 2. �Color online� Imaging current-induced flux penetration into a YBCO film. �a� Illustration of the sample geometry. The
approximate area of the magnetic images is outlined by the brown box. Current is injected at the left and extracted from the downward-facing
lead; the right-facing current lead and smaller voltage leads are not used �floating�. �b� Applied current during a 0.75 A rms, 400 Hz cycle.
Select times are marked, and the corresponding magnetic images are shown in �c�–�j�. Image �c� indicates the scale and boundary of the
experimental data �dashed green box�; the background outside of the data is filled by a fit to a critical state model. The vertical dotted yellow
line indicates the location of the cross sections shown in Fig. 3. In image �i�, the black arrows point out two spots where vortices enter the
film more easily. Below �c�–�j� are reconstructions from the magnetic data: components Jx and Jy of the current density flowing in the
sample, and components Eix and Eiy of the inductive portion of the electric field. Color scales for x and y components are the same. Black
streamlines of J and Ei overlay their x components. The complete set of frames is presented as the movie BJE.avi in the supplemental
material �Ref. 21�.
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mately repeats the B, J, and E configurations shown, but with
opposite signs.

The boundary of the data is shown as a dashed green box
in Fig. 2�c�. The surrounding background is calculated with a
critical state model for a thin superconducting strip.16,22 The
main purpose of this background is to better match the
boundaries of the image for the Fourier transformations de-
scribed in Sec. IV A. The good agreement between the
model and the data also shows that much of the strip’s re-
sponse can be ascribed to critical state behavior, though de-
viations, such as spatial inhomogeneity in pinning strength,
are evident.

The model is fitted to the entire set of frames at once. The
free parameters are the height of the sensor above the sample
plane, 1.2 �m, the sensor tilt, 3° about the x axis, the strip’s
critical current, 1.13 A, the Hall coefficient, 0.10 � /G, and
the amplitude, 7.2 Oe rms, of an applied field proportional to
the applied current, explained below. The Hall coefficient’s
fitted value is consistent with the calibrated value of
0.11 � /G. The y position and tilt of the strip about the z axis
are also allowed to vary, and the tilt is zeroed by rotating the
image. These parameters are constrained to be constant over
time; the only change in the calculation from frame to frame
is the �known� applied current.

Adding the small, uniform applied field that varies with
the applied current improves the fit, and is suggested by the
sample geometry in Fig. 2�a�, where the current returns to
the right and below the bridge. Positive returning current
generates a negative field at the section of the bridge imaged,
which accords with the sign of the field added to the calcu-
lation. Furthermore, the vertical segment of the return lead
should add a negative dB /dx, which is not accounted for by
the calculation, and which does explain why the disparity
between the data and the calculation is largest toward the
lower right corner of the boundary.

IV. CURRENT RECONSTRUCTION

A. Magnetic inversion with regularization

The Biot-Savart law describes the magnetic field B gen-
erated by a current distribution J,

B�r� =
�0

4�
� d3r�

J�r�� � �r − r��
�r − r��3

. �2�

Several authors have tackled the problem of inverting this
relation to obtain a planar current distribution J�x ,y� from a
planar magnetic measurement Bz�x ,y�.2–4 We tried two of
these existing methods: regularization4 and conjugate
gradient.3 The conjugate-gradient method produces current
distributions dominated by unphysical artifacts. Further test-
ing with simulated data suggests that this occurs when the
current distribution extends outside the image boundaries, as
in our images, which encompass only a section of the super-
conducting strip.

We met with greater success using the regularization
method with generalized cross-validation �GCV�, described
in detail in Ref. 4 and summarized here. Taking the z com-
ponent of Eq. �2� and Fourier transforming in x and y, we

find an algebraic relation between the Fourier-transformed

quantities B̃z, J̃x, and J̃y:

Bz
˜ �kx,ky,z� =

�0

2
e−kz i

k
�kyJx̃ − kxJỹ� . �3�

We assume that Jz, the current flowing perpendicular to the
plane of the film, is insignificant. We also ignore any z de-
pendence of the in-plane components of current, approxi-
mately solving for the current density averaged over the film
thickness. These are reasonable approximations in our film’s
geometry; its thickness, 180 nm, is smaller than its effec-
tive London penetration depth, �eff=�ab / tanh�d /2�ab�
=400 nm.23,24 The specific kernel that we use to relate Jx and
Jy to Bz is that of a film of 180 nm thickness.4

We now reduce Jx and Jy to a single unknown by noting
that J must be nearly divergence-free at the operating fre-
quency of 400 Hz �the resonant frequency, 1 /�LC, of a piece
of strip similar to that imaged would be �100 GHz�. This
allows us to derive both Jx and Jy from the local magnetiza-
tion g�x ,y�,25 where

J�x,y� = − ẑ � �g�x,y� ⇒ Jx = �yg,Jy = − �xg . �4�

In Fourier space,

g̃�kx,ky� =
i

k2 �kyJx̃ − kxJỹ� . �5�

Equations �3� and �5� yield

g̃ =
2

�0
ekz1

k
Bz
˜ . �6�

Thus, our basic procedure is to Fourier transform Bz, solve
for g̃, Fourier transform back to the real space g�x ,y�, and
use Eq. �4� to obtain Jx and Jy.

The first difficulty arises from the factor ekz in Eq. �6�.
Spurious high spatial frequencies �with wavelength greater
than z, the measurement height� in the magnetic data are
exponentially amplified in the inverted current. While scan-
ning Hall probe microscopy enjoys lower noise and smaller z
than magneto-optical imaging,26 noise in our images can still
dominate the reconstructed J. The method of regularization
compensates by suppressing high frequencies �smoothing�,
and GCV determines an optimal amount of regularization
from the data itself. In practice, we used GCV as a guide to
choose a regularization parameter ��=100 as described in
Ref. 4� that we held fixed across the set of frames.

Similarly, differentiating g to find the components of J
amplifies high-frequency noise, so we use Savitsky-Golay
smoothing to extract the derivatives. The smoothing is qua-
dratic with a frame size of 2.5 �m �5 pixels�.

The second difficulty is that the Fourier transform of B
assumes periodicity in the vertical and horizontal directions,
and mismatches between the left and right and top and bot-
tom boundaries of the B image lead to artifacts dominating
the image once it has been transformed, manipulated, and
transformed back. A common solution is to window the data,
bringing its boundaries smoothly to zero. This discards a
large portion of each image, however.
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Instead, we rotate the original data �2.3° about the z axis�
so that the bridge runs horizontally, then center it on a larger
area �a square 256 �m on a side� in order to move the edge
effects away from the data. We fill in the background with a
calculated B as described in Sec. III. Only after calculating J
and Ei �described in Sec. V A� do we crop the images back
to the original dimensions �plus the margin seen in Fig. 2�c��.
Finally, before Fourier transforming, we mirror the images
from top to bottom in order to better match the top and
bottom edges without going to the much larger area neces-
sary to allow the field to die off, which would be more com-
putationally cumbersome.

While these preparations remove artifacts associated with
edge mismatch, we do observe a spurious bump in the recon-
structed current at the boundary between data and fit, seen
clearly in the cross section of Jx in Fig. 3. However, this
artifact is about ten times smaller than our signal, and ap-
pears to be confined to the boundary.

B. Discussion of current-density images

The results largely agree with our expectations for a su-
perconducting strip. The reconstructed current flows within
the strip approximately in the x direction. At the maximum
applied current �Fig. 2�c��, the current density �J=�Jx

2+Jy
2� in

the edge regions of flux penetration should equal the critical
current density, according to the critical state model. J then
dips down �but is not zero� in the vortex-free central region,
as expected from the demagnetization effect of the strip
geometry.16,22 This separation into edge and central regions
is clearest in the cross section of Jx �Fig. 3�c��. J averaged

over the edge regions is 12 MA/cm2, which accords with
macroscopic transport measurements of Jc on a similar film
9 MA/cm2 at 44 K�.27 We expect transport, which is sensi-
tive to the weakest point in a superconductor, to yield a
lower value than the spatially averaged Jc.

The cross section of Jx also shows more current on the −y
side, indicative of the applied field �described in Sec. III�
modifying the symmetric distribution one would expect for
an applied current. While the cross sections vary along the
length of the strip, this asymmetry is typical.

Jy, plotted on the same color scale as Jx, is smaller, but
highlights where the current reroutes around apparent weak
spots in the film. Spots producing the largest Jy are marked
with arrows in Fig. 2�i�. These features in Jy correspond to
bumps in the streamlines overlaid on Jx where the current
spreads around these defects. In the following sections, we
show that these are also spots of high electric field and dis-
sipation.

V. ELECTRIC FIELD RECONSTRUCTION

We relate electric field to the magnetic field we measure
via Faraday’s law,

� � E = − �tB . �7�

Taking the z component,

�xEy − �yEx = − �tBz. �8�

This only defines E up to the gradient of a scalar. We there-
fore use the Helmholtz decomposition to separate the electric
field into a divergence-free inductive portion, Ei, and a curl-
free electrostatic portion, Ep �following the notation of Ref.
18�,

E = Ei + Ep. �9�

Ep=−�	, where 	 is a scalar potential and � ·Ep=
 /�0
the charge density. Our measurements determine Ei through
Eq. �8�, but do not determine Ep without further constraints,
as described in Sec. V C.

To illustrate, if we apply a dc current I� Ic to our strip,
flux flow or other resistive behavior generates an Ep, but we
would see little time variation of the magnetic field when
averaging over length scales greater than the intervortex
spacing. In contrast, for I� Ic, the voltage and electric field
�both Ei and Ep� are zero in the steady state. We therefore
remain below Ic of our superconducting strip in order to
minimize immeasurable portions of Ep.

Furthermore, below Ic, even in a dynamic state, Ep re-
mains zero for a strip that is uniform in x with no Hall effect.
In this case, symmetry dictates that Ey =0, Ez=0, and �xEx
=0; thus, � ·E=0. Then, Ep is uniform, and zero below Ic.
Thus, all of the behavior we expect from a model strip will
be contained in Ei.

A. Inductive electric field Ei

To reconstruct the divergence-free Ei, we proceed as for
J, solving for a potential function h where

FIG. 3. �Color online� Cross sections of the data in Fig. 2. The
sections are taken along the y axis at the location of the dotted
yellow line in Fig. 2�c�. The vertical dashed green lines mark the
boundary between data and background fit. Successive frames in
the current cycle are overlaid; their colors and labels match the
frame labels in Fig. 2.
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Ei�x,y� = − z � �h�x,y� ⇒ Eix = �yh,Eiy = − �xh , �10�

in which case Eq. �8� becomes a Poisson equation for h:

− �x
2h − �y

2h = − �tBz, �11�

�2D
2 h = �tBz. �12�

We are interested in the electric field in the sample plane
�z=0� rather than the measurement plane. We therefore need
Bz�z=0�, which we obtain from the current distribution via
the Biot-Savart law. Bz at any height is easily computed by

rearranging Eq. �6� to obtain B̃z in terms of g̃, the magneti-
zation function from which J is derived:

Bz
˜ =

�0

2
e−kzkg̃ . �13�

It is also easiest to solve the Poisson equation in Fourier
space, where Eq. �12� becomes

�ik�2h̃ = �tB̃z�z = 0� , �14�

and combining Eqs. �13� and �14�,

h̃ = −
�0

2k
�tg̃ . �15�

To approximate the time derivative of g̃, we compute
twice the final number of frames �200 frames spaced by
12.5 �s, but each still averages a 25 �s interval� and take the
differences between successive even frames. We can then
calculate simultaneous electric field and current at the times
of the odd frames.

Once we have solved for h̃ and transformed back to real
space, we use Savitsky-Golay smoothing, as with J, to ex-
tract the partial derivatives corresponding to Eix and Eiy.

Finally, Eq. �8� only defines Eix and Eiy up to constants.
Setting the constants is equivalent to finding a field-free
point, to which Norris devoted much care.15 We set the zeros
based on the edges of the uncropped images, as far from
inhomogeneities in the data as possible. For the Eix zero, we
use the mean of the two pixels at the vertical center of the
strip �where we expect no E, as Norris pointed out� on the
left and right edges. We set the Eiy zero to the mean of the
four corners. This mean is zero for an ideal strip and mini-
mally affected by fields originating toward the center of the
image.

B. Discussion of Ei images

As the applied current decreases over the half-cycle
shown, Eix remains approximately zero �white� in a central
region of the strip. Outside this region, it becomes negative
�blue�, continuing past the strip edges. This is also visible in
the cross sections of Eix in Fig. 3. This behavior accords with
our expectations for vortices moving into the edges of the
film. The central region shrinks, tracking the flux front as
vortices enter. Although vortices and current from the previ-
ous half-cycle are present inside the central region, the vor-
tices remain pinned and therefore do not generate an electric
field.

The central region is not completely field-free, however.
Interestingly, the field it does display—about ten times
smaller than the edge fields—is maximal and opposite to the
current when dI /dt=0, a point where our critical state model
would dictate E=0. Such a field would arise, though, from
flux creep in which the vortices relax, continuing to move
into the strip even as the current momentarily stops ramping.
This leads to a �temporary� negative power input to the film,
discussed in Sec. VI.

Such movement while dI /dt=0 is also visible in the full
set of magnetic images. While the magnetic-field evidence
alone is subject to errors in phase relative to the applied
current, the electric field confirms that the relaxation is real.
Such flux creep is the focus of Ref. 18.

Finally, the cross sections of Eix reveal an unexpected
negative tilt, dE /dy, both in the central and outer regions,
which is an error that arises from the tilt of the Hall sensor,
as shown in Sec. VIII.

C. Electrostatic electric field Ep

We established in Sec. V that for a uniform superconduct-
ing strip with no Hall effect below Ic, Ep=0⇒E=Ei, even
with an ac current. Indeed, the Ei that we observe contains
all the features we expect from a uniform strip, as discussed
in
Sec. V B. Our images, however, also reveal inhomogeneity,
which could produce a nonzero Ep.

Here, we show that in spite of this inhomogeneity, we
expect the total electric field E to remain approximately par-
allel to J locally, which proves sufficient to reconstruct Ep as
the field that compensates for any component of Ei perpen-
dicular to J. Our method is inspired by Ref. 18, but we do
not make the additional and incorrect assumption that the
component of Ep parallel to J is zero.28 We also describe a
rather different route to E and Ep in Sec. VIII A.

1. Validity of the constraint E ¸J

First, we must justify that in our experiment, E is parallel
to J, emphasizing that this will not be true for all materials.
For example, a material can have an intrinsic Hall effect.
However, macroscopic transport measurements indicate that
for YBCO in the superconducting state, the Hall effect is
insignificant; the component of E perpendicular to J is at
most 1000 times smaller than the parallel component.29

Another violation of E 	J could arise from a feature such
as a grain boundary, whose orientation prevents vortices
from moving perpendicular to J. More generally, any gradi-
ent in superfluid condensate energy density will exert a force
on vortices. We show here, however, that at least on length
scales greater than the image resolution of 1 �m, we can rule
out the presence of gradients strong enough to compete with
the pinning forces that occur on the scale of the coherence
length, 
2 nm. We put an upper bound on such a gradient
in our material by assuming that the gradients in pinning
strength that we observe stem entirely from changes in con-
densate energy density. We take J �the magnitude of the cur-
rent density� at maximum applied current as a map of Jc near
the edges of the strip �as discussed in Sec. IV B�. The mag-
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nitude of the pinning force per length for a single vortex is

Fp = �0Jc �16�

from which we estimate the depth of the vortex pinning po-
tential as Vp=Fp. The line energy of the vortex will be
�10Vp, from the ratio of the calculated depairing current to
the measured Jc.

30 Thus, the gradient of Fp yields a gradient
of line energy, i.e., a force Fgrad, whose magnitude we com-
pare to Fp. We find that Fp /Fgrad averages 2000 over the
edge regions of the strip with a minimum of 200.

This analysis suggests that in our material, the Lorentz
force from the current at Jc, along with pinning forces, domi-
nates other forces felt by vortices, so that vortices move per-
pendicular to J and generate E parallel to J. However, we do
not claim to rule out every possible materials effect, e.g.,
effects that average out below our resolution of 1 �m.

2. Method of reconstructing Ep

Starting with Ei and J, reconstructed in Secs. V A and IV,
and the constraint that E=Ei+Ep is parallel to J, we can
solve for Ep. The component of Ep perpendicular to J must
cancel that of Ei:

Ep� = − Ei�, �17�

where Ei� is calculated by subtracting from Ei its projection
onto J. Having obtained Ep�, we construct Ep	, the compo-
nent of Ep parallel to J, to satisfy

� � Ep = 0 , �18�

which follows from the definition of Ep. The z component of
Eq. �18� tells us that at each point,

��Ep	 = �	Ep� �19�

or more explicitly,

−
Jy

J
�xEp	 +

Jx

J
�yEp	 =

Jx

J
�xEp� +

Jy

J
�yEp�, �20�

which is a linear, first-order partial differential equation for
Ep	�x ,y�.

We tried two approaches to solving this equation for Ep	.
In the first, we start with a trial solution, Ep1, composed of
the known Ep� and Ep	 =0. We calculate its curl ���Ep�z,
which will be zero for the true Ep. From the curl, we recon-
struct a divergence-free field F following the same procedure
we used to reconstruct Ei from Bz, described in Sec. V A.
The reconstruction preserves ��F=��Ep1, so G�Ep1
−F is curl-free, as desired. However, G does not preserve
Ep�. So, we construct a new trial Ep1 consisting of the com-
ponents G	 and Ep�, and iterate. The true Ep would remain
unchanged by such a procedure. In practice, however, we
found that the procedure misconverged to an Ep1 with a
larger curl than the initial trial.

We therefore attempted a more direct integration of Eq.
�19�:

Ep	 = � �	Ep�ds , �21�

where the integral is taken along a path s that remains per-
pendicular to J at each point along its length, and starts at
some �x ,y� such that Ep	�x ,y�=0.

FIG. 4. �Color online� Reconstructing the electrostatic portion of electric field Ep: All images are cropped to the area of the strip. The
electric fields are on the same color scale, shown in �a�, and the curls are on the scale shown in �c�. �g�–�i� are x cross sections from the
images above them. The solid brown lines come from the locations indicated in �a�–�c�; the dashed green lines from �d�–�f�. The cross
sections also indicate the spatial scale of the images. The component of Ep perpendicular to the current ��a� and �b�� is obtained from Ei under
the assumption E 	J. However, �c� shows that this component alone does not satisfy ��Ep=0. We calculate and add a parallel component,
yielding the complete Ep in �d� and �e�. Our Ep	 calculation requires an integration constant, defined by assuming Ep	=0 along the lines
shown in �d� and �e�. Adding Ep	 suppresses, but does not perfectly cancel, ��Ep, as seen in �f� compared to �c�, and from the cross sections
in �i�.
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The result, constructed from many such paths, is shown in
Fig. 4. The initial data �J and Ei� are taken from frame h in
Fig. 2, then cropped to the area of the strip. For starting
points, we set Ep	�x ,y�=0 along the horizontal line shown in
Fig. 4�d�. In practice, to ensure coverage of every pixel, we
start a path at each pixel and work back to the zero line. For
efficiency, we skip pixels that have been covered by previous
paths.

Ep�, shown in Figs. 4�a� and 4�b�, represents the starting
data from which we calculate �� 	Ep�. Integration gives us
Ep	, which we add �as vector components� to Ep� to obtain
�d� and �e�. The method is far from perfect, as evinced by the
nonzero ��Ep in �f�. However, in comparison to �c�, the
curl is suppressed at all but the highest points. This is clear in
the cross sections through �c� and �f� shown in �i�. So the
result of the procedure, �d� and �e�, is closer to, but still short
of, the true, curl-free Ep.

Finally, we note that this method gives us no information
about Ep outside the sample, where J=0. However, outside
the strip the charge density 
 /�0=� ·Ep=0. Then Ep=−�	,
where 	 obeys Laplace’s equation, �2	=0, with a Neumann
boundary condition given by Ep in the strip.

D. Discussion of Ep images

Figures 5�c�–5�j� show the total electric field, E=Ei+Ep,
for the set of frames from Fig. 2. The complete set of frames
is assembled into the movie EP.avi in the supplemental
material.21 Our sample clearly deviates from a uniform strip,
in which Ep=0. Ep is comparable in magnitude to Ei, but
much more inhomogeneous, contributing most at the spots
identified by the arrows in Fig. 2�i� as weak points of the
superconductor.

Thus, we demonstrate reconstruction of the total electric
field from our time-resolved magnetic images. We reiterate

that this analysis is restricted to materials in which E is par-
allel to J and in which we can identify a field-free kernel.

VI. RECONSTRUCTED POWER INPUT

Armed with J and E, we calculate P=J ·E, the local
power input to the film, resolved in time and space. The
results are shown in the third row of Fig. 5. The largest
features are the positive edge regions where vortices move in
as the current sweeps. We note that the instantaneous power
shown arises from both dissipation and reactance. These are
not easily separated �e.g., by the relative phase of J and E�
because of the nonlinear relationship between J and E.

We can relate our local measurements to macroscopic
transport measurements by integrating over space, shown in
Fig. 5�k�. Each frame of the 50-frame set covering the central
portion of the current cycle is summed and normalized by
the length of strip imaged to obtain power per unit length,
then plotted at its time within the cycle of applied current.
These points are repeated in the first and fourth quarters of
the cycle �in which J and E repeat with opposite signs�. We
note that when integrating over the entire sample �which we
only do imperfectly by integrating over the image area�, we
expect no contribution to the power from the electrostatic
field Ep, which, exerting a conservative force, cannot do
work. Indeed, dropping Ep from the calculation shown in �k�
does not change the result significantly.

The power input rises as the magnitude of current in-
creases, but then falls back to become negative as the current
reaches its peak. An inductive response with zero resistance
would be zero at the peak. Instead, as discussed in Sec. V B,
this negative contribution �E opposite J� arises from flux
creep. As the applied current decreases back to zero, we do
not recover much power, as we would in a dissipation-free
inductor, because the vortex movement is irreversible—the
vortices remain pinned.

FIG. 5. �Color online� ��c�–�j�� The total electric field E and power P for the same set of frames shown in Fig. 2. The images are cropped
to the area of the strip. �k� Integrating P over the area of each image and the thickness of the film, and normalizing by the length of strip
imaged, we obtain the total power input as a function of time over a cycle of applied current. �m� Integrating P over time, we see the spatial
distribution of energy input over a cycle. Any reactive component of P integrates to zero, leaving only the dissipated energy.
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When integrating over time, any inductive contributions
to the instantaneous power input cancel, leaving the sum of
dissipation over one cycle, shown in Fig. 5�m�. As in the
instantaneous power, the edge contributions dominate. Inte-
grating this image over space, or equivalently integrating the
power in �k� over time, we obtain the energy dissipation per
length of conductor, 6.6�10−10 J /cm per cycle. For com-
parison, a calculation from the critical state model using the
applied I �1.07 A peak� and fitted value of Ic �1.13 A� yields
1.2�10−9 J /cm per cycle.16 Factors in the lower measured
value may include suppression of high spatial frequencies in
the reconstructed quantities due to regularization �see Sec.
IV A� and cropping of the image, which may exclude some
pixels near the edges of the strip.

This energy dissipation translates to an average power of
2.7�10−7 W/cm, which, given the applied sample current
of 0.75 A rms, implies a voltage of 6.9 nV rms between the
voltage taps, which are spaced by 260 �m. We have not
attempted to verify the presence of this small but perhaps
measurable voltage.

VII. LOCAL E-J RELATIONS

Over the cycle of applied current, each location in the film
experiences a range of current densities and electric-field
strengths. By plotting E against J for each pixel, we obtain a
local characterization of the material. For example, the E-J
curve has often been used to test models of the flux pinning
mechanism.31–35

Figure 6 shows E-J curves for one column of pixels at the
locations indicated in the inset. One curve is highlighted,
illustrating a plausible E-J relation for a superconducting
film. While the points at low J display several �V/cm of
scatter, there is a clear upturn at Jc
10 MA/cm2. This value
is consistent with the 12 MA/cm2 we observe in the edge
regions of the strip at maximum applied current and with
9 MA/cm2 from transport measurements of a similar film at
44 K, as discussed in Sec. IV B.27 However, as in Sec. VI,

we caution that the electric field we measure arises from both
dissipation and reactance, and in comparing our data with a
purely dissipative dc E-J curve, we ignore reactance.

Although many of the curves seem reasonable, they devi-
ate significantly between pixels, with upturns at current den-
sities ranging from 14 to 2 MA/cm2. These deviations are
mapped out in Fig. 7 for various electric-field criteria, Ec.
The value of each pixel is the lowest J for which Ec is ex-
ceeded. If Ec is not exceeded, the pixel is plotted as white. If
we use Fig. 7�a�, which shows J at maximum applied cur-
rent, as an estimate of Jc, it seems that many of the curves hit
Ec at erroneously low J. However, the spatial variation at
least partially reflects genuine inhomogeneity of the material,
because the points of low Jc along the edges of �b�–�d� cor-
relate with low points in �a�.

VIII. RECONSTRUCTION ERRORS

Throughout the paper, we have tried to point out physical
assumptions and where they may break down. Even if our
assumptions hold, however, the reconstruction procedure can
introduce errors and amplify uncertainties. The magnitudes
of these effects are difficult to predict analytically because of
the many complex numerical transformations involved. In-
stead, we estimate the errors by executing the procedure on
simulated data, for which we know exact solutions to com-
pare to the reconstructed quantities. Figure 8 compares cross

FIG. 6. �Color online� E, the magnitude of the projection of the
total electric field onto J, is plotted against the magnitude of J.
Values for one column of pixels are overlaid. The color of a set of
points indicates its position on the bridge within the column of
colored pixels in the inset, which is an image of the magnitude of J
at maximum applied current. The values for one pixel are high-
lighted in black and the pixel location is marked in the inset.

FIG. 7. �a� The magnitude of J at maximum applied current
compared to Jc extracted from E-J curves for various electric-field
criteria Ec, shown in �b�–�d�. All are on the same color scale, shown
in �b�. Pixels that did not reach Ec are white. Though �b�–�d� show
more scatter, areas of low Jc generally match those of low J in �a�.
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sections from the resultant exact and reconstructed images.
We generate the data with the same critical state model

used for the background of the magnetic images, as de-
scribed in Sec. III.16,22 The parameters are the same, with the
applied current �−0.02 A� corresponding to Fig. 2�f�. We
choose this frame because it includes regions of zero current,
which presents a worst case for reconstructing Ep, as de-
scribed below.

As the input to the reconstruction procedure, we calculate
an image of the magnetic field in the measurement plane
�z=1.2 �m�. This is identical to the background of Fig. 2�f�,
but extends over the entire image area. As in the background,
we account for the sensor’s tilt �3° about the x axis�, which
adds a small portion of −By to the measured “Bz.” We then
add normally distributed noise within the measurement re-
gion �the subset of the image defined by the dashed green
box in Fig. 2�c��. The amplitude of the noise matches that
observed in the real data outside the strip.

Using the reconstruction procedure, we obtain Jx, Jy, and
Bz�z=0�, shown in the first column of Fig. 8. The recon-
structed Jx smooths the sharp corners of the true Jx. It also
displays 0.03 MA/cm2 rms of noise, as does the recon-
structed Jy. The only variation as a function of x comes from
the noise added to B; the exact values of all y components
�and Epx� are zero.

To reconstruct E, we similarly calculate B for applied
currents corresponding to 12.5 �s before and after Fig. 2�f�.
From each B image we reconstruct Bz�z=0� and subtract to
approximate dBz�z=0� /dt, shown in Fig. 8�k�. We then fol-
low the reconstruction procedure for Ei �as in Sec. V A� and
Ep �Sec. V C�.

We see in Fig. 8�e� that an erroneous negative slope is
present in the residual of the reconstructed Eix. This error can
be traced to the small portion of By in B, which is not ac-
counted for by the reconstruction procedure. In principle, the
procedure could be adapted to assume a specified linear com-
bination of By and Bz, though relations such as Eq. �6� would
become more complicated. One could also calculate an ap-
proximate By from the reconstructed Jx, subtract it from the
measured B, then iterate, reconstructing a more accurate Jx
and Bz each iteration. This procedure has been successfully
applied to removing in-plane field components from
magneto-optic images.36 Both procedures require precise
knowledge of the sensor tilt.

Although small compared to the error in Eix, other errors
are worth noting. For one, we compare the y components of
the inductive electric field and total electric field �Fig. 8�h�
versus Fig. 8�i��. The addition of Epy suppresses Ey �from
about 6�10−3 to 2�10−3 �V/cm� everywhere except near
y= ±18 �m, where Ey fluctuates with x by 0.1 �V/cm rms

FIG. 8. �Color online� Errors introduced by the reconstruction procedure are analyzed by executing the procedure on model data. The
exact quantities, known from the model, are plotted as blue lines. From them, the magnetic field in the measurement plane and its time
derivative are calculated, noise is added, and the quantities are reconstructed. The red dots are y cross sections through the centers of the
reconstructed images. The residuals are the reconstructed values minus the exact values. The only variation as a function of x comes from
the noise, so the exact values of the y components are zero.
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over the image. At these locations, J is approximately zero,
making the direction of J completely uncertain, which ren-
ders Eqs. �17�–�21� inaccurate. Furthermore, such errors may
scale up with the larger Ep present in the real data. Thus, we
must admit �100% uncertainty in Ep near regions in which J
drops below its noise level, 0.03 MA/cm2. More generally,
we point out that this error analysis is performed for a ho-
mogeneous model, which may not account for some features
of real, inhomogeneous systems.

A. Alternate reconstruction of E from Ei

Where there are large uncertainties in Ep, one can use an
alternative route to reconstructing E that bypasses Ep. This
method starts with ��E, to which Ep �which is curl-free by
definition� does not contribute. As in Sec. V C, we assume E
is parallel to J, in which case we can write

E = 
�x,y,J�J , �22�

and describe E via the scalar 
 �the local resistivity�. Swap-
ping sides and taking the curl, we have

��
� � J + 
�� � J� = � � E . �23�

Taking the z component and applying Faraday’s law �Eq. �8��
to the right-hand side,

��x
�Jy − ��y
�Jx + 
��xJy − �yJx� = − �tBz. �24�

To proceed, we assume that the spatial dependence of 

arises solely from its dependence on J, i.e., that the E-J
relation is constant over the single-pixel scale at which we
solve this equation. Then,

d


dJ
���xJ�Jy − ��yJ�Jx� + 
��xJy − �yJx� = − �tBz, �25�

which we can write in a standard form

d


dJ
+ 
p�J� = q�J� , �26�

where

p�J� �
�xJy − �yJx

��xJ�Jy − ��yJ�Jx
and q�J� �

− �tBz

��xJ�Jy − ��yJ�Jx

�27�

are known. The solution to this differential equation is37


�J� =

�
0

J

u�J�q�J�dJ

u�J�
, �28�

where u�exp(0
Jp�J�dJ). We use the boundary condition


�0�=0.
So, the ingredients are the reconstructed �tBz�z=0� and J,

along with its spatial derivatives. These quantities are ar-
ranged by time; we resort them by J. Then, the integrals with
respect to J are calculated by the trapezoid method. Applying

Eq. �28� at each pixel, we obtain 
�J� and therefore E�J� at
each point. We could then reconstruct Ep=E−Ei if desired.

In practice, our results are dominated by noise. In our
images, the spatial derivatives of J are of order
10−3 MA/cm3, while their uncertainties �based on the
0.03 MA/cm2 uncertainty in J� are several orders of magni-
tude larger. This method may be effective, however, for other
samples or measurement techniques.

IX. CONCLUSION

We have shown that time-resolved magnetic imaging of a
superconducting thin film yields a complete characterization
of its electromagnetic properties, including distributions of
current flow, electric field, power, and local E-J relations. We
also point out the physical assumptions and requirements
behind the mathematical transformations. The technique is
compatible with various methods of magnetic imaging. It
requires time resolution commensurate with the sample con-
ditions being studied, but this capability is not limited to
scanning Hall probe microscopes. Magneto-optics can use
high-speed frame grabbing or a phase-locked short pulse
technique to acquire similar data sets �albeit in a different
pixel sequence�.38 Alternatively, the average response can be
acquired from each pixel in succession, as is done here, at
the expense of longer total acquisition time.

An applied field, Bz�t�, can be substituted for our applied
current, and its time dependence need not be sinusoidal. For
example, the analysis is applicable to the transient response
following a change in applied current or field, as in Ref. 18.
However, by demonstrating the technique on a superconduct-
ing strip carrying an applied current at 400 Hz, a realistic
operating frequency for power applications,19 we point out
that an important use of this work is the characterization of
material inhomogeneity and its effect on ac losses. Such im-
aging may also provide an efficient method for measuring
the effects of complex sample geometries.39

As mentioned in Sec. VII, E-J curves give insight into the
flux pinning mechanism.31–35 By resolving the variation in E
versus J with position and time, this analysis may allow one
to dissect the behavior of a heterogeneous sample, correlat-
ing pinning dynamics with materials properties. One may
also examine correlations with quantities, such as magnetic-
field strength, that vary with space or time, fully accounting
for the heterogeneous self-field experienced by different
parts of the sample.
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