
Phase-ordering dynamics in itinerant quantum ferromagnets

D. Belitz
Department of Physics and Institute for Theoretical Science, University of Oregon, Eugene, Oregon 97403, USA

T. R. Kirkpatrick
Institute for Physical Science and Technology and Department of Physics, University of Maryland, College Park, Maryland 20742, USA

Ronojoy Saha
Institute for Physical Science and Technology and Department of Physics, University of Maryland, College Park, Maryland 20742, USA

and Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, USA
�Received 7 February 2007; published 17 April 2007�

The phase-ordering dynamics that results from domain coarsening is considered for itinerant quantum
ferromagnets. The fluctuation effects that invalidate the Hertz theory of the quantum phase transition also affect
the phase ordering. For a quench into the ordered phase, there appears a transient regime where the domain
growth follows a different power law than in the classical case, and for asymptotically long times, the prefactor
of the t1/2 growth law has an anomalous magnetization dependence. A quench to the quantum critical point
results in a growth law that is not a power-law function of time. Both phenomenological scaling arguments and
renormalization-group arguments are given to derive these results, and estimates of experimentally relevant
length and time scales are presented.
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I. INTRODUCTION

When a many-body system capable of a phase transition
from a disordered phase to a phase with long-range order is
suddenly taken, by changing one or more parameters, from
the disordered phase to the ordered one, an interesting ques-
tion is how the long-range order will develop as time goes by
and the system approaches equilibrium. Such a sudden trans-
formation is called a “quench,” and the phase-ordering dy-
namics after the quench can be studied by kinetic methods
similar to those used for the critical dynamics near the phase
transition.1 The quenching problem is of broad interest, since
it is applicable to a large variety of physical systems that
undergo phase transitions, ranging from magnets to liquid
helium to the early universe.2 The phase ordering occurs by
means of the growth of domains that arise from spontaneous
fluctuations, and the linear size L of these domains3 obeys a
power law as a function of time t for sufficiently large t:
L�t�� t1/z, with z a dynamical exponent.4 In addition, the
pair-correlation function is observed, both experimentally
and numerically, to obey a simple scaling law as follows:

C�r,t� � ���x,t� · ��0,t�� = f„r/L�t�… , �1.1�

Here r= �x�, f is a scaling function, � is the order parameter
field, and �¯� denotes a statistical average. We take the order
parameter to be a real 3-vector; that is, we consider Heisen-
berg magnets.

The facts stated above, although well established,4 are
purely phenomenological; so far, no derivation from first
principles has been given. This phenomenology has so far
been applied to classical systems, but there is no reason to
expect that it will not be valid for quantum systems as well.
Quantum phase transitions are known to differ in crucial as-
pects from classical ones,5,6 and one needs to ask whether
these differences affect the phase-ordering properties as well.

In this paper, we investigate this problem for the case of a
quantum ferromagnet and show that the phase-ordering ki-
netics is indeed affected in dramatic ways.

II. REVIEW OF RESULTS FOR CLASSICAL MAGNETS

In order to motivate our approach and put it into context,
we first briefly recall the known results for phase ordering in
classical magnets. The dynamical equation that governs the
time evolution of the order parameter in an isotropic Heisen-
berg ferromagnet is7

��

�t
= ��2 �H

��
+ �� �

�H

��
+ � . �2.1�

Here, � is a spin transport coefficient, and � is a gyromag-
netic ratio. The Langevin force � is of no consequence for
the problem of phase ordering, and we will neglect it.4 H is
the Hamiltonian or free-energy functional that governs the
equilibrium properties of the system. A classical isotropic
Heisenberg ferromagnet is described by a �4 theory with
parameters r, c�0, and u�0,8

H =� dx� c

2
����2 +

r

2
�2 +

u

4
��2�2	 . �2.2a�

In Fourier space, this corresponds to a Gaussian vertex

��k� = r + ck2. �2.2b�

The first term in Eq. �2.1� describes dissipative dynamics for
a conserved order parameter; this is model B in Ref. 1. In-
cluding the second term takes into account the precession of
spins in the effective magnetic field created by all other
spins; this is model J in Ref. 1.

The phase-ordering problem for model B ��=0� has been
studied by a variety of analytic techniques, as well as by
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simulations.4 The result is a dynamical exponent z=4; i.e.,
the linear domain size grows for long times as L�t�� t1/4,
with a prefactor that is independent of the equilibrium mag-
netization m0. This result is plausible from a simple power-
counting argument: Eq. �2.1� has the structure of a continuity
equation for each component �	 of the order parameter,
�t�	=−� · j	, and for power-counting purposes the current j	

can be identified with the domain growth velocity dL /dt
times m0. Assuming that each gradient can be identified with
a factor of 1 /L,9 this leads to dL /dt
c� /L3,10,11 or

L�t� � �c��1/4t1/4 �model B� . �2.3�

The additional term in model J ���0� describes spin
waves whose dispersion relation follows from Eq. �2.1�:


�k� = D�m0�k2, �2.4�

with D�m0�=�cm0�c�L, where �L=�m0 is the Larmor fre-
quency related to the equilibrium magnetization m0. This is
consistent with the results obtained from microscopic
models.12 For the phase-ordering problem, model J was stud-
ied in Ref. 13. The same power-counting arguments as for
model B above suggest

dL

dt



c�

L3 +
c�L

L
. �2.5�

According to Eq. �2.5�, the time dependence of L will cross
over from the t1/4 behavior characteristic for model B to a t1/2

behavior at a length scale L1=�� /�L,

L�t� � � �c��1/4t1/4 if L � L1

�c�L�1/2t1/2 if L  L1
 �Model J� . �2.6�

A numerical solution of the dynamical equation was found to
be in good agreement with this expectation.13

This concludes our review of known results for classical
magnets.

III. QUANTUM FERROMAGNETS

A. Mode-mode coupling effects

The above results hold if the equilibrium properties of the
ferromagnet are described by Eqs. 2.2, and if there are no
other soft modes that couple to the order parameter. A coun-
terexample is phase separation in binary fluids, where one
needs to take into account that the local fluid velocity con-
tributes to the order parameter transport.4 The net result is
equivalent to a nonlocal free energy, or dynamic equation,
and this is obtained explicitly if the additional soft modes are
integrated out. At low temperature �T� in itinerant ferromag-
nets, a similar phenomenon occurs, viz., a coupling of the
order parameter to soft particle-hole excitations.14,15 These
mode-mode coupling effects invalidate Hertz’s mean-field
theory,16 and they change both the critical behavior at the
ferromagnetic quantum phase transition17 and the magnetiza-
tion dependence of the magnon dispersion relation in the
ordered phase.18 Here, we investigate how these effects in-
fluence the phase ordering following a quench into the quan-
tum regime, which can be realized by a pressure quench at a

fixed low temperature in a system where the ferromagnetic
quantum phase transition can be tuned by hydrostatic pres-
sure �see Fig. 1�. Examples of such systems include UGe2
�Ref. 19� and MnSi.20 The equilibrium quantum phase tran-
sitions in these systems have been studied experimentally in
some details, and our predictions for the phase ordering
should be amenable to experimental checks using similar
methods.

The nature of the mode-mode coupling effects depends on
whether the system is dirty or clean, i.e., whether or not
quenched disorder is present. In the clean case, they lead to a
fluctuation-induced first-order transition,21 so the magnetiza-
tion cannot be made arbitrarily small. In the dirty case, the
quantum phase transition generically is of second order. We
will focus on the latter,22 where the size of the quantum
effects we consider is not limited by a nonzero minimum
value of the magnetization. Quenched disorder also ensures
that the transport coefficient � will remain finite even at T
=0. The form of the dynamical equation �Eq. �2.1�� will thus
not be modified by quantum mechanics. We will briefly dis-
cuss clean systems later.

Effectively, the mode-mode coupling effects in a dirty
system in 2�d�4 dimensions lead to a nonlocal free-
energy functional that contains a �d−2 term in addition to the
usual �2 term, or to a Gaussian vertex6,14

��k� = r + c̃�k�d−2 + ck2 �3.1�

instead of Eq. �2.2b�, with c̃�0. In the ordered phase, this
nonanalyticity is cut off by the magnetization, with m0
k2.
It is also cut off by T�0. We will discuss the latter effect, as
well as the behavior at criticality, below; for now, we assume
any length scale associated with temperature to be the largest
scale in the system, which effectively sets T=0, and a
quench well into the ordered phase �see trajectory A in Fig.
1�.23 Let us denote the length scale where m0 cuts off the
nonanalyticity by L2�m0��m0

−1/2, and the length scale beyond
which the nonanalyticity dominates by L*= �c / c̃�1/�4−d�. �We

FIG. 1. Schematic phase diagram in a temperature �T�-pressure
�p� plane with a phase-separation line separating a paramagnetic
�PM� phase from a ferromagnetic �FM� one. Shown are the quan-
tum critical point �QCP�, the classical critical regime �I�, and static
�IIa and IIb� and dynamic �III� quantum critical regimes. The ar-
rows denote a quench into the ordered phase �A� and a critical
quench �B�, respectively. See the text for further explanation, and
Ref. 6 for a general discussion of magnetic quantum criticality.
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will determine and discuss L2 and L* in more detail below.�
Since the dissipative term and the torque term in Eq. �2.1�
are both proportional to �H /��, they are equally affected.
Equation �3.1� implies that, effectively, �H /��=−c�2�
which would result from Eq. �2.2a� multiplied by a function
f�� ,m0�, where � stands for the appropriate inverse length
scale, which is �k� for the magnon dispersion and 1/L for the
phase-ordering problem. For scales larger than L*, we have

f��,m0� � ��L* � �d−4 � �d−4 if 1/� � L2

�L*/L2�d−4 � m0
−�4−d�/2 if 1/�  L2.


�3.2�

For an illustration of these effects, let us consider the
magnon dispersion relation. The above considerations result
in Eq. �2.4� with a modified D�m0�, viz., D�m0��m0

�d−2�/2, for
�k��1/L2 and in 
�k�� �k�d−2 for �k�1/L2. The former re-
sult was first obtained in Ref. 18 from microscopic consid-
erations, and we have reproduced it here as an illustrative
check on our power-counting technique.

B. The quantum phase-ordering problem

For the phase-ordering problem, the right-hand side of Eq.
�2.5� gets multiplied by f�1/L ,m0�,

dL

dt

 � c�

L3 +
c�L

L
� f� 1

L
,m0� . �3.3�

In d=3, the domain growth then displays four different
power laws in different time or length regimes as follows:

L�t� � �
�c�/L*�1/3t1/3 if L � �L1,L2�
�c�L/L*�t if L1 � L � L2

�c�L2/L*�1/4t1/4 � m0
−1/8t1/4 if L2 � L � L1

�c�LL2/L*�1/2t1/2 � m0
1/4t1/2 if �L1,L2� � L .

�
�3.4�

Compared to Eq. �2.6�, the asymptotic time dependence of L
remains unchanged, but the dependence of the prefactor on
the equilibrium magnetization is m0

1/4 instead of m0
1/2. In the

initial scaling regime, where L�L1, the time dependence is
t1/3 instead of t1/4 in the classical case. In addition, there is an
intermediate regime where L�t� grows as t if L1�L2, and as
t1/4 if L2�L1.

Equation �3.4� is the central result of the present paper. It
has been derived entirely by power counting, that is, from
Eq. �3.3� which associated all gradients in the problem with
powers of 1 /L. Next, we establish the validity of this proce-
dure by means of a renormalization-group �RG� analysis that
generalizes Bray’s analysis of model B.24

C. Renormalization-group considerations

Adapting the renormalization procedure of Ma,8 we as-
sign a scale dimension �L�=−1 to L and a scale
dimension �t�=−z to time. Equation �1.1� suggests to
choose the field ��x , t� to be dimensionless, ���x , t��=0.
Let the Fourier transform of C in Eq. �1.1� be S�k , t�

=�dx exp�−ik ·x�C�r , t�. The exponent � is defined by the
structure factor S�k�=S�k , t→�� to behave as S�k�� �k�−2+�;
this implies �=2−d. Position, time, and fields are then res-
caled in the RG process according to x�=x /b, t�= t /bz, and
���x� , t��=��x , t�, respectively, with b the RG length rescal-
ing factor. The free energy H, which has a naive scale di-
mension equal to zero, is assigned an anomalous scale di-
mension −y, H�����=b−yH���. Finally, one needs to keep in
mind that the functional derivative of H in Eq. �2.1� removes
a spatial integral and therefore acts, for scaling purposes, like
an inverse volume with a scale dimension d. A zero-loop
renormalization of Eq. �2.1� then yields

���

�t�
= ����2 �H�

���
+ ���� �

�H�

���
, �3.5a�

with renormalized quantities

�� = �bz−d−2+y ,

�� = �bz−d+y . �3.5b�

For model B ��=0�, the assumption that the transport
coefficient � is not singularly renormalized at the fixed point
we are looking for �which assumes that a hydrodynamic de-
scription remains valid in the ordered phase� leads to the
relation z=d+2−y,24 which expresses the dynamical expo-
nent z in terms of the energy exponent y. For model J, this
fixed point is not stable: � is relevant with respect to it.
Assuming that � is not singularly renormalized �which as-
sumes that the spin waves in the ordered phase are charac-
terized by 
�k��k2� leads to

z = d − y . �3.6�

The remaining question is the value of the anomalous energy
dimension y. If defects in the order parameter texture deter-
mine the scaling properties of the energy, then y=d−2 for a
vector order parameter.24 This yields z=2, in agreement with
the long-time behavior of L�t�. For model B, the same value
of y yields z=4.24 With increasing length scale, one thus
expects a crossover from z=4 to z=2, as is reflected in Eq.
�3.4�. If L�L2, then one effectively has �d−2 in the free
energy instead of �2, so one expects y=d− �d−2�=2. This
leads to z=d for model B, and z=d−2 for model J, as re-
flected in the first two lines in Eq. �3.4�. The above consid-
erations show that the naive power-counting considerations
that lead to Eq. �2.5� and �3.3�, which replace all gradients in
the dynamical equation by 1/L, are indeed correct, subject to
the above assumptions. Note that for an Ising order param-
eter, y=d−1,24 and hence z=3 for model B, so the naive
power counting breaks down.9

IV. DISCUSSION AND CONCLUSION

In the remainder of the paper, we provide a semiquantita-
tive discussion of Eq. �3.4� by identifying the various length
scales that enter the quantum phase-ordering problem. L1 has
been identified in the context of Eq. �2.6�. L2 can be identi-
fied from the explicit treatment of the ferromagnetic phase in
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Ref. 25. We find L2=�D /�, where D is the charge diffusion
constant and � is the Stoner gap or exchange splitting. A
related scale is LT=�D /T, which denotes the length scale
where a nonzero temperature cuts off the nonanalyticity. Fi-
nally, L* was introduced in connection with Eq. �3.2�. Refer-
ence 15 yields explicit expressions for the coefficients c and
c̃, which give L*=�� /72, with � the elastic electronic mean
free path due to the quenched disorder. Thus,

L1 = ��/�L, L2 = �D/� ,

LT = �D/T, L* = ��/72. �4.1�

We now estimate the values of these scales. �L is on the
order of em0 /2mec, with e and me the electron charge and
mass, respectively, and c the speed of light �not to be con-
fused with the coefficient of the square gradient term in the
Hamiltonian that is denoted by c everywhere else in this
paper�. The effects we are considering are largest if the mag-
netization is small, either because the system is a weak mag-
net or because the quench is to just within the ordered phase
�but outside the critical region, we consider a critical quench
below�. For a magnetization m0=10–100 G, we have
��L /kB�0.001–0.01 K. For the Stoner gap, one expects
�� /kB�Tc, with Tc the critical temperature that corresponds
to the parameter values after the quench. For low-Tc magnets
such as MnSi or UGe2, this means �� /kB�102 K. With
free-electron parameters and a Fermi wave number kF
�1 Å−1, the mean free path is related to the resistivity � by
��103��� cm/�� Å, and in the ordered phase, one expects
��D��kF� /3me. For �=10 �� cm and T=1 K, a rough
estimate for the hierarchy of length scales thus is

L* � 5Å, L2 � 102Å,

LT � 103Å, L1 � 105Å. �4.2�

For L*�L�L2, one has the initial t1/3 behavior in Eq. �3.4�.
For L2�L�L1, the domain size will grow as L�t��m0

−1/8

t1/4, and for L�L1, the behavior crosses over to L�t�
�m0

1/4t1/2. With respect to the latter, one should keep in mind
that domains larger than a few tens of microns are hard to
achieve in zero magnetic field, except close to the critical
point.26 These predictions should be observable by time-
resolved neutron scattering. In particular, the magnetization
dependence of the prefactor of the asymptotic t1/2 law can be
checked by quenching along trajectory A in Fig. 1 to differ-
ent final pressure values. By recalling that the parameter c in
Eq. �2.2a� represents the square of a microscopic length scale
that is on the order of an angstrom, we can estimate the time
required for a domain to grow to sizes corresponding to the
various length scales given in Eq. �4.2�:

t* � 10−15s, t2 � 10−11s,

tT � 10−7s, t1 � 1s. �4.3�

Notice that the microscopic time scale for the problem is

given by the Fermi wavelength divided by the Fermi veloc-
ity, which is about 10−15 s with free-electron parameters.
This is consistent with the value of t*.

Now, consider a quench into the critical region, which is
divided into regimes denoted by I, II, and III in Fig. 1. The
classical critical fixed point controls region I, where phase
ordering has been discussed by Das and Rao.13 Regions II
and III are controlled by the quantum critical fixed point, and
the quantum critical behavior is known exactly.17 Consider a
quench to the quantum critical point, trajectory B in the
figure.23 The quantum ferromagnetic critical behavior is
characterized by logarithmic corrections to scaling, which
can be expressed in terms of scale dependent critical expo-
nents. The dynamical critical exponent in d=3 is6,17

z = 3 + const � �ln ln b�2/ln b , �4.4�

to leading logarithmic accuracy. At the quantum critical
point, and in the context of domain growth, the
renormalization-group scale factor b represents 1 /L�t�. This
leads to a growth law, with the time t measured in arbitrary
units, as follows:

L�t → �� � t1/3econst��ln ln t�2
. �4.5�

If the quench ends at a low temperature in the critical
region, but not at the quantum critical point, L�t� will grow
according to Eq. �4.5� until it becomes comparable to the
correlation length �. In region IIb, at longer times, it will
saturate at a value comparable to �, while in region IIa, there
will be a crossover to the asymptotic behavior as described
by Eq. �3.4�. A more complete description of critical
quenches will be given elsewhere.27

In clean systems, analogous mode-mode coupling effects
lead to a weaker nonanalytic term than in Eq. �3.1�; in d=3,
it is k2 ln�k�. However, the term is negative, which leads to a
first-order transition.21 The order of the transition is of no
consequence for the phase-ordering kinetics, but the
requirement of a positive transverse magnetic susceptibility
in the ordered phase prevents the magnetization from ever
being small enough for the nonanalytic term to dominate
over the analytic one. For the magnon dispersion relation,
one finds D�m0�=�cm0�1−const� ln�1/m0��, and the
equation of state will ensure that D�m0��0.28 Similarly,
for the phase-ordering problem, one has L�t�
� �1−const� ln t�t1/3 in a transient regime, and L�t→��
�m0

1/2�1−const� ln�1/m0��t1/2 asymptotically �const�0�.
The former result follows since, in the clean limit at T=0,
��k→0��1/ �k�.

We conclude by summarizing the original results obtained
in this paper. First, we generalized the phenomenology that
was developed to describe phase ordering following a
quench across classical phase transitions to the quantum
phase transition case. Second, for the continuous quantum
phase transition expected in disordered Heisenberg quantum
ferromagnets, we obtained the growth laws in various time
windows for quenches both deep into the ordered phase and
to a point at or very near quantum criticality. Third, we gave
the domain growth laws for clean itinerant Heisenberg quan-
tum magnets, where the quantum phase transition is expected
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to be discontinuous. In the latter case, the quantum
effects are subleading due to the lower bound on the magne-
tization imposed by the first-order nature of the transition.
All of these results are amenable to experimental verifica-
tion.
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